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ON THE MATHEMATICAL AND NUMERICAL STUDY OF NON-VISCOUS AXTALLY 
SYMMETRIC CHANNEL PLOWS 

Miloslav Feistauer 
Prag, Czechoslovakia 

The paper is devoted to the solution of steady, non-viscous, 
generally rotational•, incompressible or subsonic compressible, axially 
symmetric channel flows (detailes and references - see £l, 2]). The 
study of this problem plays an important role e.g. in the investigation 
of aerodynamical properties of diffusers of turbines and compressors. 

1. Formulation of the flow problem 

Let SL C R, be a bounded domain lying with its closure i\. in the 
upper half-plane x, m (xffx^), X, > 0' • The* boundary 3iX of Jl. con
sists of closed Jordan curves Cm, ... , ̂ ; > 2 : 0 . By rotating the 
domain £i> round the axis Xf we get a three-dimensional domain filled 
by the fluid. Let £ c Int C0 for . i c ^ , , , , ^ , 

The flow problem (we shall denote it (PI)) can be formulated as 
follows: To find j>, /vj /tg t A%9 H ; 7L-+Rf

 such tnat they satisfy the 
following equations and conditions: 

(1) t 7% (**f <£ ) » 0, 

(2a) \hsL 1 is.W * 2JL - -L V**"sf , 

(3) # « jp0 in JI , if the fluid is incompressible, 

(3*) <Yf) » W - ̂ {fy* •**£* * *§*) in JL for the compressible fluid 

(4) x,j,f(nrf, %). 7% « f on in . 
Let /J C C0 be an arc that determines the inlet, through which the 
fluid enters. Then 

<5) H|n< * A . Jt̂ 'TjIPf • 'W. 
If /O £ 4 (-*X is a multiply connected domain), then 
(6) 4£ (Mi ) - /% £*>«; ) • 0 # ^ «* Q # - * * < - . . , * • 

(2c) 0 

Mstation: f - density, /t^> *rx , 45 - velocity components in the 
cylindrical coordinates xf9jLt9 £ , H - total energy, ni - u n i t 
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outer normal to a«CL . f0 > 0 is a given constant, P : ( 0 , + eo)-> 
—*• & f is a given increasing function, f. ? . a -*> H1 5 X, n<r : /"J --> £f 

are given functions, >-&..;; * C^ are given points, the conditions (6) are 
the so called trailing conditions. 
Additional assumptions: f |Q < 0 , $ <fd£ - 0 , and, if A. z. /, 

C 

2. Stream function 

The solvability of" the problem (PI) was studied with the use of 
the so called stream function <y satisfying the relations 

(7) -?£- - - f**̂  ' -% ' ?**"< • 
For incompressible and subsonic compressible stream fields the problem 
(PI) was transformed into the following 

Problem (P2). To find Y * -^ —+ R4 and, if x, £ /, f -
T(fa~'>fk)**>i,such t h a t 

<8> £ 7&(*(*'+*(*v*>%r.) - /^ir . frr)*) in -^ • 
(9) 1KIC, - % 
and, if A > 4 > 
(10) /f/C* « ^ « const , >c -/>..-> A/, 

(11) ZLfa) - 0 , -J -r /, . . # >A/. 

The functions &} f are given by the relations (5) and either 
(3) or (3*). The function /y£ is obtained by integrating- if from the 
condition (4) along the curve C0 ([l, 2j). 

3. Solution of the problem 

1) In the case n,-*0 (-/I is simply connected) the problem (P2) 
was solved in theSobolev space' W£ (JX) with the use .of the monotone 
and pseudomonotone operators*. After the application of known regulari
ty results for elliptic-problems we get the classical solvability of 
the problem (P2) and afterwards, the classical'solvability"of the ge
neral rotational,*compressible flow problem (PI). The results are 
formulated in £l, 2j • 

2) If JbZ/ (-/l is multiply connected), the problem (P2) was 
studied theoretically and numerically in two cases: 

a) Irrotational'compressible'flows. The equation (8) has the form 

<**> t £(A(*,W)%) - 0 , 
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to which we add the conditions (9) - (11). This problem was transform

ed to a system of nonlinear algebraic equations and the solvability 

was proved on the basis of the strong maximum principle and appropriate 

apriori estimates (see £4]). 

b) Rotational incompressible flows. The equation (8) has the form 

The solvability of the problem (8**), (9) - (11) was proved in £"3 ] 

with the use of the strong maximum principle, apriori estimates and the 

Schauder fixed-point theorem. 

4. Numerical solution 

The problem (P2) was solved numerically by the finite-difference 

method. After the discretization of the differential equation (8*) or 

(8**), the boundary conditions (9), (10) and the conditions (11) we 

get the finite-difference, generally nonlinear system (£l])« 

a) Incompressible flows. The finite-difference system has the form 

(i2) Ar - $(r) . 
•*pV * R^ is a vector whose components are the approximate values of 

the stream function at mesh points, A is an iVxA/irreducibly diagonally 

dominant matrix (IDDM), ( $ ( T ) V C - fc^) ^ - ̂ " * ^n4- ~*> •••»*/.-

Ihe system (12) has at least one solution and was solved iteratively 

by the Newton-relaxation method: we write Ai1BAL + V + Ay , where, 

the matrix /k^ is strictly lower triangular, P- diagonal and ^-strict

ly upper triangular, f° 6 R^ , 

d5) \?"**4+ 0>-$'(<?«)) f*+ Aur
M - §(r*) - f(^)r^9 

(14). T ^ ' * y* + (jo(r* - *F*)< 
We use the relaxation parameter tve ( 0 , 2 ) . The method converges 

usually with Co * </. 

• b) Irrotational compressible flow. We get the finite-difference 

system 

d5) AirW s $W>* 
J*^""* Rtf > A(f) is IDDM for every *f £ fcv . (15) has a unique 

solution, which was found by the relaxation method, given'by the form

ulae 

(i6) ALi^)rmt4 + a?(r,'n)¥* •+ A0(r^)r^ s $(r"*) 
and (14), where cje(o$4>. A series of numerical experiments showed 

that the method converges safely with to * 4 , if the sought stream 

field is subsonic. 
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