EQUADIFF 5

Milan Medved'
 Generic bifurcations of vector fields with a singularity of codimension 3

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte zur Mathematik, Bd. 47. pp. 260--263.

Persistent URL: http://dml.cz/dmlcz/702301

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
gEMERIC LIFUICh'ITORS OF VECTOR FIELDS
\#ITH a SINGULARITY OF CODIíENSION 3

silian Medved
Bratislava, ČSSR

Consider the vector field

$$
\begin{equation*}
\dot{x}=A x+G(x), \tag{I}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right)$, the metrix A is equivalent to the nilpotent Jordan block S with 1 nbove the diagonal and zeros elsewhere, $G=\left(G_{1}, G_{2}\right)$, $G(0)=0, G_{i}(x)=\left(P_{i} x, x\right)+h_{i}(x), P_{i}$ ere symmetric matrices, $h_{i}(x)=$ $=o\left(\|x\|^{2}\right), i=1,2,(.,$.$) is the scoler product on R^{2}$.

There is a smonth reguler merping trensforming the vector field (1) into the form

$$
\begin{equation*}
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=(T x, x)+t_{30} x_{1}^{3}+T_{3}(x)+h(x), \tag{2}
\end{equation*}
$$

where $T=\left(t_{i j}\right)$ is a symmetric matrix, $T_{3}(x)$ is a homogeneous polynomial of degree 3 in x_{1}, x_{2}, which does not contain the power x_{1}^{3} and $h(x)=0\left(\|x\|^{3}\right)$. The property $t_{11}=0$ is invarisnt with respect to regular transformations of ccordinates keeping the origin fixed. If $t_{11}=0$ then the number $q=t_{30} t_{12}^{-1}$ is also invariant with respect to these transformations.

Let r^{∞} be the set of all C^{∞}-vector fields in R^{2} of the form (1) and J^{k} be the set of k-jets of the vector fields from ${ }^{\infty}$. The set of 2-jets of the vector fields from r^{∞} for which the matrix of the linegr part at 0 is equivelent to the Jordan block S and $t_{11}=0$ is a smooth submarifold Σ of J^{2} of codimension 3 .

A critical point of the vector field $v \in \Gamma^{\infty}$ is called nondegenerate if $t_{12} t_{30} \neq 0$ and degenerate otherwise. The condition of degeneracy defines ε subset of J^{3}, which is an algebraic submanifold of J^{3} of codimersion 4.

Consider the following fumily of vector fields

$$
\begin{equation*}
\dot{x}=f(x, \varepsilon), \tag{3}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right), \varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right), f_{\varepsilon}(x)=f(x, \varepsilon) \in C^{\infty}, f_{0}$ is the vector field (l). The set of all such families we denote $b_{j} H^{\infty}$. Let G^{∞} be the set of all germs at the origin of the vector fields from Γ^{∞}. We denote by $\tilde{\mathbb{G}} \in G^{\infty}$ the germ, represented by $g \in \Gamma^{\infty}$. Given any $f \in H^{\infty}$ we define the mapping $f(f):(x, \varepsilon) \rightarrow \pi_{2} \tilde{f}_{\varepsilon}(x)$, where $\pi_{2}: ى^{\infty} \rightarrow J^{2}$ is the natural projection.

The family (3) is called nondegenerate if the critical point $x=0$ of the vector field f_{0} is nondegenerate and the mapping $\rho(f)$ is transversal to the manifold Σ at the point $(x, \varepsilon)=(0,0)$. Theorem 1. There exists an open, dense subset H_{1}^{∞} of H^{∞} such that if $f \in H_{l}^{\infty}$ then f is nondegenerate and there is a smooth change of coordinates $y=y(x, \varepsilon), \mu=\varphi(\varepsilon)$ such that in these coordinates the family f has the form

$$
\begin{aligned}
& v_{\mu}^{\sigma}: \begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}= \\
\gamma_{1}^{\sigma}(\mu)+\gamma_{2}^{\sigma}(\mu) y_{1}+\mu_{3} y_{1}^{2}+\sigma y_{1}^{3}+b_{11} y_{1} y_{2}+b_{02} y_{2}^{2}+ \\
\\
\quad+b_{21} y_{1}^{2} y_{2}+y_{2}^{2} \phi(y, \mu)
\end{array}, \quad .
\end{aligned}
$$

where $\phi \in C^{\infty}, \sigma=\operatorname{sign} q, \gamma_{1}^{\sigma}(\mu)=2 \sigma \mu_{1}+\mu_{2} \mu_{3}+\frac{1}{27} \mu_{3}^{3}$, $\gamma_{2}^{\sigma}(\mu)=\sigma\left(3 \mu_{2}+\frac{1}{3} \mu_{3}^{2}\right), b_{11}>0$. The numbers $b_{11}, \operatorname{sign} N$, where $N=b_{11} b_{02}+b_{21}$, ore inverients of the germ \tilde{f}, represented by the family f.

The critical points of v_{μ}^{σ} have the form $(z, 0)$, where z is a real root of the algebraic equation

$$
\begin{equation*}
\sigma y^{3}+\mu_{3} y^{2}+\gamma_{2}^{\sqrt{3}}(\mu) y+\gamma_{1}^{\sigma}(\mu)=0 . \tag{4}
\end{equation*}
$$

The discriminant of the equation (4) has the form $D=D(\mu)=\mu_{1}^{2}+$ $+\mu_{2}^{3}$. Denote $\mathscr{D}=\{\mu \mid D(\mu)=0\}, \mathscr{D}^{+}=\{\mu i D(\mu)>0\}, \mathscr{D}^{-}=$ $=\{\mu \mid D(\mu)<0\}, H^{ \pm}=\left\{\mu \mid \mu_{1}= \pm n\left(\mu_{2}\right)\right\}, h\left(\mu_{2}\right)=\left(-\mu_{2}\right)^{\frac{3}{2}}, \mu_{2} \leqslant 0$, i. e. $\mathscr{D}=H^{+} \cup H^{-}$. Let $S_{1}=\mathscr{D}^{+} \cup\{0\}, S_{2}=\mathscr{D} \backslash\{0\}, S_{3}=\mathscr{D}^{-} \backslash\{0\}$,
$\left.\sigma_{i}=\left\{\mu \mid r_{i}^{-}-\mu\right)=0\right\}, c_{i}^{+}=\left\{\mu \mid \delta_{i}^{-}(\mu)>0\right\}, G_{i}^{-}=\left\{\mu \mid \gamma_{i}^{-}(\mu)<0\right\}$, $u_{k}=\left\{\mu \mid \gamma_{k}^{+}(\mu)=0\right\}, u_{k}^{+}=\left\{\mu \mid \gamma_{k}^{+}(\mu)>0\right\}, u_{k}^{-}=\left\{\mu \mid \gamma_{k}^{+}(\mu)<0\right\}$, $i, k=i, 2, \alpha^{-}=G_{1} \cap G_{2}, \alpha^{+}=M_{1} \cap M_{2}$. The sets $G_{1}, G_{2}, M_{1}, M_{2}$ are smooth surfaces in R^{3}.
Theorem 2. If $f \in H_{1}^{\infty}$ then there existe a neighbourhood u of the origin in the parameter space and a neighbourhood V of the origin in the phase space such that for $\mu \in U \cap S_{k}(k=1,2,3)$ the vector field ∇_{μ}^{σ} has exactly k criticel points in v.

Zero eigenvalues. If $\mu \in U \backslash D$, where U is a sufficiently small neighbourhood of the origin, then for any criticel point k the matrix $L(K)$ of the linear part of v_{μ}^{σ} computed at K has no zero eigenvalue. If $\mu \in \mathscr{D}$ there is a critical point K_{1}, for which the matrix $L\left(K_{1}\right)$ has a zero eigenvalue (it has multiplicity 2 only if $\mu \in \alpha^{\sigma}$) and for the second critical point K_{2} the matrix $L\left(K_{2}\right)$ has no zero eigenvalue.

Pure imaginary eigenvalues. Let K be a critical point of $\boldsymbol{\gamma}_{\mu}^{+}$ (∇_{μ}^{-}). The matrix $L(K)$ has pure imaginary eigenvalues if and only if $K=(0,0), \mu \in M_{1} \cap M_{2}^{-}\left(G_{1} \cap G_{2}^{-}\right)$.

Bifurcations for ∇_{μ}^{+}. By $\left[1\right.$, Theorem 6.2.1], for $\mu \in S_{1}$ the only critical point is a saddle. Let P_{0} be the plane through the point $\mu_{0} \in \mathscr{D}^{-}$parallel to the $\left(\mu_{1}, \mu_{3}\right)$-plane. Let $w_{\mu}^{+}=v_{\mu}^{+}$for $\mu \in P_{0}$ and let $Q_{1} \in H^{+}, Q_{2} \in H^{-}$be the end-points of the curve $h=P_{0} \cap x_{1} \cap M_{2} n$ $n\left(D^{-} \cup D\right)$. Each of the vector fields $w_{Q_{1}}^{+}$and $w_{Q_{2}}^{+}$has two critical points: a saddle K_{1} and a saddle node K_{2} ? for which the matrix $L\left(K_{2}\right)$ has zero eigenvalue of the multiplicity 2. There exist neighbourhoods U_{1}, U_{2}, V of Q_{1}, Q_{2} and K_{2}, respectively, such thet the bifurcation diagram for w_{μ}^{+} / v in U_{1} and U_{2} corresponds to the bifurcation diagram of Bogdanov's normal form with positive and negative signature, respectively (see [3, Theorem 2]). For $\mu \in h \cap U_{1}\left(h \cap U_{2}\right)$ two critical points are saddles and there is one critical point K,
for which the matrix $L(K)$ has pure imaginary eigenvalues and the first Ljapunov focus number L_{1} [2] is positive (negative). It is possible to show that there is exactly one point C on h, where L_{l} changes its sign and sign $L_{2}=$ sign N, where L_{2} is the recond Ljapunov focus number (for $\mu=Q$). The number N is generically nonzero. The bifurcation diagram in a neighbourhood of the point Q looks like the one described in [2, p.p. 208, p.p. 243].

Bifurcations for $\boldsymbol{v}_{\boldsymbol{\mu}}^{-}$. For $\mu \in G_{1} \cap \mathcal{D}^{+}$the critical point is a focus. There ere curves $\eta_{1}, \eta_{2} \subset G_{1} \cap D^{+} \cap\left\{\mu_{1} \mu_{2}<0\right\}$, $\eta_{3} \subset$ $C G_{1} \cap D^{+} \cap\left\{\mu \mid \mu_{2}>0\right\}, \bar{\eta}_{i} \backslash \eta_{i}=\{0\}, i=1,2,3$, such that for ony $Q_{0} \in \eta_{1} \cup \eta_{2} \cup \eta_{3}$ there is $I_{1}=0$ and sign $L_{2}=\operatorname{sign} N$. The bifurcations near this point can be described using the results from [2]. For $\mu \in\left[G_{1} \cap \mathscr{D}^{+} \backslash\left(\eta_{1} \cup \eta_{2} \cup \eta_{3}\right)\right] \cup\left[G_{1} \cap \mathscr{D}^{-} \cap G_{2}^{-}\right]$there is $L_{1} \neq 0$. Let \tilde{p}_{0} be the plane through $\mu_{0} \in D^{-}$parallel to the $\left(\mu_{1}, \mu_{3}\right)$-plane. The set $\tilde{P}_{0} \cap G_{1} \cap G_{2}^{-} \cap\left(\mathscr{D}^{-} \cup \mathscr{D}\right)$ consists of two components with endpoints $\tilde{Q}_{1} \in H^{-}, R_{1} \in H^{+}$and $\tilde{Q}_{2} \in H^{+}, R_{2} \in H^{-}$, respectively. The bifura cation diagram in a neighbourhood of \tilde{Q}_{1} and \tilde{Q}_{2} corresponds to the bifurcation diagram of Bogdanov's normal form with positive and negative signature, respectively.

References

[1] Andrejev, A. F.: Singular points of differentiel equations, Minsk 1979 (Russian).
[2] Bautin N. N. and Leontovich E. A.: Methods and examples of qualitative study of dynamical systems in the plane, Nauka, Moscow 1976 (Russian).
[3] Bogdanov R. I.: Versal deformations of a singular point of a rector field in the plane in the case of zero eigenvalues, Proceedings of the I. G. Petrovski Seminar, 2, 1976 (Russian).

