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ON THE ITERATIVE SOLUTION OF FINITE ELEMENT SYSTEMS OF EQUATIONS 

O. Axelsson 
Department of Mathematics 

University of Nijmegen, The Netherlands 

1. Introduction 

For large sparse systems of linear equations it is mostly too timeconsuming and 

sometimes even not possible to use direct solution methods. Such problems arise for 

instance from discretized partial differential equations, in particular on a three 

dimensional body. In recent years however,very effective iterative solvers, based 

on certain preconditioned conjugate gradient methods have been developed. 

2. Approximate factorizations 

We consider here sparse approximate factorizations in triangular factors of a 

given sparse matrix A of order N and with symmetric nonzero structure. There are 

several such methods but the most effective seems to be the one based on a genera

lization (by allowing for Incomplete factorizations) of the classical Gaussian 

elimination algorithm (see [8],[7],[6],[3]). 

We recall that the envelope S of A is the set of indices 

S - {(i,j) U (j,i); i_.-Si.Sj, IS j<N} 

where i « min{i, 1 -S i s. j; a ?- 0}, j - 1,...,N. 

Let now J c s be a subset of S. We shall describe the (modified) incomplete fac

torization LU of A corresponding to the index set J. 

During the generalized Gaussian elimination algorithm we construct a sequence of 

matrices A of order N-r+1 with A = A defined in the follqwing way: 

If (i,j) /J then we put a. . =0 but (in the modified algorithm only) before 
(r+1) 

that we add this entry to the current value of the diagonal entry a.. 

In other words, for r «- 1,2,.. . ,N~1 put 

(2.1) 

„(r+l) 
a i j 

(r) 
* i r в a i r ; 

ÍЧ(Ї} -Ä * ( r ) 

i j i r i j 
0 
(r) (r) 

KJ- •i. a . ir r j + ľ 
k=r+l 

м (І,k)/J 

(j=Г+l,...,N) Л (i,j) € J) Л (1,1 j), 

(j-Г+l,...,N) Л (i,j) /j), 

i-SЧ--^---' 
where i «r+l,. 

In this way we avoid the growth of the number of fill-in entries, which is a 

we11known disadvantage of the full factorization algorithm, where J=S. Since when 

J is a proper subset of S, in general we only perform an approximate factorization 

we have to couple the method with an iterative method. This shall be discussed 

later. At first we discuss the stability of the algorithm for a special class of 

matrices. 

Definition 2.1. An NxN matrix A is said to be an M-matrix if 
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a i j s 0 ' 1 » i " 1 ' 2 N ' L*i 
and for i = 1,2,... ,N-1 there is an entry a . ?- 0, where i < j

n
(i) «N. 

i , j Q~ (1) u 

We now introduce the growth factor 

max 
i>-j>N 
r+l*i>N-l 
l>rьN-l 

Ar) 

l-ÍГ̂ ul 

(note that the terms |t a | in the Gaussian elimination are bounded by q|a |) 

and the rowsums of A (r) 
ir rj 

j«r+l 
a

( r ) 

a i j ' 
І--Г+1, ,N. 

Theorem 2 . 1 . Let A be a diagonally dominant M-matrix. Then A 

. Fu 

i r j 

(2) ,(N> 

i r 

are a l s o 

N 

diagonally dominant M-matrices. Further 

a£+1> * a £ > , i ( j - r + l 

s{r+1> * s { r > . i - r + 1 N. n 
This follows from algorithm (2.1) by an easy calculation. 

The diagonal dominance implies s. >. 0. Hence 

Corollary 2.1. Modified incomplete factorization of a diagonally dominant M-matrix 

is a stable process in the respect that q • 1. D 

It may happen that the final diagonal entry a_ in U is zero. It is easily 

seen that this cannot happen however, if we add two properties. 

Theorem 2.2. Let A be a diagonally dominant M-matrix with symmetric structure and 

suppose that J is symmetric and that at least one rowsum is positive. Then 

(r - 1,...,N-1) has at least one positive rowsum 

D 

(i) The matrix A(r) 

(ii, C >o. 
The example A • A •» J«{(i,j), a^j-0) 

for which we get 

-1 0 
2 -1 
0 1 
0 0 
.<N) shows that it is essential for a_ >0 that the nonzero structure is symmetric. 

3. The spectral condltlonnumber 

For the solution of Ax-b we use some iterative method like the generalized con

jugate gradient method on the form 
Л+1 xЧâ1. W 

л
я+i л л % i . i . 

â -й - * г я - E • AX -fe 

l - 0,1,... 

where x is a given initial approximation; d - -r and T.,$ £ are calculated from 

certain innerproducts (see [1]). 

In general, the rate of convergence depends on the distribution of eigenvalues 

of B - (Lu)~ A. For symmetric positive definite matrices however, the spectral con-

26 



ditionnumber of B, >C(B) =- X (Bj/AjtB) where XQ,X are the extreme eigenvalues, is 

often a proper measure. Hence we now consider M(B). We have 

A = Lu+R 
N-l (r+1) (r+1) ( ° ( i ' j ) e J ' i * j ' 

where R -= Z R U 1 \ r{r 4 1 ' = J ~ ( r + l ) (r) (r) ( l i W j 
r«l i j ]aij =aii *ir*rj ' ( i ' ^ < J ' 

E.a(r+-) , i s s j . 
k*r+l ik 

(i,k)/J 
Assume now that A is a symmetric diagonally dominant M-matrix with at least one 

T 
positive rowsum. Then (with J being a symmetric set) C :=- LU = LDL , 

D »- d i a g ( a . . *• ao9 '•##'aNN * ' A = C+R* C i s symoetx^c an^i positive definite and 

R is symmetric and positive semidefinite. 
-1 ~ --j -1 -T -h 

By similarity the eigenvalues of B - C A and B «= D L AL D are equal. Since 

B is symmetric and positive definite the eigenvalues are real and positive. Further 

, . x Ax - _,_ x Rx , 
X -= min --. rr =- 1 + mm *=.—-» «- 1. 

xem x^x x xfcCx 

4. Finite element matrices 

Consider a sequence of finite element matrices {K. } constructed from an original 

coarse triangular mesh ftQ by uniformly subdividing all triangles a number of times. 

Let the meshparameter h be defined as the ratio of the edges in the triangles in the 

resulting mesh ft, to the corresponding edges in the original triangles. 

Definition 4.1. Let {ft } be a sequence of meshes as defined above and let N =» N(h) 
(1) (2) 

be the number of nodes in ft , excluding Dirichlet nodes. Let {K }-{-<-* } be two 

classes of positive definite matrices of order N(h). They are said to be spectrally 

equivalent if there exist positive constants a,0 such that 
£tKh2>x. 

a £ — ~ T T s. $ Vx € »N. D 

Note that for spectrally equivalent classes of matrices, the spectral condition-

number M O ^ K ^ ) « B/o - 0(1). h + 0. 

We shall now present three examples of spectrally equivalent classes of matrices. 

Example 1. Let K » K, be a diagonally dominant symmetric M-matrix and let 
i. n _1 

(i) v «- y , where p. is the smallest eigenvalue of D K, D = diag(K), 

(ii) M be a set of disjoint points in the set of meshpoints (1.....N) such that 

from every point i € W in the connectivity graph of the matrix K, there is a 

path, P(i) - {jQ<i) *i, j1<i),...,j~<i)} of length p « p(i), where any same 

point appears only once in any path and in only one path. Let p - min p(i). 
-1 i€«V 

Example 4.1. A cube with "brick-elements". Here p - 0(h ) of W is contained in a 
fixed number of planes (i.e. a number independent on h). 

Theorem 4.1. Let v.W and the path {jn(i),...,j M A be defined as above and let 
(1) ~ 2 p* 

*h - \ ••"\+w \ + C 2 V V 
where C1«Co

 a r e nonnegative constants (independent on h) and where 
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i€ W, 

otherwise. 

Then -i~ 

vp 

2a, 

^ ( Kh'V * 1 + C1+C2 
where 

t - min min |к. /K | 

ieiV̂  0<Л<p-l
 J

Л'
J£+1 

a -- min max K /K 
0 leW, Ol^p-1 l i V i } f j £ U } 

1 _1 
Corollary 4.1. For a 2'nd order problem with the set N so defined that p -= 0<h ) , 

then # ( K~hV " 0(1)' h * °" 
Proof. This follows from Theorem 4.1, because v - y . - 0 ( h ) , h + 0 for second order 

problems. 

Example 2. Let a(.,.) be a symmetric coercive bilinear form. Let 

4 l ) - [ .c*j h , . -J h ) n 
where {X } , is the set of piecewise linear finite element basis functions and 

let "<2>=[a(*jh),t{h>,] 
where {$ }. ,. is the set of piecewise quadratic (or cubic....)finite element 

basis functions. 

Then {K }, {K } are spectrally equivalent (see [2]). As an example, let 

a(u,v) - / VuVvdx, ft -= [0,1>[0,1], 
ft ~~ 

and use isosceles triangles and linear and quadratic basis functions. Then 
m - - (9) ' 

* ( K h V ' = 4 / 3 -
Note that K is a diagonally dominant M-matrix. Hence a "good" preconditioning 

(1) 
C. of MIC-type (as described in Section 2) may be constructed for K and this is 

12) 
then also a MgoodM preconditioning f or lO ' . With MIC(O), i.e. J=-{(i.j); K ^ ^ O * 

one finds in fact 

where \Q is the largest eigenvalue of C~ K * 1 ) . (Hence, if h * 1/16, which is a 

reasonable value in practice, the condition number is not larger than 16.) 

In this case r,. • TT and C = 0 in Theorem 4.1. If we have a problem with discon

tinuous materials, then also £ 2 > 0 and N is the set of node points on the surface 

of intersecting materials. 

Example 3. Let a(u,v) -- / [ Z a,. | ^ - | ~ - + cuv]dft, x € ft c *", [a. Ax)]" 
ft i»j 1 ] d xi i J -"i-D--

uniformly positive definite and c >. 0 on Hi 

Consider the extended Cauchy inequality (see [5] and [4]) 

|a(u,v)| <. Y{a(u,u)a(v,v)}^ Vu e U 2 h, v c V h 

where 0 < y < 1 is independent on h and 

U 2 h -- SPAN {X 4
( 2 h )}, 

SPAN í*!h)> ' 
°' °2Һ в V

h "
 И
h 

and 
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W = (all piecewise quadratic (or cubic ...) polynomials on 

elements of ft. }. 
h 

Note that N(2h) = N(h)/rnfwhere r = 2 for quadratic, r = 3 for cubic etc. 

A2h = [a(xj
2h,.x{2h)n. B 2 h = [a(^

h>,*<h>,] 
ch -C.(X]-W .•<->)]. f -j 

Then the finite element matrix corresponding to a(.,.) is K = t 

We let 

C 

(1) P^2h u I (1) L n hj 
K/ = . Then IC is spectrally equivalent with K^2)= K (see 

o,-™-»~i''Ji»..^ 
For the special case considered in Example 2 one now finds X-~ 9.9 (r = 2). In prac

tice A„. and B in K is approximated by (modified) incomplete factorization. 

Note that B has a spectral condition number that is independent on h (see [4]). 

The resulting computational complexity is 0(N) if the linear systems with precondi

tioning matrix K are solved exactly and behaves in this way for a wide range of 

values of N even if we use incomplete factorizations for A0 

see [4]. 
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