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SENERIC DIFURCAYIONS OF VECTOR FIELDS
WITH A SINSULARITY OF CODLMENSION 3

Milan Medved
Bratislava, CSSR

Consider the vector tield
X = Ax + 3(x) , ' (1)
where x=(x1,x2), the metrix A is equivalent to the nilpotent Jor-
dan block S with 1 msbove the disgonal and zeros elsewhere, G=(G1,02),
G(0)= 0, Gi(x)z(Pix,x) + hi(x), P, ere symmetric matrices, hi(x) =
= o(ﬂxlz), i=1,2, (.,.) is the scelasr product on R2.

There is & smooth reguler mapping transformine the vector field

(1) into the form

ky= xp, Xp= (DX, %)+ ty95 + T4(x) + h(x) (2)
where T=(tij) is & symretric matrix, T3(x) is a homogeneous polyno-
miel of degree 3 in X%, which does not contain the power xi and
h(x)= o(VXI3). Ihe property ty,= 0 is invarient with respect to re-
gular transformetions of ccordinates keeping the origin fixed. If
tlls O then the number q= tBotI% is aelso invariant with respect to
these transformations.

Let I'*® be the set of all C*-vector fields in R® of the form (1)
and Jk be the set of k-jets of the vector fields from r* . The set
of 2-jets of the vector fields from [ for which the mstrix of the
lina;r pert ot O is eguivelent to the Jordan block S and t11=0 is
e smooth submanifold £ of J° of codimension 3.

A criticel point of the vector field verl® is called nondege-
nerate if t12t30 # C and degenerate otherwise. The condition of de-
generacy defines & suﬁset of Ja, which is an algebraic submanifold
of J3 of codimersion 4.

Consider the following fumily of vector fields
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x = f(x,e) , (3)
where x=(x,,x,), €=(€,, €,, €3), fg(x)=r(x, €)e Cw,fo is thre vec-
tor field (1). The set of all such families we denote by H% Let G%
be the set of all germs at the origin of the vector fields from [*° .,
We denote by § €G* the germ, represented by ge r, Given eny feH®
we define the mapping ¢(f): (x,€)— 71'2?5(5(), vliere ':1"2:6‘” —_ J2
is the natursl projection.

The family (3) is called nondegenerate if the critical point
k= O of the vector field o is nondegenerate end the mepping @(f)
is transversal to the menifold ¥ at the point (x, €)= (0,0).
Theorem 1. There exists an open, dense subset II{" of H%such that
if f.GH{o then f is nondegenerate and there is a smooth chenge of
coordinates y= y(x,¢), P= @(€) such thet in these coordinstes
the femily f hes the form .
1= ¥,

A IR By, + PvE * 33 ¢ bviyp + boyys ¢
+ by¥3y, + v3 G ),

where (P €C™, & = sign g, rc;-(,'th 200 oyt %7—".;5 ’

f:(,kh S ( Ips + -%—[-ig ), by > O. The numhers b,,, sign X ,

where N= b11b02 + b21, sre inverients of the germ £, represented

by the family f£.

o

i

The critical points of v;: have the form (z,0), where =z is
a reel root of the algebraic equation
3 2 5 G
Cyo + My + J"z([‘v)y + X‘l([k) =0. (4)

The discriminent of the equation (4) has the form D=D([¢)= }t{ +
+ 3 . Denote F= {HID(P)= 0}, = {{iD(p) >0} T =
: + N .
= {{tIp(p) <o}, Ho={f1}y= 2 nl {5, h([tz)=(-[¢2)%' VM g0,

i. e. F=HuH, Let S;= QT U {0}, 5= B~ {o}, sy= 27 \ {0},

261



- - +_ - - -
9= L4 (= o) o= {4 1) > 0F, o= {f IF5(p) <o},
- + - +_ 'L - +
we= { Q1= o}, = [ IPECp) >0}, ug= {J If5(p) <o},
i,k= 1,2, o= G;NG,, o= M;NMK,. The sets Gys Gpy My, M, ere
smooth surfaces in R3.
Theorem 2. If fe¢ H'l=° then there exists & neighbourhood U of the
origin in the paremeter space and & neighbourhood V of the origin
in the phase space such that for €uns, (k= 1,2,3) the vector
field v;_' has exactly k critical points in V.
Zero eigenvalues, If [LEU\ D , where U is a sufficiently

small neighbourhood of the origin, then for any criticel point X
the matrix L(K) of the linear part of v;: computed at K has no zero
eigenvalue, If [L € D there is & critical point Ky, for which the
matrix L(K,) hes a zero eigenvalue (it has multiplicity 2 only if
re o) and for the second critical point K, the matrix L(K,) has
no zero eigenvalue.

Pure imaginary eigenvalues. Let K be a critical point of VF_

( 't-“ ). The matrix L(K) has pure imaginary eigenvalues if and only
if X=(0,0), pemyn n; (Gn Gy ).
Bifurcations for v . By [1, Theorem 6.2.11, for €5, the
1§

only critical point is a saddle. Let Py be the plane through the

point M, € & perallel to the (h,h)-plane. Let w;, = vt: for WEP,
and let Q) € u*, Q, €H™ be the end-points of the curve h= PyNk)N w0
N(® vd). Bach of the vector fields wal and waz has two criti-

cal points: a saddle K, and a.ssddle node K,, for which the matrix
L(Kz) has zero eigenvalue of the multiplicity 2. There exist neigh-
bourhoods Ul'UZ'V of Qi,qz and K,, respectively, such thet the bi-
furcation diagram for 'tt v in U1 and 02 corresponds to the bifurca-
tion diagrem of Bogdanov’s normal form with positive and negative

signature, respectively (see [3, Theorem 1]1). For MK €hnU; (hNU,)

two critical points are saddles and there is one critical point K,
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for which the matrix L(K) has pure imaginary eigenvalues and the
first Ljepunov focus number L [2] is positive (negative). It is
possible to show that there is exactly one point G on h, where Ly
changes its sign and sign L2= sign N, where L2 is the recond Ljapu-
nov focus number (for [‘—= Q). The number N is genericelly nonzero.
The bifurcation diagram in & neighbourhood of the point Q looks like
the one described in (2, p.p. 208, p.p. 243].

Bifurcations for v';_ . For [&.e G, N 2% the critical point is
a focus. There ere curves 7;, 7,C0,N 2a* n {[Ll[lz <o}, ?3 c
cg, ng n {p1pe > o3, 7: N7 =19, i=1,2,3, such that for sny
Q € 71 v 72 v 73 there is L,= O and sign L,= sign N. The bifurca-
tions near this point can be described using the results from [2].
For HELG NI'N(7, U7, U731V LGN FNGy] there is Ly O.
Let '15'0 be the plane through /40 € Q" perallel to the (h,}-‘:,)-pla‘ne.
The set 'i>'°n Glﬂ G; N(YP~U ) consists of two components with end-

points alé.ll', R e H' and Ezé}l*, R,€ H™, respectively. The bifur-
cation diasgram in a neighbourhood of 81 and '62 corresponds to the
bifurcation diagram of Bogdenov’s normal form with positive &nd

negative signature, respectively.
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