
EQUADIFF 5

František Neuman
Linear differential equations - global theory

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference
on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981.
BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte zur Mathematik,
Bd. 47. pp. 272--275.

Persistent URL: http://dml.cz/dmlcz/702304

Terms of use:
© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702304
http://project.dml.cz


LINEAR DIFFERENTIAL EQUATIOITS - GLOBAL THEORY 

F. Ueurran 

3rnof Chechoslovakia 

I. Introduction 

Investigations of linear differential equations started in the 

last century in works of E.E. Kummer, E. Laguerre, F. Brioschi, G. 

H. Kalphen, P. Stackel, S. Lie, E.J. V l i lczynski and others. As poi- | 

nted out by G. Birkhoff [l] f their results were of local character, 

and till t>e middle of this century there were only isolated resul

ts of a global nature. 

In the last 30 years 0. Boruvka [2) f [3] deeply developed the 

t,. eory of global properties of linear differential equations of the 

second order. In this paper we give some basic facts from a global 

approach *:o linear difrr?rer.tial equations of the n-th order. 

II. Global transforr.-ations 

Let 

* - y^'+Pn-l^'^11"1'4 ••• +P 0
( x' y * ° o n I C R f a n d 

Q : z(n)+qn.1(t)z
(n"'1\ ... +qQ(t)z • 0 on Jc R 

be two linear differential equations of the n-th order, n± 2f with 

real continuous coefficients. We say that P is globally transfor

mable into Qf if there exist functions f and hf f:J-»> Pf fc C
n(J), 

f (t) i 0 on J, h(J> -= I, h« Cn(J), dh(t)/dt + 0 on J, such that 

(1> z(t) » f(t).y(h(t)> 

is a solution of Q whenever y is a solution of P. 

For n-tuples v and z of linearly independent solutions of P 

and Qf resp., the condition (l> can be replaced by 

(2> z(t^ * A.f(t).;£(r(t» 

foi% a suitable real constant regular matrix A., In such a situation 

we shall briefly write 

«CP « Q 

to express that P is globally transformable into Q by a transfor-
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mation C6 (consisting of A, f, and h in tie sense of (2>>. 

Furthermore, let Q be globally transformable into an. equation 

B by fi> , i.e./3Q = R. Then we define (/3*co) P = /3(oc(?)> = R. 

The relation of "global transformability" is an equivalence rela

tion and it divides the set of all linear differential equations 

into classes of globally equivalent equations. 

All linear differential equations as objects and global tran

sformations as morphisms with the composition " K " fovrr, e special 

category, an Ehresmann groupoid (i.e. a category every rorphism 

of which has an inverse). 

All transformations that transforr, an equation, say P, into 

itself form a group, so-called a stationary group S(P) of ?. A ty

pical result obtained by combining methods of the theory of cate

gories and functional equations is the following 

Theorem 1. Stationary groups of any two globally equivalent 

linear differential equations are conjugate. The groups are not 

trivial if and only if a linear differential equation with perio

dic coefficients belongs to the same equivalence class. 

For further details see [6] , C8] . 

Ill, Zeros of solutions 

The following theorem, first introduced in [5], enables us to 

see into essence of possible distributions of zeros of solutions 

often without necessity of complicated calculations and analytic 

constructions. 

Theorem 2. Let P be a linear differential equation and % be a 

curve inft-dimensional vector space formed by n linearly indepen

dent solutions of P. To each solution of P there exists a hyper-

plane going through the origin of the space such that zeros of the 

solution are parameters of intersections of the hyperplane with 

the curve (including multiplicities). 

The theorem remains true if euclidean space is taken, and in

stead of 2L i^3 central projection onto the unit sphere is conside

red. Then powerful topological tools can be applied to solve 
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some open -problems and to construct linear differential equations 
with prescribed properties of zeros of their solutions, [5 J, [73-

IV, Canonical forms 

The well-known Laguerre-Forsyth canonical form is not global 

in the sense that not every linear differential equation even of 

the third order can be globally transformed into an equation of 

that form (see [l^P- It can be shown that the so-called Halphen 

form is not global either. Neither of these forms can be made glo

bal by restricting Ourselves to the class of linear differential 

equations where some smoothness (or even analyticity) of coeffici

ents is required. Using our general approach we have several ways 

how to suggest global canonical forms. One of the possibilities is 

described in [5J: 

Consider the central projection v on the unit sphere of an 

n-tuple % of linearly independent solutions of an equation P. Then 

introduce a lenght parametrization into v to get a curve u. Linear 

differential equations with these u as n-tuples of solutions are 

global canonical equations. In this way we get 

Theorem 3. u" + u -= 0 on some Ic IR, 

U"«_ S'u" + (1 + a
2) u' - | u » 0 on some ic |R, a€ C ^ I ) , a>0, a a 

are global canonical forms. 

For n-^4 and more details see [5.1. 

There is also another way how to construct global canonical 

forms. The following theorem introduces one of the possible forms 

obtained by the method, [9]# 

Theorem 4. 

u(n) + u(n-2^ + 8n_3cx)u.
(n"3) + ... + sQ(x)u = 0 on Ic IR, 

is a global canonical form. 

V. Effective conditions for global equivalence 

Combining our approach with some results of G.H. Halphen and 

with Cartan s method of moving frame we get effective conditions 

for global equivalence of two given linear differential equations 

of the n-th order, n i3, with the exception of so-called iterative 

equations. The problem for the iterative equations can be reduced 

to linear differential equations of the aacond order. Conditions 

274 



for global equivalence of these equations are given in [2]. 

By effectivity we mean that the conditions are expressible in 

terms of coefficients of given equations. If the equations are glo

bally equivalent, then the corresponding global transformation can 

also be constructed effectively from their coefficients. 
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