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OPTIMIZATION OF THE DOMAIN IN ELLIPTIC 

UNILATERAL BOUNDARY VALUE PROBLEMS BY 

FINITE ELEMENT METHOD 

I. Hlavdfiek and J. Nee"as, Praha.CSSR 

Introduction 

In optimal design dome problems of technical interest remain 

open, to the authors' knowledge. Thus in some problems of a unila­

teral contact between elastic bodies the shape of the boundaries 

should be optimized to obtain minimal cost functional such as the 

integral of energy, contact forces or displacements. 

It is the aim of the paper to start the analysis of this 

class of problems on a simplified model with a unilateral problem 

in R for the Poisson equation and Signorini'a boundary condi­

tions. On a given part of the boundary the Dirichlet homogeneous 

condition is prescribed and the remaining part - with unilateral 

conditions - has to be determined. 

In Section 1 we prove the existence of a solution for 4 dif­

ferent cost functionals and for one common state problem, which is 

formulated in terms of a variational inequality on a variable do­

main. In Section 2 finite element approximations are proposed, em­

ploying piecewise linear approximations of the unknown part of the 

boundary and piecewise bilinear finite elements on a uniform mesh 

in a reference square domain. In Section 3 we study the convergence 

of the approximations and in Section 4 some numerical methods are 

discussed. 

1. Existence of a solution to the model problems. 

We introduce the following model problems. Let CI (v) 

be the domain 

n(v) = {o < x1 < v(x2), 0 < x2 < l} , 

where the function v is to be determined from the problem 

ad 

Here 

Uftd - { w £ C ( 0 )»1([0, l]) ( i . e . Lipschitz function) 

1 
0 < oC « W » ft % ldw/dx2 I * C lf J w(x2) dx2 «- C2} f 
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with given constants 06, / 3 , C-,, C2, i = 1 ,2 ,3 ,4 , 7 i< w ) = 

c J.^(y(w)), ZQ « const i s given, 

Jx(y(w)) « / (y (w)-z 0 ) 2 dx, J2(y(w)) =- / IVy(w) l 2 dx, 
ri(w) Q(w) 

1 1 
J 3 (y(x)) -- / y(w)l dx2, J4(y(w))=- f (y(w)l - z Q ) 2 dx2 , 

J 0 ' w ' 0 ' (w) v 

where r(w) is the graph of w and y(w) is the solution of 
the following unilateral boundary value problem : 

(1.1) - A y = f in Q(w), 

y *0' 9?r°> y f f S ° °n r(w)> 

y = 0 on ^.n(w) «-• (w). 

Here f G L2( Q ^ ) is given, Cifi = (0t/3 ) x (0,1) and ^ y/9V 
denotes the derivative with respect to the outward normal to 
P(w). 

It is well known that the state problem (1.1) can be formula­
ted in terms of a variational inequality, as follows: 

let K(w)=-{zCH1(n(w))lz--0 onP(w), z=0 on 2£1 (w)- P(w)}; 

find y G K(w) such that for any z G K(w) 

(1.2) J Vy.V(z-y) dx * / f(z-y) dx. 
.Q(w) -CL(w) 

Theorem 1.1 The problem (P^) has at l eas t one solution for 
i « 1 ,2 ,3 ,4 . 

The proof can be found in [ l ] • 

2. Approximate solutions by f i n ^ e elementsf 

Let N be a posit ive integer and h = 1/N. Denote by < 
0 = 1 , . . . , N the interval f ( j - l ) h , j h ] and introduce the set 
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where P^ is the space of linear polynomials. 
We define the reference square domain 

& * (0,1) x (0,1) 

A 

and the subsquares K. . « e4 x e •, generating a uniform mesh 
^ h - \Kij/i, j*l • 

Let Clh denote the domain Q(w h ) . We introduce the map­
ping 

(2.1) F h : A - > O h , F h«(F l h,F 2 h), 

Flh(x) * x ^ t x g ) , F2h(x) -- x2 

and transform the state problem (1.2) on 0-h into an equivalent 
problem on the domain CI , by means of the mapping (2.1). 

Using also some simplifications we define the approximate 
inequality on the reference domain XI 

(2.2) ah(wh; yh, V ^ = Lh(wh; $h~$h) ih £ Kh, 

where 

ah £ 0 on n , zh = 0 on T>Q. - f1} , 

f * {(Xl,x2)l {,.1, O.J^l}, 

Q.̂  denotes the set of bilinear polynomials in x^ and x2 
/Ч 

t 

N - ~* э t II (w • V t ) = Ï Z I Г Г .. - h h I 
W Уh'V - f-г-- л J LľľTTT TІГ T*Г + 

K І J
 h * j } * -

| І » <І - ^ Һ , f j » (j - | ) Һ , wћ « a wh/a x2 
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ҷÆ^ïЛ^ь n > * k«i 

P ^ . f k = 1,2,3,4, are the vertices of £^.. 

In the same way, we introduce approximate cost functional3 

]fih^wh^ 2 Jih^h^ wh^ e n d 8 0 l v e *ne approximate problems 

(Pih> 7ih(uh> * mh n 7ih(wh>» 
w ad 

A A 
where 'Jfh^k^ Kh a r e s o l u t i o n 8 of (2.2). 

Remark. The same approach has been employed by Begis and 

Glowinski [2] in case of the state problem with classical boundary 

conditions - of Diri chiefs and Neumann's type - and of the cost 

functional J,• 

3. Convergence of the finite element approximations. 

We can prove a convergence of approximate solutions in some 

sense for the case of a smooth right-hand side f and for the 

cost functional3 V,, jf2 and 7->. 

Theorem 3,1 Assume that f GC^tfi^). Let {uh} f h —» 0, 

be a sequence of solutions of the approximate problems (p^n)» -» s 

= 1,2,3, and let yft = $n(un) oe the corresponding solutions of 

(2.2) (with wn s u h) f y h = yn • F"
1. 

Then a subsequence of {un} exists such that for h —> 0 

(3-1) un —-> u uniformly, 

(3.2) yh —> y(u) weakly in H 1 ^ ) Vm > 1/cC , 

where u and y(u) is a solution of the problem (P^) and of the 

inequality (1.2) with w = u, respectivelyf m is an integer, 

0- {(xlfx2) I 0 < xx < u(x2) - if 0 < x2 < l} . 

Any uniformly convergent subsequence of {u
n} nas the pro­

perties mentioned above. For the proof - see [l] • 

Remark on numerical solution of the approximate problems 

Since the functionals ^ i h are not differentiable (cf.[3])» 

we are forced to apply methods of nonlinear programming, which do 

not employ the gradient of the functional. Moreover, each evalua­

tion of 7in(*n) requires to solve the nonlinear state problem 

(2.2). To this end we apply the method of successive over-relaxa­

tion (SOR) with additional projection (see e.g. [4])« 

Several methods of nonlinear programming are being tested on 

an example. 
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