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MULTIPLE PICARD'S METHOD FOR THE STIFF 

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 

Nguyen Thanh Bang 
Hanoi, Yfarsaw/ SR Vietnam, Poland 

Abstract.A combination of Picard's method developed by the 

author in Refs.L; J and a time-decomposition technique is proposed 

to solve the stiff nonlinear two-point boundary value problems in 

case where the integration interval is large. 

Some constructive sufficient conditions for convergence of the 

combination method are presented. 
1•Introduction.lt is well known that a broad class of optimal 

control problemsfthe investigation of which,due to Pontryagin's 

maximum principle,reduces to a nonlinear two-point boundary value 

problem of the form 

for ieCt.tJ,subject to the boundary conditions 

where X and ̂  are n-dimensional functions of time t,Aft),-Bft) andQ$ 

are known (jixttj-dimensional matrices,all elements of which are as

sumed to be continuous on the integration interval "fc^i£&fyffoWr.) 
and a(*/k-t) are assumed-to be continuous in all arguments in some 

closed domain of the (-X/f)̂ )-space ,M and N are known (nxi^-dimensio-

nal constant matrices,^ is the initial time,tr is the fixed termi

nal time,dp and(L are given n-dimensional vectors. 

Here,as elsewhere,the prime denotes the matrix transposition* 

The problem is to find the functions 

x=*(*), *-» »Kt), % 4 * * \ (*>*) 
which solve Eqs.(d,d) subject to the boundary conditions fl._2^. 

Eqs.(i.:i) are known often to have a stiff structure,i.e.some of 

the particular solutions increase and others descrease rapidly as 

the independent variable changes.The exponential growth of some 

components of a solution might lead to numerical difficulties,es

pecially when the integration interval is large.Because of this 

exponential growth,overflow can occur in computer.Even when over

flow does not occur,in the last case a lot of known approximation 

methodsL Joften fail to offer a satisfactory solution. because 

of numerical errors. 

To overcome these difficulties and to provide the convergence 
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of the iterative proce33,a multipoint approach to the two-point 

boundary value problems was proposed in Ref.[7j and then develo

ped by many authors u*) ^ \ 
Multiple methods proposed in RefsJR'* J re quire to determine 

all the boundary values at once,so that they must take the inver

se of T»fMT)--Oxn(in.̂ )--dimensional matrix,where m is a number of subin-

terval3.The technique proposed in Ref.L**] needs only to take the 

inverse of ?i(m-4*n(»iH)-dimensional matrix. 

In this paper,the multiple Picard's approach to the two-point 

boundary value problem is developed.The present technique requi

res to take only the inverse of (nxflr-dimensional matrix,so that 

one is preferable,from computational point view,to the others 

known from literature Ls J• 

2.Multiple Picard's Method.Letjxttiand %jdenote j-th Picard's 
iterate for the function jtffc? and 4{t)which solve Eqs.(>l.l) subject to 

0.&) .If a number T*^-^ is large,then,following Refs.L J,we divide 

the overall integration interval ij-^^t into m subintervals by 

m-1 time points t»i^» ••• ,%,-i which are intermediate between the 

initial time IQ and the final time % and such that the numbers ?£= 

^5r\4,i=l ,2,.. .,miL;=t )are sufficiently small.These subintervals 

are numbered as follows:subinterval i,^A^i^i^,i=1 ,2,... ,m. 

With the above, conventions,let 2$)and ^.^denote the portions 
of the functions ̂ 6/and ̂ |{t) pertaining to the i-th subinterval. 

Then,it̂  is dear from the results obtained in RefXJthat the 

functions ttjftr)and \ft) must satisfy the^following equations 

for teEk jAliSuboect to the. boundary conditions 
; -*«•)««-., Mfeft„)]+NC\,M=^ • (2.2) 

In addition,at the interface between a subinterval and the 

next,the following continuity conditions must be satisfied; 

The functions **x(*) and ^^(Oon the right-hand side of Eqs>f(2,4.) 

are assumed,as a rule,to be already known and the numbers oj,:j-=0;1, 
2,...are defined as follows 

$-ro,$«d,V .J>4 . . (2.4; 
Let Hft-f)be the (j-nx*n)-dimensional transition matrix for the 

Eqs.(2.4)3uboect to SsOand we partition this matrix into four(flxn)-

dimensional matrices as follows 
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Hft^)=LH-ifr;5) Httft^ 
Now, let ^ denotes the missing initial condition f or **<Ĵt) at 

t«i^ >we have 
Subinterval 1 ,%^'i 4%: 

M l * LWA) Ht^mJ+lf ftj (z'5) 

Subinterval i,"tj-.i^^*it .i-=2.3 m; 

where the functions fy(t) and \ft) are the solution to Eqs.(£,4-)for 

+eDft-iil»subOect t 0 t n e i n i t i a l conditions 

and the functions Jjfr/Jand^fi) , i = 2 , 3 , . . .,m,are the solution to 
Eqs .^ . l ) for"feP^j^nsubject to the i n i t i a l conditions 

^ft^-tyi^O-rO. . &.8X 
Tl\e problem now consists in determining the vectors *!fy , T^ , fa 

..., tf-^and /V-̂  under which the terminal condition (l*2) and the 
continuity conditions(l«3) are satisfied. 

It turns out that the following result holds. 

THEOREM 1 .If the matricfs J^^andiHr^i^are nonsingular,then 

1/n-dimensional vector x^ representing the value of the func

tion Jxft) of j-th Picard's iterate at the intermediate time i*s\ 
is uniquely defined by algebraic equation 

where ftyfi)=PLfi)+<^&hJWH&iA), (ao) 

gknfa MHH M)+NHAA^^i)--MiVU,i^^^) . . 
2/,The remainning an(in-.i) boundary conditions ̂ t «^, ^ / ^ W ^ t ^ 

and vWjcan be then evaluated by,formulae 

and by the following recurrent relatione 

3.On the Convergence of the Multiple Picard's Method. 

THEOREM 2.Assume 

1/The matrices l\ft(kjfyand tfatt)defined by^.j(j)are noneingular. 
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2/The function U*>^[fcfirffafiK ±a continuous with respect to a l l 
arguments in certain closed domain D of the (2,4r)-8pace determined 
by the expression 

D-= {(*,+)? \z\±r ,%&**•%} (3*4) 
where gBfr^Yand the norm of a matrix z i s denoted by Jz| . 

3/In the domain D function hfc/fc) i s Lipschitzian with respect 
to 2 with the Lipschitz's constant ly • 

4/The numbers ty and 0^ connected with f^|and \(L\ by formulae 

q=4+ffaG+»$nM+ffcr-\4f\ 
satisfy the condition ' 

where f = ^ M & h ^-WflftJl ̂  l<*M)L 

5/ o<t?<r^(>Vf>^r-/^ 

where t«*g{l* Tfc , ̂ «=Vk . t , *>= ̂ ty^-4jpf*JC^m^fMl^lNl), 

Then,the multiple Picard's method presented above for solving 
the problem (M)and (4*2) is convergent. 
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