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SOME PROBLEMS CONCERNING THE FUNCTIONAL 

DIFFERENTIAL EQUATIONS 

M.Svec, Bratislava 

We consider the equation 

(1) x(t) = f(t,xt) , 

where x(t) means the derivative of the vector function x(t) at 

the point t • If x(t) is a function defined on the interval 

Ft -h.T), where h>0, t fT are real numbers, then x. = x(t+0), 
L0-. i o t 

OE [-h,Oj for t (E [t ,T) as usual. Let us explain the meaning of 

the notation used in this paper. Let n be a natural number, R11 

the n-dimensional vector space of the points X = (x,,x2,...,x ) 

with a suitable norm |.1 , C = C([-h>o]lR
n) the Banach space of 

all continuous functions w with the norm || V \\ = max {JllKt)|i 

tG[-h,o]} , CQ = ( $ ^ C : $(0) = o) a subspace of C . Furthermo

re, let B = B([t T̂),!̂ 1) be the Banach space of all functions con

tinuous and bounded on [t ,T) with the uniform norm ||u|| s 

= sup (|u(t)| , te[tQ ,T)} and BQ = (u(t)GB : u(tQ) = o) a sub-

space of B • Let $ £ C Q be fixed. Then B^ = (z(t) : [t0-h,T)—> 

R11 , z(t) = $(t-tQ) for te[t0-h,t0] , z(t) = u(t) for te[tQ,T); 

u(t)EB \ is a complete metric space with the metric jtz^Zg) = 

* II u^Ugll^ , where z][(t) = u-^t), z2(t) = u2(t) for t€[tQ ,T), 

u1(t),u2(t)GBo • 

As usual, the initial problem for (1) is formulated as follows: 

For given tQER, 1//GC find a function xGC( [t0-h,A),R
n) such 

that x(t) = 1/>(t-t0) for te[t -hflQ and x(t) = f(t,xt) for 

t E [t ,A), We shall denote this solution by x(t,t fV) and say 

that it is given by (t , y K Because every y € C can be written 

as y(t) = XQ+ $(t), where XQ= 7//(0), <£ € CQ , we shall write 

x(t,t |X + $ ) to express that the solution x passes through the 

point XQ at t=t • 

Now, the main problem we will discuss is the following: 

(P) Let be given T€R, tQ< T, X^-^ER
11 . Find $ E C Q such 

that the solution x(t,t^fX + $) exists on [t̂  ,T) and 
' O 0 ^ L _ 0 ' 

lim x(t,t0,X0+$) = X-ĵ  as t-*T- . 

The function f is subjected to the following hypotheses: 

T 

(HJ f ( t , f ) i s continuous on [t ,T)*C and J | f ( t , 0 ) | d t = 
trt 0 = K<oo . 
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(H^) There i s a function /3(t) continuous on [t ,T) such 

that | f ( t , y^) - f ( t , y 2 ) | < flit) 11%-^2II f o r e v e r y 

T 

V /1 ,Y /2GC a n d t E - t o f T ) a n d J /3(t)dt = k < l . 
* 0 

The hypotheses H, and H2 being sa t i s f i ed , we can conclude 
Theorem 1 [ l j . Let H-. and H2 be sa t i s f i ed . Then the solution 

x ( t , t Q , -y/), TijE C ex i s t s on [tQ ,T), i s unique and lim x ( t , t , W)-
= X1ERn as t - T - . 

Theorem 2 [ l ] . Let H-̂  and H2 with k < l / 2 be sa t i s f i ed . Let be 
given X^E R11 , $ € C . Then there ex is ts a unique X^R1 1 such 
that lim x ( t , t 0 , X Q + $ ) = ^ as t-*T- . 

Now we define a map F(XQ, $ ) : RnxC0-*Rn by the relation 
F(X Q ,$ ) = lim x ( t , t 0 , X 0 + $ ) = X̂  as t->T- . The following theorem 
mentions some properties of this map. 

Theorem 3 [ l ] . Let ^ and H2 with k < l / 2 be val id . Then 
a) the map F(X , $ ) , by fixed $ , i s a one-to-one map of R11 

onto IcP ; 
b) F(XQ ,^) f u l f i l s the Lipschitz condition: 

| m o l f $ 1 ) - F ( X o 2 f $ 2 ) U e k | x o l - X o 2 l + ( • k - . l ) | | $ 1 - $ 2 | | . 

Our problem (P) was part ia l ly solved in the papers [ l j , [V] , [ i ] • 
In [ l j we obtained some results of negative character, e .g . i f H, 
and H2 are valid and i f X()>X2GRn, | XQ| +K * 0 and [ x 1 | > [ | x o | + K] 
~— f 0 < a < l , then there i s no solution of the problem (P) for 
$ ' e o 0 , I I $ I I < K - ^ . 

For further purposes we need an estimation of | x ( t , t ,X + $ ) | 
and || x t ( t tX + $ ) | | . Let us use the notation x ( t ) = x ( t , t 0 , X Q + $ ) . 
Then, x .(Q), 0 € [ t - h , t ] being continuous, there exists v€r[ t -h , t j 
such that | x (v ) | = | | x t | | • Suppose that t— tQ • Then either v - tQ 

or v G [ t 0 - h , t 0 ] . 
Let v — t • Then we get 

o 
v 

x t | | = |x (v ) | =|XQ + J f ( s , x з ) d з | < | X 0 | + j | f ( s , 0 ) | ds + 

v г o г o t 
+ J | f ( s , x 8 ) - f ( s , 0 ) | d s < | x o | + K + | | ф | | + j /3(з ) | | x j | dз 

t t 
o o If v Є ^ ^ ^ o l » w e h a v e 

x j - | x ( v ) | - | x 0 + $ ( v - t 0 ) | < | x 0 | + | | Ф І I + K + / / 3 ( s ) | | x a | | đ з . 

ł O 
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Thus f for t G [ t ,T) we have 

K N k l •**ll$ll +]/5(3)||xa||d3 . 
4 

The a p p l i c a t i o n of Gronwall-Bellman lemma g ives 

t 

<-) ll*tll [|«0 | +K + | | $ | | ] exp (J'/3(a)d3), t e [ t 0 ,T) , 

*«, 
which implies 

(3) l-=(t) |- | |* t | | -[ |x 0 |+K+| |Ф| |] exp ( J^(s)ds, t Є [ t 0 ,T) 

*o 
Let us turn our attention to the dependence of F(X , (|>) on $ 

by fixed X
Q
 . It follows from Theorem 3 that, if I ̂ -(pjl = 0, we 

have F(X
Qf
 $

1
) = F(X

Q
, <$>

2
). If jj^- $

2
 || * 0, it may happen that 

F(X
Qf
 C^) * F(X

Q
, $

2
) , but also F(X

Q
, $

1
) = F(X

Q
, $

2
) . If the for

mer case occurs, it influences both solutions x(t,t^,X + (fr,) and 
' l 

x
(t,t

o f
X

0
+$>

2
). The following theorem holds. 

Theorem 4. Let H ^ - $
2
 II * °

 a n d F ( x

0
> ̂ l*

 = F ( X
o ' $2

) # T h e n 

either 

a) 0<||x(t,t
o
,X

o+
^

1
)-x(t,t

0
,X

0+
$

2
)!l

u
< H ^ - ^ l l 

0Г 

b) ||x(t,t
0
,X

0
+$

1
)-x(t,t

0
,X

o
+$

2
)|!

u
 = 0 . 

Proof. The function |H(t)| = | x(t
f
 t

Q
,X + ̂ J -xU, t

Q
,X

o
+ $

2
) |

 f
 t-^t

Q 

is nonnegative and |H(t
Q
) | = 0 = |H(T) | . Thus there exists t-̂ G 

[t
Q f
T) such that HU-^) = max{|H(t)|, t G [t

Q
 ,T)} . If t

1
=t

0
 , 

the second case (b) occurs. If t-̂ G [t
Q
+h,T) and H U ^ t 0 , the 

hypothesis H
2
 yields 

(4) |H(t)| < l3(t)||xt(t0,X0+$1)-xt(t0,Xo+$2)|| <
|
|3(t)p(t

1
)|

 f 

t^[t
0
+h,T) . 

Hence we get 

T T T 

(5) iHtt-^l- I JH(t)dt| <J|H(t)|dt < J A(t)dt|H(t
1
)| < 

h t l t l 
< k | H ( t 1 ) | . 

Therefore t-,6 [ t Q + h , T ) . Suppose that ^ G U ^ t ^ n ) and that 

| H U ) | - II $ - 1 - $ O II* I n t h i s c a s e t h e i n e c - u a l i t i e s ( 4 ) a n d ( 5 > h o l d 
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as well and the same reasoning as above gives a contradiction which 

completes the proof. 

In the following let X be fixed. We are going to examine the 

properties of the set of images of the set G = { $ E CQ :||$|| --- r) f 
r>0, by the map F • We shall denote this set of images by F(X ,G). 

Theorem 5. Let H-̂  , H2 and H^ be valid with 

(H3) There exists a constant d, 0<d----l, such that for any 

X QeH
n and any y±E BQ , i=l,2 and any C^G CQ , i=l,2 

the inequality 

dli$i-$2!l - ' J Op(»tVaiB> - f ( ^ v z 2 s ^ d s i 
to 

holds where zi(t) = ^ ( t - t ^ for tG[t0-h,t0] , Zi(t) = 

= y±(t) for t£[t0,t0+hj , i=l,2 . 

Then the set F(X ,G) is bounded, closed and connected. 

Proof. The boundedness of F(X ,G) follows immediately from (3) or 

from Theorem 3f (b). Consider now the set of solutions S = 

= (x(tftofXo+(j?), $ E G } on [t fT). From (3) we have that these 

solutions are uniformly bounded on [t fT) by Llx
0! + K + rje • 

The same holds also for the set { x
3(t 0 >X 0+$), sE[tQ fT)/ as 

follows from (2). Further, for t,t'E [t fT), t<t
f we have 

l x< tN to'V^ )" x ( t' to»V^ > )l-jl f ( s' 0 )l d 3 + J/3(s)HxJlds • 
T t t T 

Now, from the existence of J|f(s,0)|d9 and j A(s)ds and from 

t t 

the uniform boundedness of ||xl| we get the equicontinuity of the 

elements of S on [t ,T). Thus we may apply on S the theorem of 

Ascoli-d'Arzela on every compact set from [t ,T). Suppose that 

X.GF(X ,G), i=l,2,... and that lim Xi = Y as i->oo . We are go

ing to show that YGF(XQ,G). Let (x(t, tQfXQ+ (JX), $ . £ G } be the 

sequence of solutions of (1) such that lim x(t,t ,X +$.) = X. as 

t-*T- , i=l,2,... • Applying the Ascoli-d'Arzela theorem we get that 

we can choose a subsequence (x(t,t_,X + $. ), $. E G } from 

c o o ik ik J 

|x(tft fX + $.)} which converges to a continuous function u(t) 

uniformly on every closed subinterval of [tQ ,T). Let lim x(t,tQ , 

X + $. ) = X. as t-*T- . Evidently lim X. = Y as k —00 . The k k x k 

solutions x(tft.fX +(t>. ) satisfy the equations o o ik 
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x < t , t 0 , X 0 + $ i > = X. - f f ( 3 , x 3 ( t 0 , X 0 + $ i ))d3 , k S l , 2 , 
Je Je v( le * -t 

The application of Lebesgue'3 dominated convergence theorem gives 

T 

u(t) = Y - f f(s,ug)d9 for t€[t0+h,T) . 

t 

Thus, we have got that u(t) satiafies (1) on [tQ+h,T) and 

lim u(t) = Y as t-*T- • The problem which appears here is: How to 

ensure that u(t) sati9fies (1) on [t ,T); if thi9 is po3sible, to 

which function $ ^ C this solution will correspond ? The validity 

of H^ represent9 one of the possibilitied. In fact, we know that 

the sequence {x(t +h,t fX + <J>. )) converges to u(t +h). Therefore 
JC 

it is a Cauchy sequence. Using the hypothe3is H,, we get 

|x<vh,t0 ,v$i > - - " o ^ ' W ^ i >i= 

Vll m n 

= If [ - " < B . W V $ i ))- f(S^3^0.X0+$i ))Jd3|>d||$i - $ i || . 
•i m n m n 
xo 

Hence we get that {$. } is a Cauchy sequence and therefore it con-
k 

vergea to a function (J) in the complete space C . This convergence 

is uniform on [~h»0] • 

Now take the function v,(t) defined on [t -h,T) as follows: 

v k ( t ) = X0+$. ( t - t Q ) , t G [ t 0 - h , t 0 ] , vk(t) = x(t,t0,X0+<J>i ) = XQ -
J£ JC 

t T 

*] f(s,xs(t0,X0+$i ))ds - X. - ] f(3,xa(t0,X0+$i ))d3 , t€[t0,T), 
A JC JC x *-* 
xo l 

k=l,2f... . We get that v^U) converges to v(t) : v(t) = XQ+ 

+ $(t-tQ) for t6[t0-hft0] , v(t) = u(t) for tG[tQ ,T) uni

formly on every closed subinterval of [t -h,T). We get also that 

t T 

v(t) = XQ + j f(3fv3)d9 = Y - J f(9,v8)d3 , t^[tQ ,T) . 

Thus v(t) = x(tfto,X0+$) and lim v(t) = Y as t—T- . This pro

ves that Y€rF(XQfG) and therefore F(XQfG) is closed. 

Finally, we have to prove that F(X ,G) is connected^ Suppose 

the contrary is true. Then F(X fG) can be represented as F(XQfG)= 

=F-. UF 2 , where F. , i=l,2 , are bounded, cl03ed and disjoint sets. 

Let Gi = { $ G G : F(XQ, $)^F i} , i=l,2 . Evidently G = G^U G2 
and G^G-p = 0 and Ĝ  and also G2 are nonvoid. Furthermore, 
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the continuous dependence of solutions on the initial functions, 

Theorem 3 and the closedness of F. , i=l,2 imply the closedness of 

Q. t i=l,2 • But then we have that the closed ball G is the union 

of two sets which are nonvoid, closed and disjoint which is in con

tradiction with the fact that G is connected. 

Remark 1. The constant d in H.> has to satisfy also the condi-
t

0
+h

 J 

tion d < I /J(s)ds for H
2 >
 H-. not to contradict each other. In fact, 

t f t 

. t +h t +h 
we have ,o ,.o 

<-j|$l-$2.1-1] [f(8,a l 8)-f(8,*2 8)]da| ~ \ M 8 )ll zl8" z2sll d s * 
O т- r- O 

I f we take z i ( t ) = ^ ( t - t ^ , t E [ t Q - h , t 0 ] , z i ( t ) = y ( t ) , t > t Q , 

i = l , 2 , we have that || z-. -Zp || < | | $ , - $ 2 | | and from the preceding 

v h 

inequality we get that d < I A(s)ds . 

to t +h 

Theorem 6. Let be valid H-pH^^ with 1 * k
 - d ̂  J ft (s)ds and H

4
: 

(H,) For every two points X
Q
,XER

n
 and every y(t)€EBQ there 

is $ ^ C Q such that for z(t) = $(t-t Q), tE[tQ-h,t0] , 
z(t) = y(t), tEfL ,T) the equation 

tQ+h ° 

X = Xn + j f(t,Xft+zt)dt 
Ło 

h o l d s . 
Then the problem (P) has a s o l u t i o n . 
Proof. Let X 1,XQGR r l be g i v e n . Choose y 1 ( t ) G B Q such that 
l im y-, ( t ) = X = X1-XQ as t-*T- • Then denote 

T 
(6) Y1 = X̂  - J f U,X0+y l t)dt . 

V h 

With regard to H. applied to X ^ Y ^ R 1 1 and y 1(t)GB Q there exists 
$,^C such that 1 o 

h " Xo + ] 
t Q + h 

(7) Y
л
 = X

n
 + f(t,X +z,

t
)dt , 

•o
тљ
lt

J 

*o 

z-^t) = $
1
(t-t

0
) for te[t

0
-h,t

0
] and z-^t) = y

x
(t) for t £ 

[tQ> T). From (6) and (7) we get 
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(8) X1 = XQ
 + J f(3,X

0
+z

l3
)d3 . 

Denote 

y
2
(t) =J f(s,X

o
+z

ls
)dз , tЄ[t

Q
 ,T) . 

*0 

Evidently y
2
(t)EB

Q
 and lim y

2
(t) = \-*Q = X as t-*T- . Now 

we construct 

-2 - -1 - J -*(t,X0+y2t)dt . 
tQ+h 

Then with regard to H4 applied to XQ,Y2 and y 2 ( t ) there exists 
d>QEC such that 

tQ+h 
Y 2 " X o + J f(t,X0+z2t)dt , 

г o 
where z 2 ( t ) = $ 2 ( t - t Q ) for t € [ t 0 - h f t 0 ] , z 2 ( t ) = y 2 ( t ) for 
t € [t ,T) . Once again we get 

T 
X l = X o + J ^(t ,X 0 +z 2 t)dt . 

Put t 
y 3 ( t ) = J f(s,Xo-fz23)ds , t € [ t 0 fT) . 

We have that y 3 ( t )EB Q , lim y-j(t) = X-,-0^ = X as t-+T- . Proceed
ing in this way we get the sequences, n=2,39*«* • 

t 
(9) y n ( t ) = J f(s ,Xo+(zn^1) s)ds , t £ [ t 0 ,T) , 

xo 

(10) ï n = X̂  - J f(t,XQ + y n t )dt , 
tQ+h 
tQ+h 

(11) Yn = X0 + | f ( t ,X 0 + (z n ) t )dt , 

*<> 
2 n ( t ) = ф n ( t - t 0 ) foг t є [ t 0 - h , t Q ] , z n ( t ) = y n ( t ) , t Є [ t Q ,T) 

and 
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T 
(12) X1 = XQ + j f ( t , X Q + ( a n ) t ) d t , 

*o 

(13) l i m y n ( t ) = \-X0 = X as t ->T- . 

Now from ( 1 0 ) , (11) applying H-> and Hp we have 
t o +h 

(14) l lV^n- l l l - l l Lf<t.Vant) - ^ . V ^ n - l V W j T " 
T S 

- \J [f (t,xo+ynt) - f (t,x0 + ( y ^ g a t | J --
tQ+h 

T -

4 ] /S^lltyn^n-iy^-5 d/^^HMn-Ju^Mn-Jlu 
tQ+h t 0 + h 

From (9) us ing H2 and (14) we ge t 

T 
(15> IIyn+i-ynllu - 1 ^^ l lL z

n - 2
n - i ] t l l d t - k ik -y n - i l lu • 

V 
Because k<l, (15) means that the sequence {v

n(*)} converges uni

formly on [t ,T) to a function y(t) • But (14) implies the uni

form convergence of the sequence {$_-/*)} to a function $ € C Q . 

From all this we conclude that the sequence {z
n(t)} converges uni

formly on [tQ-h,T) to the function z(t): z(t) = $(t-t ) for t£ 

[t0-h,tQJ , z(t) = y(t) for tG[tQ ,T). Then from (9) we get 

t 

y(t) = J f(s,XQ+zs)ds , t€[t0 ,T) . 

*o 
Therefore t 

(16) XQ + y(t) = XQ + J f(s,X0+za)d8 . 

*o 

Denoting u(t) = XQ+z(t) for tG[tQ-h,T) we have 

(17) u(t) = XQ + $(t-tQ) for tG[t0-hft0] , 

t 

u(t) = X + ( f(s,u)ds for t€[tA ,T) . o J s -- o 

*0 

Thus, u(t) is the solution of (1) corresponding to the initial va-
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lues (t0,XQ+(|)) . .From (12) and (16) we get that lim u(t) = X 1 

as t-*T- and u(t ) = X . Thus, u(t) is a solution of our prob
lem (P). 

Theorem 7* Let H.^, H2, H-. be valid and let 

T v h 

(18) d > [exp ( j ^ (s)ds)-lj exp (J [h (s)ds) . 
t„+h t„ 
O 0 

Then the map F(X , (|)), by fixed X , is a one-to-one map of C 
into 8° . This means that in this case the problem (P) has at most 
one solution. 
Proof, Let ^ $ 2

G Co » H $i~ < M * ° * Tnen 

T 
|F(X0, $1)-F(XQ, $ 2 ) | = |j[f(t,xt(t£),X0+$1))-f(t,xt(t0,X0+$2)il 

t0+h 

,dt |-- \\ [f(t,xt(t0,X0+$1))-f(t,xt(t0,X0+$2)£|dt I -

T *o 
- \J [f(t,xt(t0,X0+$1))-f(t,xt(t0,Xo+$2))Jdt|>d||$1-$2|| -

t0+h T 

-J' ^(^Ik'vv^-^vvMla3 • 
t 0+h 

Using Lemma 3 from [Y] which asserts that, if H, and Hp are valid, 
the inequality 

t 

llxt(to'V(^.^-xt(to»Xo+^2)l|-|l(^l-^2ll exP ( j /3( s ) d 3 ) 

holds, we get o T 

(19) |F(Xof$1)-F(X0, $ 2 ) | > | | $ 1 - $ 2 | | {d + [l-exp j /3(s)ds] 
t +h t +Һ 

л
o o 

exp 1 /»<•)-*} 
0 

which proves our theorem. 
Remark 2. If we consider the scalar equation x(t) = a(t)x(t-h) 

where a(t) £ 0 for tEpt0,t0+h] , then H, will be valid if there 

is $ £ C 0 such that j a(t) $ (t-tQ-h)dt 1 0 . In fact, we have 

*o 
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t +Һ t +Һ 
яO _ г O x = x „ + \ a(t)(X + A $ ( t - t -h))dt = X + Xrt f a(t )dt + o j o o t h o o J 

r x ° 
+ AJ a(t)$(t-t Q -h)dt . 

o 

From th is we can calculate A and then A $ wi l l be the sought 
function. 

Remark 3« It can happen that for some given X .XER
11
 and 

y(t)EB
Q
 there are more than one function $ G C

Q
 satisfying H. • 

But if we suppose also the validity of H^, there can be only one 
$ E C satisfying H.. In fact, let $ l f $ 2 E C o be two functions 
satisfying H. for given X .XER11 and y(t)EB A • Then we have 4 t +h ° t +h ° 

X = XQ + j f(s,X0+z l 3)d3 = XQ + J f(s,X0+z2 s)ds , 
t r t t r t 

o o 
where z i ( t ) = $ i < t - t 0 ) for t G [ t Q - h , t 0 ] f z ^ t ) = y ( t ) for 
t E [ t _ , t +h] , i = l , 2 • Applying H7 we get 

t +h J 

0 = | J [ f ( s , X 0 ^ z l 3 ) - f ( s , X 0 + z 2 3 ) ] d 3 | > d | | $ 1 - $ 2 | | . 

* 0 

Thus <$1 = $ 2 . 
It would be desirable to clear up the relation between H-j and H, • 
It seems to us that both hypotheses H-, and H, can be substituted by 
another one from which both H-, and H, follow. This problem will be 
discussed in another paper. 
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