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aJSKEKIC DIl-UUCATIOKS OF VECTOR FIELDS 

v;iTH A SIIvSULARIT* 01 CODIMENSION 3 

Milan lledve<5 

Bratislava, SsSR 

Consider the vector field 

x = Ax + .}(x) , (1) 

where xsix^jXg), the matrix A is equivalent to the nilpotent Jor

dan block C with 1 above the diagonal and zeros elsewhere, G=(G,,G2)I 

G(0)= 0, Gi(x) = (Pix,x) + hi(x), Pi ere symmetric matrices, h.(x) = 

= o(flxH ) t i=l,2, (.,.) is the scalar product on R . 

There is a smooth regular mapping transforming the vector field 

(1) into the iorm 

i ^ x2, i2= (Tx, x) + ^r/i * T3*x^ + n ^ * ^ 

where T=(t^.) is a symmetric matrix, T-̂ (x) is a homogeneous polyno

mial of degree 3 in x-. ,x^, which does not contain the power x:? and 

h(x)= o(lixMJ). The property t,,= 0 is invariant with respect to re

gular transformations of coordinates keeping the origin fixed. If 

t,,* 0 then the number q= t ^ t ^ is also invariant with respect to 

these transformations. 

Let r°° be the set of all C°*-vector fields in R2 of the form (1) 

and J^ be the set of k-jets of the vector fields from r** • The set 

of 2-jets of the vector fields from r°° for which the matrix of the 

linear part at 0 is equivalent to the Jordan block S and t . j^-0 is 

a smooth submanifold 21 of a of codimension 3* 

A critical point of the vector field vc T°° is called nondege-

nerate if t,pt->0 i 0 and degenerate otherwise. The condition of de

generacy defines J? subset of J , which is an algebraic submanifold 

of J of codimersiom 4. 

Consider the following family of vector fields 
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x = f(x,£ ) , (3) 

where x=(x1,x2), £ = ( £-,, fc2, £ 3 ) , f£(x)=f(x,£ )e.C°°,f0 is the vec

tor field (1). The set of ell such families we denote by H*. Let G*5 

be the set of all germs at the origin of the vector fields from f°° . 

We denote by gtG^the germ, represented by g t r°^# Given any f*lf° 

we define the mapping f (f): (x, £ ) —• ft^f^ix), where ft^G00 -* J2 

is the natural projection. 

The family (3) is called nondegenerate if the critical point 

JC-= 0 of the vector field fQ is nondegenerate end the mapping p(f) 

is transversal to the manifold £ at the point (x,£ )= (0,0). 

Theorem 1. There exists an open, dense subset Ilf0 of H°°such that 

if f £H-?° then f is nondegenerate and there is a smooth change of 

coordinates y=- y(x,£), M--si^(£) such that in these coordinates 

the family f has the form 

^ y2= £</*•> «• j f ^ i * tA + «vl * bliyiy2 • b02y| • 

• b21yly2 * y2 ^frt/^i 

where <J> €.C°°, <T = sign q, £</*.)« 2 T/\ * ̂ 2 f3 + "27" ̂ 3 » 

jr2(/^)= ST ( 3/^2 + ~J"/^3 *»
 b l l > 0# The numbers b n » si^n K 1 

A/ 

where N= biiboo + b2, , are invariants of the germ f f represented 

by the family f. 
The critical points of v^ have the form (z,0), where z is 

a real root of the algebraic equation 

< r y
3 + / y 2 + j f </*•>* • £</*•> - 0 3 • M,y2 + /ToMy • yf(M-) = O . (4) 

6 

The discriminant of the equation (4) has the form D-D (/4 ) » / ^ + 

+ / l 3 . Denote 2J« {/<-JD</0= o } , Û*= {/<• lD</0 > 0 } , 2 " = 

- £/t)D(/0 <0} , i T - t / M f t . - M / V } . h(/t2)-(-/t2)-i-,/<2 .àO 

i . e . 2f- H+UH". Let Sj* 3 + u { 0 Î , S2* 2 ^ { o } , S-,» 3 " V {0} , 
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°i* C^ifJ<^)- o}. oj- If- -fl<p> >o}f G% {^ifr(^)<o} f 

V {p l/k<^>- °h <- {^ lfJ</o >o|. M-= t^ lj£</o <o}, 
ifk= if2f ct"= G 1nG 2 f odN M^n M2. The sets Glf G2f Mlt M 2 are 

smooth surfaces in r . 

Theorem 2. If f€H^° then there exists a neighbourhood U of the 

origin in the parameter space and a neighbourhood V of the origin 

in the phase space such that for ^ 4 U n S k (k= 1,2f3) the vector 

field v?T has exactly k critical points in V. 
tr 

Zero eigenvalues. If £* €. U ̂  S> f where U is a sufficiently 

small neighbourhood of the origin, then for any critical point K 

the matrix L(K) of the linear part of vf computed at K has no zero 

r 
eigenvalue. If ̂  €. 2) there is a critical point Klf for which the 

matrix L(K^) has a zero eigenvalue (it has multiplicity 2 only if 

fA*€- CL ) and for the second critical point K2 the matrix L(K2) has 

no zero eigenvalue. 

Pure imaginary eigenvalues. Let K be a critical point of v£ 

( vjl )• The matrix L(K) has pure imaginary eigenvalues if and only 

if K*(0,0)f {A-CM^Mg ( G 1 n G 2 ). 

Bifurcations for Vq, . By EL, Theorem 6.2.1], for ^ 4 S-̂  the 

only critical point is a saddle. Let P Q be the plane through the 

point fiQ 6 £T parallel to the (fatfo)-plane. Let wj « y for /^CPQ 

and let Q-^H*, Q 2£H~ be the end-points of the curve h= P^nM^n M^n 

0 ( S~u 3 ). Each of the vector fields wt and wt has two criti-
wl w2 

cal points: a saddle K, and a.saddle node K2, for which the matrix 

L(K2) has zero eigenvalue of the multiplicity 2. There exist neigh

bourhoods UlfU2fV of Q^iQ2 °nd K2, respectively, such that the bi

furcation diagram for wJiy in U-, and U 2 corresponds to the bifurca

tion diagram of Bogdanov's normal form with positive and negative 

signature, respectively (see [3, Theorem 1]). For ^ c h n U ^ (hnU2) 

two critical points are saddles and there is one critical point K, 
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for which the matrix L(K) has pure imaginary eigenvalues and the 

first Ljapunov focus number L^ [2] is positive (negative). It is 

possible to show that there is exactly one point Q on h, where L-. 

changes its sign and sign L2= sign N, where L 2 is the cecond Ljapu

nov focus number (for M-= Q). The number N is genericelly nonzero. 

The bifurcation diagram in a neighbourhood of the point Q looks like 

the one described in [2t p.p. 208, p.p. 243]• 

Bifurcations for vZ • For J-ceG.^0 SB* the critical point is 

a focus. There are curves ^i» ? 2 C G i n ^ + ̂  ̂ ' ^2 ̂  °̂ » ?3 C 

CG1 H3
+0 iNfo > °h Yi X ?i = ^ » i= 1'2»3» such that for any 

QQ £ Ji U y^ U 72 there is ̂1= ° and sifi11 L 2 = sign N# Tne bif crea

tions near this point can be described using the results from [2]• 

For ft [ Gx 0 3
+ ̂  ( y x U y 2 U f3)l U I G-ĵn aTn Gp there is Ltf 0. 

Let P Q be the plane through fa e 2T parallel to the (J*-,-MO-plane. 

The set P Q O G, 0 Gl A (3f"t/ 3 ) consists of two components with end-

points Q ^ l f , R-^eH* and Q 2€H*, Rg^ H~, respectively. The bifur

cation diagram in a neighbourhood of Q, and Q 2 corresponds to the 

bifurcation diagram of Bogdanov's normal form with positive and 

negative signature, respectively. 

References 

[1] Andrejev, A. F.: Singular points of differential equations, 

Minsk 1979 ( Russian ). 

[2] Bautin K. N. and Leontovich E. A.: Methods and examples of qua

litative study of dynamical systems in the plane, Nauka, Mos

cow 1976 ( Russian ) . 

[3] Bogdanov R. I.: Versal deformations of a singular point of a 

vector field in the plane in the case of zero eigenvalues, 

Proceedings of the I. G. Petrovski Seminar, 2, 1976 (Russian). 

263 


		webmaster@dml.cz
	2012-09-12T23:52:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




