
EQUADIFF 5

Felix M. Arscott
On the solution of indentation and crack problems in linear elasticity by
use of higher special functions

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference
on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981.
BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte zur Mathematik,
Bd. 47. pp. 21--24.

Persistent URL: http://dml.cz/dmlcz/702250

Terms of use:
© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702250
http://project.dml.cz


ON THE SOLUTION OF INDENTATION AND CRACK PROBLEMS IN 

LINEAR ELASTICITY BY USE OF HIGHER SPECIAL FUNCTIONS 

F. M. Arscott 
University of Manitoba, Winnipeg, Canada 

By an indentation (or punch) problem 

we mean the following: The infinite half-

space z > 0 is filled with uniform, iso

tropic elastic material. A rigid punch 

is pressed into that material, in the 

plane z • 0, over a region S, so that it 

indents the elastic material completely and 

there is perfect contact between the punch 

and the material. The 'profile1 of the 

punch - that is to say, the depth to which 

it penetrates the elastic material - is a 

prescribed function g(x,y), this being 

presumed small enough that the approxi

mations of linear elasticity hold good. 

The edge of the punch is frictionless, and the remaining part of the surface 

z » 0, denoted by S, is assumed to be stress-free. 

The problem is to determine the displacement and stress in the material. 

Mathematical analysis 

(a) It is known [3] that the displacement vector D in the material can be 

represented in the form 

D - (3 - 4v) *k - zV* + Vif> (1) 

with !*• - - (1 - 2v)*, (2) 

where * and $ are harmonic functions. The quantity v is Poisson's ratio, 

a constant for the material 

Hence we may obtain two quantities of particular interest: 

(b) the displacement on the surface, outside the punch :-* 

w(x,y,0) - 2(1 - v)*(x,y,0), (x,y) e S, 

(c) the stress at the surface underneath the punch :» 

a -» a 2 2 - 2u |-7 *(x,y,0) , (x,y) e S, 

where y is the shear modulus of the material, also a constant. 

(3) 

(4) 

Formulation as a boundary value problem 

Hence the mathematical problem is to determine $ such that 
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(i) V2* - 0 for z > 0, 

(ii) 2(1 - v)*(x,y,0) • g(x,y) for (x,y)€ S, 

(iii) |-*(x,y,0) - 0 for (x,y)« S, 
dz 2 2 2 ^ 

(iv) * -> 0 as r -*• «» in z > 0, r «• (x 4y + z ) ) . 

We thus have a mixed boundary value problem for Laplace's equation. A 

crack problem here means the following: we have an infinite elastic medium, with 

a plane region of discontinuity S in the plane z • 0. Equal normal pressures are 

applied to the faces of this crack, tending to open it out (so we have symmetry 

about the plane z - 0 and need only consider the region z > 0). We have 

relations (1),(2) again, but now the boundary conditions are 

(a) w(x,y,0) - 0 for (x,y) c S, and ($) a(x,y,0) - -g(x,y), for (x,y) c S, 

where g(x,y) is the applied pressure. Brief consideration shows that this leads 

to a similar mixed boundary value problem for *, but with Dirichlet conditions 

on S and Neumann conditions on S. 

The use of curvilipear coordinates 

If the shape of the region S is simple, we may be able to embed it in a 

suitable coordinate system, transform the Laplace equation to the corresponding 

variables, and solve by separation of variables. This possibility arises 

notably in four cases. 

(1) S is circular (ii) S is elliptic (iii) S is an infinite strip 

(iv) S is a parabola. 

It should be noted that although this line of attack requires that S have such a 

simple shape, there is no inherent restriction on the profile of the punch, which 

is essentially arbitrary. 

The analysis when S is circular has long been known; that for an elliptic 

punch was given recently by Shall [4] and prompted the investigation (by the 

author and Mr. A. Darai) of the infinite strip punch. We are now working on 

the parabolic punch. 

For the student of differential equations, the problem is challenging 

because, when the separation is performed, the ordinary differential equations 

which result are quite complicated (Lame's equation in case (ii), Mathleu's in 

(iii) and (iv)) and the demands of the original problem highlight the need for 

deeper study of these equations. 

It is also worth remarking that in cases (ii),(iil) and (iv) we obtain a 

two-parameter eigenvalue problem. In (ii) we have a discrete spectrum in both 

parameters, but in (iii) and (iv) the spectrum is discrete In one parameter 

and continuous in the other - an unusual feature. 

The infinite strip punch 

Let S, the region of the z plane occupied by the punch, be an infinite 

strip of width 2f, its sides being parallel to the x axis. Introduce 
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elliptic cylinder coordinates (x,C,n), where 

y • f cosh € cos n, z • f sinh £ sin n, £ . > 0 , —ir<n£.T. (6) 

Then the strip is given b y £ « 0 , 0 < n < T r and the elastic material by 

€ > 0, 0 < n < IT, so the boundary value problem is to determine $(x,£,n) 

such that 

(i) V2* - 0, £ > 0, 0 < n < IT, x €3R, 

(ii) *(x,0,n) - H(x,n),0 < n < TT, X e R, 

(where 2(l-v) H(x,n) • g(x,y), the punch profile) (7) 

(iii) -— *(x,£,0) - ~ *(X,£,TT) - 0, £ > 0, x € K, 

(iv) • + 0 as. t; + •, 0 < TI < TT, x 6 ]R. 

Now the punch profile g(x,y) can be split into the sum of 4 functions, each of 

which is either symmetric or antisymmetric about each axis 0x,0y, and the 

corresponding boundary value problem solved for each of the four functions 

separately; hence to illustrate the analysis we shall assume g(x,y) is symmetric 

about both Ox and Oy, hence H(x,n) is even in x and even about r\ • Jjrr. 

On transforming to elliptic cylinder coordinates and separating we obtain 

the three separated equations (8,A are the separation constants) 

(a) X"(x) - 6X(x), (b) F"<0 + (%ef2 cosh24-A)F(0 « 0, (8a,b) 

(c) G"(n) + (A - J$6f2 cos 2n)G(n) - 0. (8c) 

Of these, 8(c) is Mathieu's equation and 8(b) is the modified 

Mathieu equation. 

In order to have (as is clearly necessary) |*| < • as |x| •+• », 
2 

we must take 6 < 0, say 0 - -a , a >. 0, and X - A cos ax. 

To obtain the boundary conditions for equation 8(c), we recall conditions 

7(iii) and the symmetry of g(x,y) about y - 0; these imply that G'(0) - Gf(ir) - 0 

and G(n) is even about n - %ir. Then the theory of Mathieu's equation ([1]) shows 

that 
2 

G(n) • ce2n(n,-h ) where h • *sotf, n is an arbitrary non-negative integer, 
2 

and A • a2n(~
n ) i n t n e u 8 u a^ notation. 

The only condition now attaching to equation (b) is that F(£) + 0 as 

this is sufficient to determin 

so a separated solution of the proble 

£-••«>; this is sufficient to détermine F(Ç) as a constant multiple of Fek„ (Ç,-h2) 
2n 

*n(x,C,n,h) - An(h) cos ^ Fek2n(£,-h
2)ce2n(n,-h

2) (9) 

with n >. 0 integral, h >. 0 arbitrary; A (h) is an arbitrary constant. 

By the principle of superposition, a more general solution is 

-CO CO 

*(x,£,n) •! 2 M n ) cos-~-Fek. (C,-h2)ce<) (n,-h
2)dh. (10) 

J0n-0 n r Z n 2 n 

This satisfies (i),(iii) and (iv). In order to satisfy (ii) we must have 
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oo co 

H(x,n) -f J Bn(h) cos -^- ce2n(n,-h
Z)dh, (11) 

J 0 n=0 
2 

where B (h) -» A (h) Fek„ (0,-h ). Applying the inversion theorem for the 
n n Zn 

Fourier cosine transform gives 

£ B (h)ce9(n,-h
2) = ~ f H(x,n) cos - ^ dx ; (12) 

nto n 2n *f J0 f 

then the orthogonality property of Mathieu functions yields, finally the formal 

expression 

B ( h ) - - f - f ( H(x,n) cos • ? — c e ? (n , -h 2 )dx dn. (13) 
n Tr2f J 0 J 0 f 2n 

Special cases yielding explicit solutions are:-

(I) Flat punch of rectangular cross-section: H(x,n) • e |x| < a, (14) 

- 0 |x| > a; 

then B(h) - i=lfi. e A<2n)(-h2) sin ̂  , (15) 
n A ° f 

el2 2 
(II) H(x,n) - - I 2 ^ sin n . (16) 

-T+x Then 

Bn(h) - f e-2hi/f (-l)n |2A0
(2n) (-h2) + A2

(2n) (-h2) | (17) 

(2x\\ 
where A~ is the coefficient of cos 2rn in the Fourier expansion of 

ce2n(n,-h ). 
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