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INTEGRAL REPRESENTATIONS OF BOUNDED HARMONIC FUNCTIONS 

Jtirgen Bliedtner 

Fachbereich Mathematik, Universitcit Frankfurt a.M., W-Germany 

The considerations in this paper are based on the following two 

theorems. 

THEOREM 1 [2] : Let D :=- { ze C : |z U1 } , Hb(D) : = {f :D -—> C 

bounded, analytic} , and (x )c D discrete. Then the following 

statements are equivalent: 

(1) There exists a sequence ( c J c C such that for every h^H (D) 

h(o) » £ c n h ( x n ) . 

(2) sup|h(xn)l = sup|h(D)| for every heHb(D). 

By [3] , it is always possible to choose in (1) c €3R.+ . 

THEOREM 2 [4] : Denote by m the Lebesgue measure on D. Then 

for every bounded measure £i on D there exists F c L. (m) such 

that 

(1) 5h<*£- * ShFdm for every h € H b ( D ) . 

(2) ||P || 1 - D p i . 

The proofs of these theorems make extensive use of the fact that 

H (D) is a Banach algebra. But replacing "analytic" by "harmonic" 

the theorems contain statements about a linear space. 

The aim of the following is to obtain similar theorems on spaces 

of harmonic functions in a general context, to be more precise: 

Let X be a locally compact space with a countable base, H <z r!(X) 

a linear space such that 1 e H and r,m two probability measures 

on X. Consider the following problem: Find conditions such that 

there exists F€L +(m) satisfying 

Shdr « ShFdm for every h c H : « { h € H : h bounded}. 

Let Hb(r) « { h £ H b : Shdr « o} and equip the space h°°(m) 
with the weak topology <r:« ^(L°°(m) , L (m)). An application of 

the theorem of Hahn-Banach yields: 
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PROPOSITION 3: The following statements are equivalent: 

(1) There exists F<=L (m) such that 

$hdr = ^hFdm for every h e H . 

Gr 

(2) -1 ф L~ (m) + H b
 (r) 

For an examination of condition (2) of proposition 3 we consider 

as in [1] , [3j the following convex cone K^L^(i) + H
b
(r) : 

K := {u € L°°(m) : 3 h € H , h bounded above, h =" u m-a.e., 5hdr=o^. 

PROPOSITION 4: The following statements are equivalent: 

(1) -1<£K. 

(2) r « H
 m (i»e. h e H , h lower bounded, h = o m-a.e. =^£hdr=o). 

Using the method of [1] to prove K = K^, we obtain finally: 

THEOREM 5: Let m be a probability measure on X such that 
inf h (support(m)) = inf h(X) for every h ^ H . If there exists a 
probability measure r on X satisfying 

(*•) For every compact K c X there exists oc.. > o such that 
sup -h(K) =* <* $hdr for every h e H 

then for every bounded measure u. on X and every € > o there 
exists F € L (m) such that 

(1) Shd/A. = yhFdm for every h e H b . 

(2) H^H = HFII 1 = (1 +£) Jl^ll . 

REMARKS: 1) The existence of a measure r satisfying condition (#) 
is guaranteed if H is a nuclear Frechet space. Hence theorem 5 
can be applied to the space H of solutions of a large class of 
linear elliptic or parabolic differential equations of second 
order on 3Rn. 

2) If H satisfies the classical Harnack inequality then theorem 5 
holds even for 6 = 0 . This is especially the case for X = D and 
H : = { h : D —» 3 R : h harmonic } . By taking £- = € and 

m := 5Z 2~ n 6 we obtain theorem 1. In the same manner, 
x n 

theorem 2 follows. 
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