EQUADIFF 4

Marks Švec
Some problems concerning the functional differential equations

In: Jiří Fábera (ed.): Equadiff IV, Czechoslovak Conference on Differential Equations and Their Applications. Proceedings, Prague, August 22-26, 1977. Springer-Verlag, Berlin, 1979. Lecture Notes in Mathematics, 703. pp. [405]--414.

Persistent URL: http://dml.cz/dmlcz/702241

Terms of use:

© Springer-Verlag, 1979
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SOME PROBLEMS CONCERNING THE FUNCTIONAL DIFFERENTIAL EQUATIONS

M.Švec, Bratislava

We consider the equation
(1)

$$
\dot{x}(t)=f\left(t, x_{t}\right),
$$

where $\dot{x}(t)$ means the derivative of the vector function $x(t)$ at the point t. If $x(t)$ is a function defined on the interval $\left[t_{0}-h, T\right)$, where $h>0, t_{0}, T$ are real numbers, then $x_{t}=x(t+\theta)$, $\theta \in[-h, 0]$ for $t \in\left[t_{0}, T\right)$ as usual. Let us explain the meaning of the notation used in this paper. Let n be a natural number, R^{n} the n-dimensional vector space of the points $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with a suitable norm $|\cdot|, C=C\left([-h, 0], R^{n}\right)$ the Banach space of all continuous functions ψ with the norm $\|\psi\|=\max \{|\psi(t)|$, $t \in[-\mathrm{h}, 0]\}, \mathrm{c}_{0}=\{\Phi \in \mathrm{c}: \Phi(0)=0\}$ a subspace of C . Furthermore, let $B=B\left(\left[t_{0}, T\right), R^{n}\right)$ be the Banach space of all functions continuous and bounded on $\left[t_{0}, T\right)$ with the uniform norm . $\|u\|_{u}=$ $=\sup \left\{|u(t)|, t \in\left[t_{0}, T\right)\right\}$ and $B_{0}=\left\{u(t) \in B: u\left(t_{0}\right)=0\right\}$ a subspace of B. Let $\Phi \in C_{0}$ be fixed. Then $B^{B}=\left\{\mathbf{z}(t):\left[t_{0}-h, T\right) \longrightarrow\right.$ $R^{n}, z(t)=\Phi\left(t-t_{0}\right)$ for $t \in\left[t_{0}-h, t_{0}\right], z(t)=u(t)$ for $t \in\left[t_{0}, T\right)$; $\left.u(t) \in B_{0_{1}}\right\}$ is a complete metric space with the metric $\rho\left(z_{1}, z_{2}\right)=$ $=\left\|u_{1}-u_{2}\right\|_{u}$, where $z_{1}(t)=u_{1}(t), z_{2}(t)=u_{2}(t)$ for $t \in\left[t_{0}, T\right)$, $u_{1}(t), u_{2}(t) \in B_{0}$.

As usual, the initial problem for (l) is formulated as follows: For given $t_{0} \in R, \psi \in C$ find a function $x \in C\left(\left[t_{0}-h, A\right), R^{n}\right)$ such that $x(t)=\psi\left(t-t_{0}\right)$ for $t \in\left[t_{0}-h, t_{d}\right]$ and $x(t)=f\left(t, x_{t}\right)$ for $t \in\left[t_{0}, A\right)$. We shall denote this solution by $x\left(t, t_{0}, \psi\right)$ and say that it is given by $\left(t_{0}, \psi\right)$. Because every $\psi \in c$ can be written as $\psi(t)=x_{0}+\Phi(t)$, where $x_{0}=\psi(0), \Phi \in c_{0}$, we shall write $x\left(t, t_{0}, x_{0}+\Phi\right)$ to express that the solution x passes through the point X_{0} at $t=t_{0}$.

Now, the main problem we will discuss is the following:
(P) Let be given $T \in R, t_{0}<T, X_{0}, X_{1} \in R^{n}$. Find $\Phi \in C_{0}$ such that the solution $x\left(t, t_{0}, x_{0}+\Phi\right)$ exists on $\left[t_{0}, T\right)$ and $\lim x\left(t, t_{0}, X_{0}+\Phi\right)=X_{1}$ as $t \rightarrow T-$.
The function f is subjected to the following hypotheses:
$\left(H_{1}\right) \quad f(t, \psi)$ is continuous on $\left[t_{0}, T\right) \times C$ and $\int_{t_{0}}^{T}|f(t, 0)| d t=$
$=K<\infty$.
$\left(\mathrm{H}_{2}\right) \quad$ There is a function $\beta(\mathrm{t})$ continuous on $\left[t_{0}, T\right)$ such that $\left|f\left(t, \psi_{1}\right)-f\left(t, \psi_{2}\right)\right| \leq \beta(t)\left\|\psi_{1}-\psi_{2}\right\|$ for every $\psi_{1}, \psi_{2} \in c$ and $t \in\left[t_{0}, T\right)$ and $\int_{t_{0}}^{T} \beta(t) d t=k<1$.

The hypotheses H_{7} and H_{2} being satisfied, we can conclude
Theorem 1. [1]. Let H_{1} and H_{2} be satisfied. Then the solution $x\left(t, t_{0}, \psi\right), \psi \in C$ exists on $\left[t_{0}, T\right)$, is unique and $\lim x\left(t, t_{0}, \psi\right)=$ $=X_{1} \in R^{n}$ as $t \rightarrow T-$.

Theorem $2[1]$. Let H_{1} and H_{2} with $k<1 / 2$ be satisfied. Let be given $X_{1} \in R^{n}, \Phi \in C_{0}$. Then there exists a unique $X_{0} \in R^{n}$ such that $\lim x\left(t, t_{0}, X_{0}+\Phi\right)=X_{1}$ as $t \rightarrow T-$.

Now we define a map $F\left(X_{0}, \Phi\right): R^{n} \times C_{0} \rightarrow R^{n}$ by the relation $F\left(X_{0}, \Phi\right)=\lim x\left(t, t_{0}, X_{0}+\Phi\right)=X_{1}$ as $t \rightarrow T-$. The following theorem mentions some properties of this map.

Theorem $3[1]$. Let H_{1} and H_{2} with $k<1 / 2$ be valid. Then
a) the map $F\left(X_{0}, \Phi\right)$, by fixed Φ, is a one-to-one map of R^{n} onto R^{n};
b) $F\left(X_{0}, \Phi\right)$ fulfils the Lipschitz condition:

$$
\left|F\left(X_{01}, \Phi_{1}\right)-F\left(X_{02}, \Phi_{2}\right)\right| \leq e^{k}\left|X_{01}-X_{02}\right|+\left(e^{k}-1\right) \| \Phi_{1}-\Phi_{2}| |
$$

Our problem (P) was partially solved in the papers [1], [2], [3]. In $[1]$ we obtained some results of negative character, ecg. if H_{1} and H_{2} are valid and if $X_{0}, X_{2} \in R^{n},\left|X_{0}\right|+K \neq 0$ and $\left|X_{1}\right|>\left[\left|X_{0}\right|+K\right]$ $\frac{a}{1-k}, 0<a<1$, then there is no solution of the problem (P) for $\Phi \in C_{0},\|\Phi\|<K \frac{a}{1-k}$.

For further purposes we need an estimation of $\left|x\left(t, t_{0}, x_{0}+\Phi\right)\right|$ and $\left\|x_{t}\left(t_{0}, x_{0}+\Phi\right)\right\|$. Let us use the notation $x(t)=x\left(t, t_{0}, x_{0}+\Phi\right)$. Then, $x_{t}(\theta), \theta \in[t-h, t]$ being continuous, there exists $v \in[t-h, t]$ such that $|x(v)|=\left\|x_{t}\right\|$. Suppose that $t \geq t_{0}$. Then either $v \geq t_{0}$ or $v \in\left[t_{0}-h, t_{0}\right]$.

Let $v \geq t_{0}$. Then we get

$$
\begin{aligned}
\left\|x_{t}\right\| & =|x(v)|=\left|x_{0}+\int_{t_{0}}^{v} f\left(s, x_{s}\right) d s\right| \leq\left|x_{0}\right|+\int_{t_{0}}^{v}|f(s, 0)| d s+ \\
& +\int_{t_{0}}^{v}\left|f\left(s, x_{s}\right)-f(s, 0)\right| d s \leq\left|x_{0}\right|+K+\|\Phi\|+\int_{t_{0}}^{t} \beta(s)\left\|x_{s}\right\| d s
\end{aligned}
$$

If $\quad v \in\left[\begin{array}{l}\left.t_{0}-h, t_{0}\right] \\ \left\|x_{t}\right\| \\ =|x(v)|=\left|x_{0}+\Phi\left(v-t_{0}\right)\right| \leq\left|x_{0}\right|+\|\Phi\|+K+\int_{t_{0}}^{t} \beta(s)\left\|x_{s}\right\| d s \quad \bullet\end{array}\right.$

Thus, for $t \in\left[t_{0}, T\right)$ we have

$$
\left\|x_{t}\right\| \leq\left|x_{0}\right|+K+\|\Phi\|+\int_{t_{0}}^{t} \beta(s)\left\|x_{s}\right\| d s
$$

The application of Gronwall-Bellman lemma gives

$$
\begin{equation*}
\left\|x_{t}\right\|\left[\mid\left(x_{0} \mid+K+\|\Phi\|\right] \quad \exp \left(\int_{t}^{t} \beta(s) d s\right), \quad t \in\left[t_{0}, T\right),\right. \tag{2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
|x(t)| \leq\left\|x_{t}\right\| \leq\left[\left|x_{0}\right|+K+\|\Phi\|\right] \exp \left(\int_{t_{0}}^{t} \beta(s) d s, t \in \bar{L}_{0}, T\right) \tag{3}
\end{equation*}
$$

Let us turn our attention to the dependence of $F\left(X_{0}, \Phi\right)$ on Φ by fixed $x_{0_{0}}$. It follows from Theorem 3 that, if $\left\|\Phi_{1}-\Phi_{2}\right\|=0$, we have $F\left(X_{0}, \Phi_{1}\right)=F\left(X_{0}, \Phi_{2}\right)$. If $\left\|\Phi_{1}-\Phi_{2}\right\| \neq 0$, it may happen that $F\left(X_{0}, \Phi_{1}\right) \neq F\left(X_{0}, \Phi_{2}\right)$, but also $F\left(X_{0}, \Phi_{1}\right)=F\left(X_{0}, \Phi_{2}\right)$. If the former case occurs, it influences both solutions $x\left(t, t_{0}, x_{0}+\Phi_{1}\right)$ and $x\left(t, t_{0}, x_{0}+\Phi_{2}\right)$. The following theorem holds.

Theorem 4. Let $\left\|\Phi_{1}-\Phi_{2}\right\| \neq 0$ and $F\left(X_{0}, \Phi_{1}\right)=F\left(X_{0}, \Phi_{2}\right)$. Then either

$$
\text { a) } 0<\|_{x\left(t, t_{0}, x_{0}+\Phi_{1}\right)-x\left(t, t_{0}, x_{0}+\Phi_{2}\right)\left\|_{u}<\right\| \Phi_{1}-\Phi_{2} \|, ~ . ~}^{\text {ner }}
$$

or
b) $\left\|x\left(t, t_{0}, x_{0}+\bar{\Phi}_{1}\right)-x\left(t, t_{0}, x_{0}+\Phi_{2}\right)\right\|_{u}=0$.

Proof. The function $|H(t)|=\left|x\left(t, t_{0}, x_{0}+\Phi_{1}\right)-x\left(t, t_{0}, x_{0}+\Phi_{2}\right)\right| ; t \geq t_{0}$ is nonnegative and $\left|H\left(t_{0}\right)\right|=0=|H(T)|$. Thus there exists $t_{1} \in$ $\left[t_{0}, T\right)$ such that $H\left(t_{1}\right)=\max \left\{|H(t)|, t \in\left[t_{0}, T\right)\right\}$. If $t_{1}=t_{0}$, the second case (b) occurs. If $t_{1} \in\left[t_{0}+h, T\right)$ and $H\left(t_{1}\right) \neq 0$, the hypothesis H_{2} yields

$$
\begin{array}{r}
|\dot{H}(t)| \leq \beta(t)\left\|x_{t}\left(t_{0}, x_{0}+\Phi_{1}\right)-x_{t}\left(t_{0}, x_{0}+\Phi_{2}\right)\right\| \leq \beta(t) \| H\left(t_{1}\right) \mid, \tag{4}\\
t \in\left[t_{0}+h, T\right) .
\end{array}
$$

Hence we get

$$
\begin{align*}
\left|H\left(t_{1}\right)\right| & =\left|\int_{t_{1}}^{T} \dot{H}(t) d t\right| \leq \int_{t_{1}}^{T}|\dot{H}(t)| d t \leq \int_{t_{1}}^{T} \beta(t) d t\left|H\left(t_{1}\right)\right| \leq \tag{5}\\
& \leq k\left|H\left(t_{1}\right)\right| .
\end{align*}
$$

Therefore $\left.t_{1} \bar{\in} t_{0}+h, T\right)$. Suppose that $t_{1} \in\left(t_{0}, t_{0}+h\right)$ and that $\left|H\left(t_{1}\right)\right| \geq\left\|\Phi_{1}-\Phi_{2}\right\|$. In this case the inequalities (4) and (5) hold
as well and the same reasoning as above gives a contradiction which completes the proof.

In the following let X_{0} be fixed. We are going to examine the properties of the set of images of the set $G=\left\{\Phi \in c_{0}:\|\Phi\| \leq \mathbf{r}\right\}$, $r>0$, by the map F. We shall denote this set of images by $F\left(X_{0}, G\right)$. Theorem 5. Let H_{1}, H_{2} and H_{3} be valid with
$\left(H_{3}\right) \quad$ There exists a constant $d, 0<d \leq 1$, such that for any $X_{0} \in R^{n}$ and any $y_{i} \in B_{0}, i=1,2$ and any $\Phi_{i} \in c_{0}, i=1,2$ the inequality
$a\left\|\Phi_{1}-\Phi_{2}\right\| \leq I \int_{t_{0}}^{t_{0}+h}\left[f\left(s, x_{0}+z_{1 s}\right)-f\left(s, x_{0}+z_{2 s}\right)\right] d s \mid$
holds where $z_{i}(t)=\Phi_{i}\left(t-t_{0}\right)$ for $t \in\left[t_{0}-h, t_{0}\right], z_{i}(t)=$ $=y_{i}(t)$ for $t \in\left[t_{0}, t_{0}+h\right], i=1,2$.
Then the set $F\left(X_{0}, G\right)$ is bounded, closed and connected.
Proof. The boundedness of $F\left(X_{0}, G\right)$ follows immediately from (3) or from Theorem 3, (b). Consider now the set of solutions $S=$ $=\left\{x\left(t, t_{0}, x_{0}+\Phi\right), \Phi \in G\right\}$ on $\left[t_{0}, T\right)$. From (3) we have that these solutions are uniformly bounded on $\left[t_{0}, T\right)$ by $\left[\left|X_{0}\right|+K+r\right] e^{k}$. The same holds also for the set $\left\{x_{s}\left(t_{0}, x_{0}+\Phi\right), s \in\left[t_{0}, T\right)\right\}$ as follows from (2). Further, for $t, t^{\prime} \in\left[t_{0}, T\right), t<t$, we have $\left|x\left(t^{\prime}, t_{0}, x_{0}+\Phi\right)-x\left(t, t_{0}, x_{0}+\Phi\right)\right| \leq \int_{T}^{t}|f(s, 0)| d s+\int_{t}^{t ?} \beta(s)\left\|x_{s}\right\| d s \quad$. Now, from the existence of $\int_{t_{0}}^{T}|f(s, 0)| d s$ and $\int_{t_{0}^{t}}^{T} \beta(s) d s$ and from the uniform boundedness of $\left\|{ }_{x_{s}}^{t_{0}}\right\|$ we get the equicontinuity of the elements of S on $\left[t_{0}, T\right)$. Thus we may apply on S the theorem of Ascoli-d'Arzelà on every compact set from $\left[t_{0}, T\right)$. Suppose that $X_{i} \in F\left(X_{0}, G\right), i=1,2, \ldots$ and that $\lim X_{i}=Y$ as $i \rightarrow \infty$. We are going to show that $Y \in F\left(X_{0}, G\right)$. Let $\left\{x\left(t, t_{0}, X_{0}+\Phi_{i}\right), \Phi_{i} \in G\right\}$ be the sequence of solutions of (1) such that $\lim x\left(t, t_{0}, X_{0}+\Phi_{i}\right)=X_{i}$ as $t \rightarrow T-, i=1,2, \ldots$. Applying the Ascoli-d'Arzela theorem we get that we can choose a subsequence $\left\{x\left(t, t_{0}, x_{0}+\Phi_{i_{k}}\right), \Phi_{i_{k}} \in G\right\}$ from $\left\{x\left(t, t_{0}, x_{0}+\Phi_{i}\right)\right\}$ which converges to a continuous function $u(t)$ uniformly on every closed subinterval of $\left[t_{0}, T\right)$. Let $\lim x\left(t, t_{0}\right.$, $\left.\mathrm{X}_{0}+\Phi_{\mathrm{i}_{k}}\right)=\mathrm{X}_{\mathrm{i}_{\mathrm{k}}}$ as $\mathrm{t} \rightarrow \mathrm{T}-$. Evidently $\lim \mathrm{X}_{\mathrm{i}_{k}}=\mathrm{Y}$ as $\mathrm{k} \rightarrow \infty$. The solutions $x\left(t, t_{0}, X_{0}+\Phi_{i_{k}}\right)$ satisfy the equations

$$
x\left(t, t_{0}, x_{0}+\Phi_{i_{k}}\right)=x_{i_{k}}-\int_{t}^{T} f\left(s, x_{s}\left(t_{0}, x_{0}+\Phi_{i_{k}}\right)\right) d s, k=1,2, \ldots
$$

The application of Lebesgue's dominated convergence theorem gives

$$
u(t)=Y-\int_{t}^{T} f\left(s, u_{s}\right) d s \quad \text { for } \quad t \in\left[t_{0}+h, T\right)
$$

Thus, we have got that $u(t)$ satisfies (1) on $\left[t_{0}+h, T\right)$ and $\lim u(t)=Y$ as $t \rightarrow T$ - . The problem which appears here is: How to ensure that $u(t)$ satisfies (1) on $\left[t_{0}, T\right)$; if this is possible, to which function $\Phi \in c_{0}$ this solution will correspond ? The validity of H_{3} represents one of the possibilities. In fact, we know that the sequence $\left\{x\left(t_{0}+h, t_{0}, x_{0}+\Phi_{i_{k}}\right)\right\}$ converges to $u\left(t_{0}+h\right)$. Therefore

$$
\begin{aligned}
& \text { it is a Cauchy sequence. Using the hypothesis } H_{3} \text {, we get } \\
& \left|x\left(t_{0}+h, t_{0}, x_{0}+\Phi_{i_{m}}\right)-x\left(t_{0}+h, t_{0}, x_{0}+\Phi_{i_{n}}\right)\right|= \\
& =\left|\int_{t_{0}}^{t}\left[f\left(s, x_{s}\left(t_{0}, x_{0}+\Phi_{i_{m}}\right)\right)-f\left(s, x_{s}\left(t_{0}, x_{0}+\Phi_{i_{n}}\right)\right)\right] d s\right| \geq d\left\|\Phi_{i_{m}}-\Phi_{i_{n}}\right\| .
\end{aligned}
$$

Hence we get that $\left\{\Phi_{i_{k}}\right\}$ is a Cauchy sequence and therefore it converges to a function Φ in the complete space C_{0}. This convergence is uniform on $[-h, 0]$.

Now take the function $v_{k}(t)$ defined on $\left[t_{0}-h, T\right)$ as follows: $v_{k}(t)=x_{0}+\Phi_{i_{k}}\left(t-t_{0}\right), t \in\left[t_{0}-h, t_{0}\right], v_{k}(t)=x\left(t, t_{0}, x_{0}+\Phi_{i_{k}}\right)=x_{0}+$ $+\int_{t_{0}}^{t} f\left(s, x_{s}\left(t_{0}, x_{0}+\Phi_{i_{k}}\right)\right) d s=x_{i_{k}}-\int_{t}^{T} f\left(s, x_{s}\left(t_{0}, x_{0}+\Phi_{i_{k}}\right)\right) d s, t \in\left[t_{0}, T\right)$, $k=1,2, \ldots$. We get that $v_{k}(t)$ converges to $v(t): v(t)=X_{0}+$ $+\Phi\left(t-t_{0}\right)$ for $t \in\left[t_{0}-h, t_{0}\right], v(t)=u(t)$ for $t \in\left[t_{0}, T\right)$ uniformly on every closed subinterval of $\left[t_{0}-h, T\right)$. We get also that

$$
v(t)=X_{0}+\int_{t_{0}}^{t} f\left(s, v_{s}\right) d s=Y-\int_{t}^{T} \rho\left(s, v_{s}\right) d s \quad, t \in\left[t_{0}, T\right)
$$

Thus $\quad v(t)=x\left(t, t_{0}, X_{0}+\Phi\right)$ and $\lim v(t)=Y$ as $t \rightarrow T$-. This proves that $Y \in F\left(X_{0}, G\right)$ and therefore $F\left(X_{0}, G\right)$ is closed.

Finally, we have to prove that $F\left(X_{0}, G\right)$ is connected. Suppose the contrary is true. Then $F\left(X_{0}, G\right)$ can be represented as $F\left(X_{0}, G\right)=$ $=F_{1} \cup F_{2}$, where F_{i}, $i=1,2$, are bounded, closed and disjoint sets. Let $\quad G_{i}=\left\{\Phi \in G: F\left(X_{0}, \Phi\right) \in F_{i}\right\}$, $i=1,2$. Evidently $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=\emptyset$ and G_{1} and also G_{2} are nonvoid. Furthermore,
the continuous dependence of solutions on the initial functions, Theorem 3 and the closedness of F_{i}, $i=1,2$ imply the closedness of $G_{i}, i=1,2$. But then we have that the closed ball G is the union of two sets which are nonvoid, closed and disjoint which is in contradiction with the fact that G is connected.

Remark 1. The constant d in H_{3} has to satisfy also the condilion $d \leq \int_{t_{0}}^{t_{0}+h} \beta(s) d s$ for H_{2}, H_{3} not to contradict each other. In fact, we have $\left\|\Phi_{1}-\Phi_{2}\right\| \leq\left|\int_{t_{0}}^{t_{0}+h}\left[f\left(s, z_{1 s}\right)-f\left(s, z_{2 s}\right)\right] d s\right| \leq \int_{t_{0}}^{t_{0}+h} \beta(s)\left\|z_{1 s}-z_{2 s}\right\| d s$.
If we take $z_{i}(t)=\Phi_{i}\left(t-t_{0}\right), t \in\left[t_{0}-h, t_{0}\right], z_{i}(t)=y(t), t \geq t_{0}$, $i=1,2$, we have that $\left\|z_{1 s^{-}} z_{2 s}\right\| \leq\left\|\Phi_{1}-\Phi_{2}^{0}\right\|$ and from the preceding inequality we get that $d \leq \int_{t_{0}}^{t_{0}^{+h}} \beta(s) d s$.

Theorem 6. Let be valid H_{1}, H_{2}, H_{3} with $\frac{k}{1+k} \leq d \leq \int_{t_{0}}^{t_{0}^{+h}} \beta(s) d$ s and H_{4} :
$\left(H_{4}\right) \quad$ For every two points $X_{0}, X \in R^{n}$ and every $y(t) \in B_{0}$ there
is $\Phi \in c_{0}$ such that for $z(t)=\Phi\left(t-t_{0}\right), t \in\left[t_{0}-h, t_{0}\right]$,
$\left.z(t)=y(t), t \in t_{0}, T\right)$ the equation
$x=x_{0}+\int_{t_{0}}^{t_{0}+h} f\left(t, x_{0}+z_{t}\right) d t$
holds.
Then the problem (P) has a solution.
Proof. Let $X_{1}, X_{0} \in R^{n}$ be given. Choose $y_{1}(t) \in B_{0}$ such that
$\lim \mathrm{y}_{1}(\mathrm{t})=\mathrm{X}=\mathrm{X}_{1}-\mathrm{X}_{0}$ as $\mathrm{t} \rightarrow \mathrm{T}$-. Then denote

$$
\begin{equation*}
y_{1}=x_{1}-\int_{t_{0}+h}^{T} f\left(t, x_{0}+y_{1 t}\right) d t \tag{6}
\end{equation*}
$$

With regard to H_{4} applied to $X_{0}, Y_{1} \in R^{n}$ and $y_{1}(t) \in B_{0}$ there exists $\Phi_{1} \in C_{0}$ such that

$$
\begin{equation*}
y_{1}=x_{0}+\int_{t_{0}}^{t_{0}^{+h}} P\left(t, x_{0}+z_{1 t}\right) d t \tag{7}
\end{equation*}
$$

$z_{1}(t)=\Phi_{1}\left(t-t_{0}\right)$ for $t \in\left[t_{0}-h, t_{0}\right]$ and $z_{1}(t)=y_{1}(t)$ for $t \in$ $\left[t_{0}, T\right)$. From (6) and (7) we get
(8)

$$
x_{1}=x_{0}+\int_{t_{0}}^{T} f\left(s, X_{0}+z_{l s}\right) d s
$$

Denote

$$
y_{2}(t)=\int_{t_{0}}^{t} f\left(s, x_{0}+z_{1 s}\right) d s, \quad t \in\left[t_{0}, T\right)
$$

Evidently $y_{2}(t) \in B_{0}$ and $\lim y_{2}(t)=X_{1}-X_{0}=X$ as $t \rightarrow T-$. Now we construct

$$
y_{2}=x_{1}-\int_{t_{0}+h}^{T} f\left(t, x_{0}+y_{2 t}\right) d t
$$

Then with regard to H_{4} applied to X_{0}, Y_{2} and $y_{2}(t)$ there exists $\Phi_{2} \in C_{0}$ such that

$$
x_{2}=x_{0}+\int_{t_{0}}^{t_{0}+h} f\left(t, x_{0}+z_{2 t}\right) d t
$$

where $z_{2}(t)=\Phi_{2}\left(t-t_{0}\right)$ for $t \in\left[t_{0}-h, t_{0}\right], z_{2}(t)=y_{2}(t)$ for $t \in\left[t_{0}, T\right)$. Once again we get

$$
x_{1}=x_{0}+\int_{t_{0}}^{T} f\left(t, x_{0}+z_{2 t}\right) d t
$$

Put

$$
y_{3}(t)=\int_{t_{0}}^{t} f\left(s, X_{0}+z_{2 s}\right) d s, \quad t \in\left[t_{0}, T\right)
$$

We have that $y_{3}(t) \in B_{0}$, $\lim y_{3}(t)=X_{1}-X_{0}=X$ as $t \rightarrow T-$. Proceeding in this way we get the sequences, $n=2,3, \ldots$.

$$
\begin{equation*}
y_{n}(t)=\int_{t_{0}}^{t} f\left(s, x_{0}+\left(z_{n-1}\right)_{s}\right) d s, \quad t \in\left[t_{0}, T\right), \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
y_{n}=x_{1}-\int_{t_{0}+h}^{T} f\left(t, x_{0}+y_{n t}\right) d t \tag{10}
\end{equation*}
$$

(11)

$$
Y_{n}=x_{0}+\int_{t_{0}}^{t_{0}+h} f\left(t, x_{0}+\left(z_{n}\right)_{t}\right) d t
$$

$z_{n}(t)=\Phi_{n}\left(t-t_{0}\right)$ for $t \in\left[t_{0}-h, t_{0}\right], z_{n}(t)=y_{n}(t), t \in\left[t_{0}, T\right)$ and

$$
\begin{equation*}
x_{1}=x_{0}+\int_{t_{0}}^{T} f\left(t, x_{0}+\left(z_{n}\right)_{t}\right) d t \tag{12}
\end{equation*}
$$

Now from (10), (11) applying H_{3} and H_{2} we have

$$
\begin{align*}
& \left\|\Phi_{n}-\Phi_{n-1}\right\| \leq\left|\int_{t_{0}}^{t_{0}+h}\left[f\left(t, x_{0}+z_{n t}\right)-f\left(t, x_{0}+\left(z_{n-1}\right)_{t}\right)\right] d t\right| \frac{1}{d}= \tag{14}\\
= & \left\lvert\, \int_{t_{0}+h}^{T}\left[f\left(t, x_{0}+y_{n t}\right)-f\left(t, x_{0}+\left(y_{n-1}\right)_{t}\right] d t \left\lvert\, \frac{1}{d} \leq\right.\right.\right. \\
\leq & \frac{1}{d} \int_{t_{0}+h}^{T} \beta(t)\left\|\left[y_{n}-y_{n-1}\right]_{t}\right\| d t \leq \frac{1}{d} \int_{t_{0}+h}^{T} \beta(s) d s\left\|y_{n}-y_{n-1}\right\| u \leq\left\|_{u}\right\| y_{n}-y_{n-1} \| u
\end{align*}
$$

From (9) using H_{2} and (14) we get

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\|_{u} \leq \int_{t_{0}}^{T} \beta(t)\left\|\left[z_{n}-z_{n-1}\right]_{t}\right\| d t \leq k \mid\left\|_{n}-y_{n-1}\right\|_{u} \tag{15}
\end{equation*}
$$

Because $k<1$, (15) means that the sequence $\left\{y_{n}(t)\right\}$ converges uniformly on $\left[t_{0}, T\right)$ to a function $y(t)$. But (14) implies the uniform convergence of the sequence $\left\{\Phi_{n}(t)\right\}$ to a function $\Phi \in C_{0}$. From all this we conclude that the sequence $\left\{z_{n}(t)\right\}$ converges uniformly on $\left[t_{0}-h, T\right)$ to the function $z(t): z(t)=\Phi\left(t-t_{0}\right)$ for $t \in$ $\left[t_{0}-h, t_{0}\right], z(t)=y(t)$ for $t \in\left[t_{0}, T\right)$. Then from (9) we get

$$
y(t)=\int_{t_{0}}^{t} f\left(s, X_{0}+z_{s}\right) d s, \quad t \in\left[t_{0}, T\right)
$$

Therefore

$$
\begin{equation*}
x_{0}+y(t)=x_{0}+\int_{t_{0}}^{t} f\left(s, x_{0}+z_{s}\right) d s \tag{16}
\end{equation*}
$$

Denoting $u(t)=X_{0}+z(t)$ for $t \in\left[t_{0}-h, T\right)$ we have

$$
\begin{align*}
& u(t)=x_{0}+\Phi\left(t-t_{0}\right) \text { for } t \in\left[t_{0}-h, t_{0}\right] \tag{17}\\
& u(t)=x_{0}+\int_{t_{0}}^{t} f\left(s, u_{s}\right) d s \text { for } t \in\left[t_{0}, T\right)
\end{align*}
$$

Thus, $u(t)$ is the solution of (l) corresponding to the initial va-
lues $\left(t_{0}, X_{0}+\Phi\right)$. From (12) and (16) we get that $\lim u(t)=X_{1}$ as $t \rightarrow T-$ and $u\left(t_{0}\right)=X_{0}$. Thus, $u(t)$ is a solution of our prob1 em (P).

Theorem 7. Let H_{1}, H_{2}, H_{3} be valid and let
(18)

$$
d>\left[\exp \left(\int_{t_{0}+h}^{T} \beta(s) d s\right)-1\right] \exp \left(\int_{t_{0}}^{t_{0}+h} \beta(s) d s\right)
$$

Then the map $F\left(X_{0}, \Phi\right)$, by fixed X_{0}, is a one-to-one map of C_{0} into P^{n}. This means that in this case the problem (P) has at most one solution.
Proof. Let $\Phi_{1}, \Phi_{2} \in c_{0},\left\|\Phi_{1}-\Phi_{2}\right\| \neq 0$. Then

$$
\begin{aligned}
& \left|F\left(x_{0}, \Phi_{1}\right)-F\left(x_{0}, \Phi_{2}\right)\right|=\mid \int_{t_{0}}^{T}\left[f\left(t, x_{t}\left(t_{0}, x_{0}+\Phi_{1}\right)\right)-f\left(t, x_{t}\left(t_{0}, x_{0}+\Phi_{2}\right)\right)\right] \\
& \cdot d t|\geq| \int_{t_{0}}^{t}\left[f\left(t, x_{t}\left(t_{0}, x_{0}+\Phi_{1}\right)\right)-f\left(t, x_{t}\left(t_{0}, x_{0}+\Phi_{2}\right)\right] d t \mid-\right. \\
& -\left|\int_{t_{0}+h}^{T}\left[f\left(t, x_{t}\left(t_{0}, x_{0}+\Phi_{1}\right)\right)-f\left(t, x_{t}\left(t_{0}, x_{0}+\Phi_{2}\right)\right)\right] d t\right| \geq d\left\|\Phi_{1}-\Phi_{2}\right\|- \\
& \quad-\int_{t_{0}+h}^{T} \beta(s)\left\|x_{s}\left(t_{0}, x_{0}+\Phi_{1}\right)-x_{s}\left(t_{0}, x_{0}+\Phi_{2}\right)\right\| d s .
\end{aligned}
$$

Using Lemma 3 from [1] which asserts that, if H_{1} and H_{2} are valid, the inequality

$$
\left\|x_{t}\left(t_{0}, x_{0}+\Phi_{1}\right)-x_{t}\left(t_{0}, x_{0}+\Phi_{2}\right)\right\| \leq\left\|\Phi_{1}-\Phi_{2}\right\| \exp \left(\int_{t_{0}}^{t} \beta(s) d s\right)
$$

$$
\begin{align*}
& \left|F\left(X_{0}, \Phi_{1}\right)-F\left(X_{0}, \Phi_{2}\right)\right| \geq\left\|\Phi_{1}-\Phi_{2}\right\|\left\{d+\left[1-\exp \int_{t_{0}+h}^{T} \beta(s) d s\right]\right. \tag{19}\\
& \left.\cdot \exp \int_{t_{0}}^{t_{0}+h} \beta(s) d s\right\}
\end{align*}
$$

which proves our theorem.
Remark 2. If we consider the scalar equation $\dot{x}(t)=a(t) x(t-h)$ where $a(t) \neq 0$ for $t \in\left[t_{0}, t_{0}+h\right]$, then H_{4} will be valid if there is $\Phi \in c_{0}$ such that $\int_{t_{0}}^{t_{0}^{+h}} a(t) \Phi\left(t-t_{0}-h\right) d t \neq 0$. In fact, we have

$$
\begin{aligned}
& x=x_{0}+\int_{t_{0}}^{t_{0}+h} a(t)\left(x_{0}+\lambda \Phi\left(t-t_{0}-h\right)\right) d t=x_{0}+x_{0} \int_{t_{0}}^{t_{0}+h} a(t) d t+ \\
&+\lambda \int_{t_{0}}^{t_{0}+h^{0}} a(t) \Phi\left(t-t_{0}-h\right) d t .
\end{aligned}
$$

From this we can calculate λ and then $\lambda \Phi$ will be the sought function.

Remark 3. It can happen that for some given $X_{0}, x \in R^{n}$ and $y(t) \in B_{0}$ there are more than one function $\Phi \in C_{0}$ satisfying H_{4}. But if we suppose also the validity of H_{3}, there can be only one $\Phi \in \mathrm{C}_{0}$ satisfying H_{4}. In fact, let $\Phi_{1}, \Phi_{2} \in \mathrm{C}_{0}$ be two functions satisfying $H_{4} \underset{t_{0}+h}{\text { for }}$ given $X_{0}, X \in R^{n}$ and $t_{0}+h(t) \in B_{0}$. Then we have

$$
x=x_{0}+\int_{t_{0}}^{t_{0}+h} f\left(s, X_{0}+z_{1 s}\right) d s=x_{0}+\int_{t_{0}}^{t_{0}+h} f\left(s, X_{0}+z_{2 s}\right) d s,
$$

where $z_{i}(t)=\Phi_{i}\left(t-t_{0}\right)$ for $t \in\left[t_{0}-h, t_{0}\right], z_{i}(t)=y(t)$ for $\left.t \in\left[t_{0}, t_{0}^{+h}\right]_{0}\right]_{h}, i=1,2$. Applying H_{3} we get

$$
0=\left|\int_{t_{0}}^{0}\left[f\left(s, x_{0}+z_{l s}\right)-f\left(s, x_{0}+z_{2 s}\right)\right] d s\right| \geq d\left\|\Phi_{1}-\Phi_{2}\right\| .
$$

Thus $\Phi_{1}=\Phi_{2}$.
It would be desirable to clear up the relation between H_{3} and H_{4}. It seems to us that both hypotheses H_{3} and H_{4} can be substituted by another one from which both H_{3} and H_{4} follow. This problem will be discussed in another paper.

References

[1] Svec M.: Some Properties of Functional Differential Equations, Bolletino U.M.I. (4) 11, Suppl.fasc. 3 (1975), 467-477
[2] Seidov 2.B.: Boundary value problems with a parameter for differential equations in Banach space, Sibirskii mat.žur. IX, 223-228 (Russian)
[3] Mosyagin $V_{.} V_{0}$: Boundary value problem for differential equation with retarded argument in Banach space, Leningrad. Gos. Ped.Inst., Učennye Zapiski 387 (1968), 198-206 (Russian)

Author's address: Prírodovedecká fakulta Univerzity Komenského, Matematický pavilón, Mynská dolina, 81631 Bratislava, Czechoslovakia

