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GENERALIZED SOMMERFELD HALF-PLANE PROBLEMS 

Erhard V. Meister 
Darmstadt, w- Germany 

In NOBLE's book (1958) [7] the classical Sommerfeld half-plane diffraction pro
blems are discussed. A one-dimensional Fouriertransformation with respect to the 
variable x parallel to the screen £ := {(x ,y)€lR : x_:0,y=0} is applied upon 
the scattered wave-function * s c ( x , y ) being a solution to the Helmholtz equation. 
In the cases of pure Dirichlet and Neumann conditions, respectively, the corres
ponding Fouriertransforms may be written for yJO as 

* s c , D ( x ' y ) - - - J ^ - J + t x ) e " | y | Y and (1) 

*s c ,N(*.y) • ^Q+ (x)e"lylY (2) 

with the unilateral Fouriertransforms of the jumps [3$cr/3y]_ and [ $ c J n across 
^ , 5C O 5C U 

the screen 6 , respectively. Introducing additionally the unknown left unilateral 
Fouriertransforms EJx) = $_.(x,0) and VJx) = 3/9y l(x,0) the following two 
scalar Wiener-Hopf functional equations hold for - k2cos e < Im x < k2 in case 
of an incident plane wave exp[ik(xcos e + ysin ©)]: 

E.(x) + ^ " 1 - 3 + ( A ) = - [ i^(x+kcos o)]"1 (3) 

VJx) + \ y . Q+(x) = ksin 0.[/2^(x+kcos e)]"1 (4) 

Y := A -k with branch cuts extending from k -* k-̂  + ik2 to i« and -k to 
- i« and Re y _: 0 in the strip |Im x| < k2 .By means of the classical scalar 
Wiener-Hopf technique the eqs. (3) and (4) are solved for f:_.(x), J+(X) and 
V.(x), Q+(x), respectively. 

We generalize now to the mixed Sommerfeld half-plane problem where Dirichlet data 
are prescribed on the upper face y = +0 and Neumann data on the lower face 
y = -0 of the screen rt. Now the Fouriertransformation leads to the 2x2-Wiener-
Hopf functional system 

Y-E_(X) + VJx) + *+(x,+0) = iY.[^7(x+kcos e)]"1 (5a) 

Y-E.(X) - VJx) + Y - $ + ( X , - 0 ) - ksin e[/27(x+kcos G) ]" 1 (5b) 

with the right unilateral Fouriertransforms of the unknown values 9/~y*(x,y)| 
and *(x,-0) for x>0 . After introducing the lower and upper complex half-plane 
holomorphic function-vectors 
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//x=l? É ( x ) \ . . /YT+F.?(x,-o) \ 
*.(*> : af " I- *+U) : - - i í ! 

\v_(x) / /x -T / U;(x,+0)//xTk / 
(6) 

we arrive at the vectorial Wiener-Hopf equation 

/x+T • 1 
*.(») : - _._J- *+ (» ) • r(x) <7> 

-1 • /F 
with the r(x) containing the transformed boundary data. The 2x2-matrix has been 

factorlzed into K J x H K ^ x ) ] " 1 exp l ici t ly by A. D. RAWLINS (1980) [10] and 

the author ([1981]) [6 ] . The matrix elements are given by 

K1X(X) = i/nr.[/ze+ i/5H?r1/2 (8a) 

K12(X) * 1-[/2F + i/x-kT1 /2 (8b) 

K21(X) « -i-[/2lc + 1/n? ] 1 / 2 (8c) 

K22(X) - 1-i/a? + i / j -n^ /^r -k 1 (8d) 

being holomorphic for Im x < k2 and 

K (̂X) = ^[^kVlv'x-l?]1/2 + [/2l?-i/xHn1/2} (9a) 

K{2(X) " \{{tt-\A3l]VZ - [/^+1^]1/2}//x-T? (9b) 

*21(x) - Jc[^e-i /nn1 / 2 - [ / a v i / r a i 1 / 2 } / ^ (9c) 

K22(X) « ^[/ZJ7+i/T3?]1/2 + [/^-i/x^]1/2}//x+l? (9d) 

being holomorphic for Im x > -k2. 

After multiplication of eq. (7) by [ K j x ) ] " 1 and spl i t t ing f (x) -- [K.(x)]"1r(x) 

addltlvely Into s+(x) + s_(x) the unknown vectors may be represented as 

i ( x ) - Mx)s±(x) (10) 

from which an explicit formula for *(x,y) may be derived. Generalizations to 
different impedance boundary conditions on the two faces where treated e. g. by 
A. HURO (1976) [4], A. 0. RAWLINS (1975) [ 8 V 

Here we generalize the Sommerfeld problems to the cases of two parallel seml-
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Infinite screens at a distance 2a and to a periodic system with gap-width a . 
The classical cases with pure boundary conditions have been treated before, e. g. 
by A. E. HEINS in (1948) [2] and (1946/50) [1] and the author (1970) [5] but 
those with mixed Dirichlet-Neumann conditions seem to be new. Applying the 
Fouriertransformation leads to three regions, viz. y>a, |y|<a, y<-a for *(x,y). 
Now four unknown unilateral right and left Fouriertransforms arise corresponding 
to the four half-Hnes y « ±a, x $ 0 : EAa(x), v\a(x), being holomorphlc 1n 
lower x-half-planes, and *+(x,±(a-o)), a/3y*+(x,±(a+o)), being holomorphic in 
upper X-half-planes, respectively. After suitable combinations of the resulting 
equations 1n the x-domain one arrives at two systems of 2x2-W1ener-Hopf functional 
systems 

*_(*) / W 2 a ^ . l i e ^ M U ) * ( + )U) 
*i\ or - or ( U ) 

*_(*) ^(Ue-2^) , ( i r e - 2 ' ^ / f+(x) Hx) 

with known transforms s (x) and $* ' (x) . An explicit factorization of these 
2x2-matr1ces K^(x;a) Is not yet known! 

By a similar procedure one can reduce the mixed boundary value problem for 
*er(x»y) solving (A+k )*c„ » 0 outside the stack of plates u it where 
,sc 2 s c n=--«» n 

/ f : • {(x,y)eIR : x * 0 , y=n.a} with the underlying boundary conditions 
*sc(x,na+o) .-exp[ik(xcos e + nasin e)] and a/dy ^ (x.na-o) =-1ksin e* 
•exp[1k(xcose+ nasin e)] for x > 0, neZ to a Wiener-Hopf-(2x2)-funct1onal 
system making use of the quasi-periodic boundary data with respect to y. Intro
ducing $_(x) and $+(x) similar to eq. (6) we obtain 

i.(x) + K(x;a,e)$+(x) » [M^a.e)]"1."? )̂ (12) 

with the following two function matrices having elements 

Kn(x;a,e) :» I M e" 1 a k s 1 n e [ l - 1 ' s 1 n <a k s 1 n 9 ) ] (13a) 
11 c X+K cosh(ay)-cos(aks1no) 

K12(x;a,e) : . \ [coth |(Y-1ks1ne) + coth \ (yMkslne)] (13b) 

K21(x;a,e) :-- \ [coth fKy-lkslne) + coth |(Y+ Iksine)] (13c) 

K22(x;a.e) :• i J S [1+ u%in <a k s i r u n ] (13d) 

" c A"K cosh (aY)-cos(aks1ne) 
and 
Mu(x;a,e) : » i - e

1 a k s 1 n e.cosh(aY) (14a) 
M12(x;a,e) : -JEgj*™" e.sinh(aY) (14b) 
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M21(x;a,e) : = e
i a k s i n 8 .sinh(aY) (14c) 

M22(x;a,e) : = ^ [ i - e
i a k s i n 0 . C osh(a Y ) ] . (14d) 

An exp l ic i t factorization of K(x;a,e) is not known up to now. 

Similar systems of Wiener-Hopf functional equations in the Fourier transform 

plane may be derived for mixed impedance boundary conditions on the d i f ferent 

faces of the plates of the inf in i te periodic system or for semi-infinite circular 

tubes (cf . e. g. A. D. RAWLINS (1978)[9]1). A detailed version of the material 

presented here may be found in the author's lectures held at the Stefan Banach 

International Mathematical Center, Warsaw, Spring term 1981 [ 6 ] , 
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