Franco Brezzi Numerical imperfections near a critical point

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte zur Mathematik, Bd. 47. pp. 58--63.

Persistent URL: http://dml.cz/dmlcz/702260

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

NUMERICAL IMPERFECTIONS NEAR A CRITICAL POINT

Franco Brezzi - Pavia, Italy

<u>ABSTRACT</u> - The behaviour of a finite dimensional approximation of a nonlinear problem near a critical point is analysed from the point of view of contact equivalence.

0. The aim of this lecture is to present a short survey on the results obtained by the author in some recent papers. Reference should be made to [1]-[4] for a more detailed treatment. We shall deal with the following framework; assume that we are given:

- (0.1) two Banach spaces, V,W
- (0.2) a C^{∞} mapping G from V× $R^{n}(n \ge 1)$ into W

(0.3) a linear compact operator T from W to V and consider the nonlinear problem:

(0.4)
$$\begin{cases} \underline{\text{find}} & (u,\lambda) \in V \times \mathbb{R}^n \text{ such that} \\ & u + TG(u,\lambda) = 0 \end{cases}$$

Assume moreover that we are given a sequence ${\tt T}_{\rm h}$ of linear compact operators from W into V, such that

(0.5) $\lim_{h \to 0} ||T_h - T||_{\mathcal{L}} = 0;$

hence we may consider the "approximated problems":

(0.6)
$$\begin{cases} \underline{\text{find}} (u,\lambda) \in V \times \mathbb{R}^n & \underline{\text{such that}} \\ u + T_h G(u,\lambda) = 0. \end{cases}$$

Our aim is to study the behaviour of the set of solutions of (0.6) (if any) in a neighbourhood of a critical point (u_0, λ_0) for (0.4). <u>Remark</u>. In the practical cases (finite element methods, spectral methods and so on) the operators T_h will have a finite dimensional ran ge V_h ; hence, on the computer, the solution of (0.6) will be sought in $V_h \times \mathbb{R}^n$. However, from the theoretical point of view, it will be easier to look for solutions of (0.6), <u>a priori</u>, in the whole space $V \times \mathbb{R}^n$. On the other hand our theory will apply as well to different cases, in which the range of T_h is not finite dimensional: for instan ce we may assume that W is a compact subspace of V'(=dual space of V), that A is an isomorphism from V onto V' and that $T=A^{-1}$; if now A_h is a sequence of isomorphisms from V onto V' that G-<u>converges</u> to A_s we may set $T_h=A_h^{-1}$ and (0.5) will be fullfilled. 1. Let now $(u_{o^{j}}\lambda_{o})$ be a solution of (0.4) and consider the Fréchet derivative with respect to u of the mapping

- (1.1) $F(u,\lambda) \equiv u+TG(u,\lambda)$
- at the point (u_{λ}) :
- (1.2) $L=D_{u}F^{O}=D_{u}F(u_{O},\lambda_{O})$.

By definition L $\in \mathcal{B}$ (V,V). If L is an isomorphism, the implicit function theorem will ensure the existence of a unique mapping $\lambda \rightarrow u(\lambda)$ through $(u_{\Omega}, \lambda_{\Omega})$ such that

(1.3)
$$u(\lambda) + TG(u(\lambda), \lambda) = 0$$

identically in a neighbourhood of λ_0 . It is easy to see that, in this case, problem (0.6) shows a similar behaviour for h small enough. Setting, as in (1.1)

(1.4)
$$F_{h}(u,\lambda) \equiv u+T_{h}G(u,\lambda)$$

one can also prove (see e.g. [2]) the optimal error bound

(1.5)
$$||\mathbf{u}_{h}(\lambda) - \mathbf{u}(\lambda)||_{\mathbf{v}} \leq \mathbf{d} |\mathbf{F}_{h}(\mathbf{u}(\lambda), \lambda)||_{\mathbf{v}} = \mathbf{d} |(\mathbf{T}_{h} - \mathbf{T}) G(\mathbf{u}(\lambda), \lambda)||_{\mathbf{v}}$$

uniformly in a neighbourhood of λ_0 independent of h. Obviously, in (1.5), $(u_h(\lambda), \lambda)$ is the solution of (0.6).

Let us turn now to a more interesting case; for this, assume that L, defined in (1.2), has a finite dimensional kernel. For the sake of simplicity we assume

(1.6) dim (ker(L))=1.

We say then that F has a simple critical point at (u_0, λ_0) . It is proven in [3] that, in such case, the classical Lyapunov-Schmidt decomposition can be carried out on both F and F_h at the same time, giving rise to the reduced problems

(1.7)
$$f(x,\lambda)=0$$
 $f \in C^{\infty}(\mathbb{R} \times \mathbb{R}^{n};\mathbb{R})$

and

(1.8)
$$f_h(x,\lambda)=0$$
 $f_h \in C^{\bullet}(\mathbb{R} \times \mathbb{R}^n; \mathbb{R}).$

Moreover f_h converges uniformly to f in a neighbourhood of the origin with all the derivatives, with no loss in the optimality of error bounds. See [3] for precise statements and details. From now on we shall assume that (1.7) and (1.8) are our original problems.

<u>Remark</u>. The setting of (0.6) in $V \times R^n$ instead of $V_h \times R^n$ could seem unimportant at first sight; however it is <u>crucial</u> in order to carry

out the L-S decomposition for the two problems at the same time.

2. Our setting, from now on, will be the following. We are given a mapping

(2.1) $f \in C^{\infty}(\mathbb{R} \times \mathbb{R}^{n}; \mathbb{R})$

and a sequence of mappings

(2.2) $f_b \in C^{\infty}(\mathbb{R} \times \mathbb{R}^n; \mathbb{R})$

converging to f with all the derivatives in a neighbourhood of the origin . We assume that the origin is a simple critical point for f, in the sense that

 $(2.3) \quad f(0,0)=f_{y}(0,0)=0$

and we look for the solutions of

(2.4) $f(x,\lambda)=0$

and

(2.5) $f_{h}(x,\lambda)=0$

in a neighbourhood of the origin.

We recall first the two basic concepts of "codimension" and of "contact equivalence" (see $\lceil 6 \rceil$) in the case n=1 (i.e. $\lambda \in \mathbb{R}$).

Definition 2.1. Let

G={germs of $C^{\infty}(R^2; R)$ }, $G_{(1)}$ ={germs of $C^{\infty}(R; R)$ }, ...

let f & G and set

 $\widetilde{T}f = \{g_0 f + g_1 f_x | g_1 \in G\}$ $Tf = \widetilde{T}f \oplus \{g(\lambda) f_1 | g \in G_{(\lambda)}\};$

if G/Tf has finite dimension we define

codim $f = \dim (G/Tf);$

otherwise we say that f has infinite codimension.

Definition 2.2. Let f,g be two germs in G. We say that $f^{C_{2}e_{-}g}(f \underline{is} \underline{contact equivalent to} g)$ if there exists $\tau(x,\lambda) \in G, X(x,\lambda) \in G$ and $\Lambda(\lambda) \in G_{(\lambda)}$ such that

$$\tau(0,0) \neq 0, \ X(0,0) = 0, \ \Lambda(0) = 0, \ \Lambda_{\lambda}(0) > 0, \ X_{\psi}(0,0) > 0$$

and

 $g(x,\lambda)=\tau(x,\lambda)f(X(x,\lambda), \Lambda(\lambda))$.

The following theorems are proved in [1].

Theorem 2.1. If f has codimension 0 then there exists a neighbourhood U of the origin, and an $h_0>0$ such that for all $h < h_0$ there exists a unique point (x_0^h, λ_0^h) in U such that

 $f_h(x+x_o^h,\lambda+\lambda_o^h) \stackrel{c \stackrel{\bullet}{\simeq} \bullet}{\simeq} f(x,\lambda)$.

<u>Remark</u>. Here and in the following, when speaking of the codimension of a function, we mean the codimension of the corresponding germ.

Theorem 2.2. Assume that f has codimension one, and let $g(x, \lambda, \mu)$ be a one-parameter universal unfolding of f, that is a C^{∞} mapping $R^3 \rightarrow R$ such that:

$$g(\mathbf{x},\lambda,0) \equiv f(\mathbf{x},\lambda),$$

$$G \equiv \{\mathbf{a}+\mathbf{cb} \mid \mathbf{a} \in \mathbf{T}f, \mathbf{b}=g_{\mu}(\mathbf{x},\lambda,0), \mathbf{c} \in \mathbf{R}\}$$

Let $g_h(x,\lambda,\mu)$ be a sequence of C^{∞} functions converging to g, with all the derivatives, in a neighbourhood of the origin. Then there exists a neighbourhood of the origin U and an $h_0>0$ such that for all $h<h_0$ there exists a unique point (x_h^h, h_0^h, μ_0^h) in U such that.

 $g_{h}(x+x_{o}^{h}, \lambda+\lambda_{o}^{h}, \mu_{o}^{h}) \stackrel{c \cdot e^{\cdot}}{\simeq} f(x,\lambda),$

 $g_h(x+x_o,\lambda+\lambda_o^h,\mu+\mu_o^h) \text{ is a universal unfolding of } g_h(x+x_o^h,\lambda+\lambda_o^h,\mu_o^h).$

<u>Remark</u>. In both cases (see [4]) an estimate could be provided for the speed of convergence of the discrete critical point (x_0^h, λ_0^h) to the origin. An estimate for $|\mu_0^h|$ can also be found.

<u>Remark</u>. In the case of codimension one, in general, $f_h(x,\lambda)$ does not have itself a critical point. Theorem 2.2 shows that, from one hand, a small perturbation of f_h allows the recovery of the same type of criticality of f; from the other hand it shows that, for h small eno ugh, the behaviour of f_h is similar to any universal unfolding of f for a suitable value of the perturbation parameter; finally it shows that, in some sense, the addition of a suitable perturbation parameter produces a g_h that matches perfectly the behaviour of g.

<u>Remark</u>. In [1] a guess is done that the result of theorem 2.2 should hold in a more general case: roughly speaking, for a problem of cod<u>i</u> mension k, the addition of k perturbation parameters should be neces sary and sufficient in order to recover the whole bifurcation diagram

•• .

in the discrete case; however this has not yet been proved at my know ledge.

3. I will recall now some results obtained in [1] on a particular case of codimension 2. For this assume now that

(3.1) $f(x,\lambda)=x^3-\lambda x$

and that the following two parameter universal unfolding is given (3.2) $g(x,\lambda,\mu,\alpha)=x^3-\lambda x+\mu+\alpha x^2$.

Assume furthermore that g_h is sequence of C^{∞} mappings from R^4 to R that converges to g in a neighbourhood of the origin with all the derivatives. The following result is proved in [4].

Theorem 3.1. There exists a neighbourhood U of the origin and an $h_0>0$ such that for all $h<h_0$ there exists a unique point $(x_0^h, \lambda_0^h, \mu_0^h, \alpha_0^h)$ in U such that:

$$\begin{aligned} g_{\mu}(x+x_{0}^{h},\lambda+\lambda_{0}^{h},\mu_{0}^{h},\alpha_{0}^{h}) &\stackrel{c}{\simeq} \stackrel{e}{\cdot} f(x,\lambda), \\ g_{\mu}(x+x_{0}^{h},\lambda+\lambda_{0}^{h},\mu+\mu_{0}^{h},\alpha+\alpha_{0}^{h}) & \text{ is a u.u. of } g_{\mu}(x+x_{0}^{h},\lambda+\lambda_{0}^{h},\mu_{0}^{h},\alpha_{0}^{h}) \\ g_{\mu}(x+x_{0}^{h},\lambda_{0}^{h},\mu+\mu_{0}^{h},\alpha_{0}^{h}) &\stackrel{c}{\simeq} \stackrel{e}{\cdot} x^{3}+\mu. \end{aligned}$$

Remark. The case

(3.3)
$$x^{3} - \lambda x + \mu = 0$$

is often present, in the applications, as a true two-parameter problem (see e.g.[5]). Although there is no definition, yet, of codimension in the case (n=2) of a two-parameter problem, theorem 3.1 suggests, somehow, that (3.3) behaves as a problem of codimension 1, at least from our point of view.

REFERENCES

- F. BREZZI, H. FUJII: Numerical imperfections and perturbations in the approximation of nonlinear problems. (<u>MAFELAP IV</u>, J. Whiteman ed. (Brunel, April 81) - (To appear).
- [2] F. BREZZI, J. RAPPAZ, PrA. RAVIART: Finite dimensional approxima tions of non_linear problems: P.I. Branches of non singular solu tions - Numer. Mat. - <u>36</u>(1980) 1-25.
- [3] F. BREZZI, J. RAPPAZ, P.A. RAVIART: Finite dimensional approximations of non_linear problems: P. II Limit Points Numer. Math. -37 (1981) 1-28.

- [4] F. BREZZI, J. RAPPAZ; P.A. RAVIART: Finite dimensional approximations of non_linear problems: P. III Simple Bifurcation Points -Num. Math. 38(1981) 1-30.
- [5] P.G. CIARLET, P. RABIER: Les équations de von Kármán. Springer (Berlin) 1980 - Lecture Notes in Mathematics n. 826.
- [6] M. GOLUBITSKY, D. SCHAFFER: A theory for imperfect bifurcation via singularity theory. Comm. Pure Appl. Math. 32 (1979) 21-98.