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STABLE, CHAOTIC AND OPTIMAL SOLUTIONS OF FIRST ORDER PARTIAL 

DIFFERENTIAL EQUATIONS RELATED WITH THE CELL .KINETICS 

Andrzej Lasota 

Katovice, Poland 

1. Introduction 

The purpose of this lecture is to shov that the dynamical sys

tems described by some simple first order partial differential 

equations may haTe a complicated behavior. This is in particular 

true for the equation 

(1) "ft + C(t'x)"|f = *(*•».«) * » Ct.x) € D 

considered vith the initial Talne condition 

(2) v(0,x) « T(X) for x £ A • 

Here A - CO,Li, D « CO,«-)X <& and c , f are giTen con t i 
nuously d i f ferent ia te functions satisfying 

( 3 J ) c( t fx) >, 0 

(3-fj) f(t fx fu) < k ^ t j u + k2(t) f f(t fx fO) » 0 

vith continuous coefficients k*, k2 . 

Equation (l) has an interesting biological application C 7 3 . 

It say be used to describe the grovth of a population of cells 

vhich constantly differentiate (change their properties) in time. 

In this model t denotes the time and x is the degree of the diffe

rentiation vhich changes from x • 0 (undifferentiated cells) to 

x - L (mature cells). The unknown function u(t9x) is the distribu

tion of cells vith respect to the parameter x. Thus, roughly spea

king, n(tfx) d x is the number of cells haTing at time t the 

degree of differentiation betveen x and x +• dx . The coefficient 

e is the Telocity of the cell differentiation and the right hand 

aide f Is related vith the reproduction of cells. Since the process 

of the differentiation is, in general, irreversible, this inter

pretation justifies inequality (3j). Inequalities (3jj) follov 

from the fact that the proliferation rate is alvays bounded and 

that the number of cells cannot decrease if there is no cells* 
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Denote by C+(A) and C + ( D ) the space of all non-negative fun
ctions continuous and defined on the interval Zi and the domain 
D respectively. A function u 6 C+(D) will he called a generalized 
solution of (l) if there is a sequence { u } of continuously diffe-
rentiable functions in D satisfying (l) and such that {n^} conver
ges to u uniformly on compact subsets of D. Ve shall consider only 
generalized solutions and the word "generalized" will be omitted. 
Using the method of characteristics it is easy to prove the follo
wing 

Proposition 1. Suppose that c and f satisfy inequalities (3). 
If, in addition, c satisfies condition 

(4) c(ttO) « 0 for t >, 0, 

then for every v € C+(&) problem (l),(2) has a unique solution 
* <-: C (D); conversely if for one v € C+(A) problem (l),(2) has a 
unique solution u 6 C A D ) , then c satisfies (4). 

The singularity condition (4) causes some specific properties 
of equation (l) such as the existence of stationary turbulent so
lutions C 03 in the sense of J.Bass C23 and the existence of an 
ergodic invariant measure in the phase space L 31 . From the biolo
gical point of view it means that the primitive, undifferentiated 
cells change their properties slowly. 

2. Stability 

From now we shall consider the autonomous equation 

<5> - | f • e<->4i " tix'u) *•* ( t » x ) 6 D-
We admit9 as usual, that e and f are continuously differentiable 
and ve shall assume that 

(Oj) c(0) » 0t c(x) > 0 for 0 <: x £L 

(6II> *u(°»uo) < °t *(<>•«)(» " *o> < ° tor u> °t u i* uo 

( « m ) *(xfm) <C lLtu + k2t 0 =. f(xt0) for x 6 A , n * 0 

with constant kltk2 and uQ > 0. Ve have the following £4J 

Theorem 1 . Suppose that c and f satisfy condition (6). Then 
there exists a unique function wQ £ C+(A) such that 

(7) lim u(t,x) a w0(x) uniformly for x e A. 
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for every solution u £ C+(D) of (5) satisfying u(0,0) > 0. 

Observe that in the statement of Theorem 1 there ia no assum

ption (except the growth condition ( G J J J ) ) concerning the behavior 

of f(x,u) for x>0. On the other hand the existence of the limit 

(7) ia claimed for all x 6 .A . Igain, thia fact has an immediate 

biological interpretation. For the stability of a self-maintaining 

sell population only the conditiona far the baaic, undifferentiated 

cells are essential. 

3. Chaos 

Let V be a metric space and let f StJ (t .> 0) be a semidynamical 
system on V, i.e. St are continuous mappings from V into itself 

satisfying 

SQ - idv , S t + t f - Sto stf for t, f > 0. 

JL point v 6 V is called stable if for any sequence {rn\ C V the 

condition vn -> v implies StTn -> StT (as n «* e©) uniformly 

for all t>0. The system {S^is called chaotic if the following[1] 

two conditions are satisfied: 

(a) every point v*V is unstable (« it is not stable), 

(b) there exists v£ V such that the trajectory (Stv: t;oJ 

ia dense in V. 

Nov let {St} be the semidynamical system on C+(A) generated by-

initial value problem (5),(2); that is (Stv)(x) - u(t9x) where u 

is the solution of (5),(2). Under conditions (6) the subsets of 

C+(A) defined by 

V+ • tY e C+<^>s T<°> > °J t Vo " (T * C+^>s T<°> " °i 

are evidently invariant (S tV +C V+ and StVQc: VQ for t > 0). The 

behavior of {StJ on V+ is described by Theorem 1. The behavior 

of (St J on V0 is much more complicated. An .important role is played 

here by the set 

Vw " i T 6 V T<x>< wo<x> for x e }̂ 

which is a global atractor. 

Theorem 2. Suppose that c and f satisfy.(6) and let £St} be 

the semidynamical system generated by (2),(5). Then for each 

v 6 V0 there ia a time TQ > 0 such that S tT6Y ¥ for t>/T^. The set 
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V is invariant under [S.] and { sArestricted to Vv is chaotic 

The proof of the last statement in Theorem 2 is not trivial and 
vill be published in C 4 J . Biological interpretation of Theorem 2 
leads to the following conclusion: if the basic cells are damaged, 
then the behavior of the total population is unpredictable. 

4. Optimal control 

The most interesting property of equation (l) is related with 
the fact that the coefficient c (and partially also f) may be con
sidered as a control factor . An important, from the applied point 
of Tie* [5J, problem may be formulated as follows. Assume that 
c(tfx) - r(t)x and f(t,x,u) * [A(i-u) - r(tflu. GiTen T € C+(A) 
(T(X) ̂  1 - 1/X ) find a function r(t)< [0,1} for which the inte
gral I 

I(r) - C r(t)u(t,L) dt 
o 

admits its maximal Talue. The optimal function r corresponds to the 
lost effectiTe treatment of some cases of anemia. Such a treatment, 
based on theoretical conclusions, has been tried on number of pa
tients by Dr. M. Vazewska-Czyiewska with success. 
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