EQUADIFF 5

Marks Švec
Integral and asymptotic equivalence of two systems of differential equations

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte ur Mathematik, Bd. 47. pp. 329--338.

Persistent URL: http://dml.cz/dmlcz/702316

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

INTEGRAL AHD ASY:RPPOTIC EQUIVALEICE OF MMO SYSTEES
 OF DIFFEREETIAL EQUATIONS
 Marko Švec
 Bratislava,Czechoslovakia

The problem of approximation of solutions of a given differential equation with aid of solutions of another differential equation is not a new one;it is very important in the theory of differential equations as well as in the applications.It has already been investigated in great detail.These investigations gave birth to method of variation of constants, method of asymptotic integration,etc.The mentioned problem is also closely related to the notion of asymptotic equivalence and integral equivalence of two systems of differential equations.The problem of asymptotic equivalence was investigated by several authors,e.g. H.Weyl,N.Levinson,A.
 Talpalaru, T.G.Hallam, T.Yoshizava, J.Kato, etc.

In this lecture we shall deal mainly with integral equivalence and with the relation between integral and asymptotic equivalence. Several of the results concerning integral equivalence presented here were obtained in cooperation with A.Haščák [I].

First,let's define basic notions required in the following:
Let be given two systems of differential equations

$$
\text { (a) } \quad x^{\prime}=F(t, x), \quad \text { (b) } y^{\prime}=G(t, y)
$$

where x, y, F, G are n-vectors, $t \geqq 0 . S u p p o s e$ that F and G are such that the existence of solutions of (a) and (b) on the interval $\left[t_{0}, \infty\right), t_{0} \geqq 0$, is guaranted.Let futher $\psi(t)$ be a positive continuous function on $\left[t_{0}, \infty\right)$.

Definition_ We shall say that a vector function $z(t), t \geqq t_{0}$, is $\psi-$ bounded,if there exists a constant $M>0$ such that

$$
\begin{equation*}
\left|\mathcal{\psi}^{-1}(t) z(t)\right| \leqq M, t \geqq t_{0} \tag{1}
\end{equation*}
$$

where 1.I denotes a suitable vector (matrix) norm.
Remark 1. Under a solution of a differential equation we shall understand a solution existing on some infinite interval $\left[t_{0}, \infty\right)$. The integral will be the Lebesgue integral.

Definition 2. We shall say that the systems (a) and (b) are ψ - asymptotically equivalent if for every solution $x(t)$ of (a) there is a solution $y(t)$ of (b) such that

$$
\begin{equation*}
\left|f^{-1}(t)[x(t)-y(t)]\right| \rightarrow 0 \text { as } t \rightarrow \infty \tag{2}
\end{equation*}
$$

and conversely, for each solution $y(t)$ of (b) there is a solution
$x(t)$ of (a) such that (2) holds.
Definition 3. We shall say that systems (a) and (b) are $i+, p$)integrally equivalent, $p>0$, if to every solution $x(t)$ of (a) there is a solution $y(t)$ of (b) such that
(3)

$$
y^{-1}(t)\left[x(t)-y(t) \quad i \quad L_{p}\left(\left\lfloor t_{0}, \infty\right)\right)\right.
$$

and conversely, to each solution $y(t)$ of (b) there is a solution $x(t)$ of (a) such that (3) holds.

Here $\left.L_{p}\left(1 t_{0}, *\right)\right)$ denotes the space of all vector functions $z(t)$ mesurable and defined a.e. on $\left[t_{0}\right.$,) such that $|z(t)|^{p}$ is Lebesgue integrable on $\left[t_{0}, c\right)$.

We start our considerations with special systems,i.e.
(4)

$$
\begin{aligned}
& x^{\prime}=A(t) x+f(t), \\
& y^{\circ}=A(t) y .
\end{aligned}
$$

From the relation that $x(t)=y(t)+x_{0}(t)$, where $x_{0}(t)$ is a solution of (4) we have immediately

Theorem 1. The systems (4) and (5) are (ψ, p)-integrally equivalent iff there is a solution $x_{0}(t)$ of (4) such that $\gamma^{-1}(t) x_{0}(t)$ belongs to $L_{p}\left(\left[t_{0}, \infty\right)\right)$.

We see that in this case the problem of ($\not \subset, p$)-integral equivalence turns into the problem of existence of solution $x_{0}(t)$ of (4) such that $\left.\mathcal{\gamma}^{-1}(t) x_{0}(t) \in L_{p}\left(i t_{0}, *\right)\right)$.

We will discuss this problem in the case that $A(t)=A$ is a constant matrix.Suppose that A has the Jorden canonical form.Let be $\mu_{1}<\mu_{2}<\ldots<\mu_{s}=\lambda$ distinct real parts of eigenvalues $\lambda_{i}(A)$ of A and let be m_{i} the maximum order of those blocks in A which correspond to eigenvalues with real part μ_{i}. Denote $m_{s}=m . L e t$ be a real number. Then let $\ell=m_{j}$ if, $\mu_{j}=\mu$ and $\ell=1$ if no μ_{j} equals μ.Suppose that $A=\operatorname{diag}\left(A_{1}, A_{2}\right)$, where A_{1} and A_{2} are square matrices such that $\operatorname{Re} \lambda_{i}\left(A_{1}\right)<\mu \quad, \operatorname{Re} \lambda_{i}\left(A_{2}\right) \geqq \mu$ for all i.Then $Y(t)=$ diag ($\exp t A_{1}, \exp t A_{2}$) is the fundamental matrix of (5) with $Y(0)=I$ (identity matrix) and

$$
Y_{1}(t)=\operatorname{diag}\left(\exp t A_{1}, 0\right), Y_{2}(t)=\operatorname{diag}\left(0, \exp t A_{2}\right)
$$

and such that
(6) $Y(t)=Y_{1}(t)+Y_{2}(t), Y(t) Y^{-1}(s)=Y_{1}(t) Y_{1}^{-1}(s)+Y_{2}(t) Y_{2}^{-1}(s)$,

$$
Y_{i}(t) Y_{i}^{-1}(s)=Y(t-s), i=1,2
$$

and there exist numbers $c_{1}>0, c_{2}>0$ such that
(7)

$$
\begin{aligned}
& \left|Y_{1}(t)\right| \equiv c_{1} \exp (\mu-\delta) \quad Y_{\mathrm{m}}(t), \\
& \left|Y_{2}^{-1}(t)\right|=\left|Y_{2}(-t)\right| \leqq c_{2} \exp \left(-\mu_{t}\right) \quad Y_{\ell}(t), t \geqq 0
\end{aligned}
$$

where $-\delta=\max \left[\operatorname{Re} \lambda_{i}\left(A_{1}\right)-\mu\right]<0, m^{k}=m_{i}$ if $\mu_{i}-\mu=-\delta$ and

$$
X_{k}(t)= \begin{cases}t^{k-1} & , t \leqq 1 \\ 1 & , 0 \leqq t \leqq 1\end{cases}
$$

We are now aible to represent the solution $x(t)$ of (4) in the form
(8) $x(t)=Y_{1}(t) x_{0}+\int_{0}^{t} Y_{1}(t-s) f(s) d s-\int_{t}^{\infty} Y_{2}(t-s) f(s) d s$ using the formula of variation of constants, the assumption that $f(t)$ is such that $\left|\int_{0}^{\infty} Y_{2}^{-1}(s) f(s) d s\right|<\infty$ and putting $X_{0}=-\int_{0} Y_{2}(t-s) f(s) d s$. Taking $\mu=0$ we have the majorants of the three terms on the right in (8):
$\left|Y_{1}(t) x_{0}\right| \stackrel{\triangleq}{=}\left|x_{0}\right| e^{-\delta t},\left|\int_{0}^{t} Y_{1}(t-s) f(s) d s\right| \leqq c_{1} \int_{0}^{t} e^{-\delta(t-s)}|f(s)| d s$,
$\left|\int_{t}^{\infty} Y_{2}(t-s) f(s) d s\right| \leqq c_{2} \int_{t}^{0} X_{l}(t-s)|f(s)| d s$.
Thus, we have to guarantee that

The following lemmas will be useful (see [1]):
Lemma l. Let σ be a positive constant and let be $g(t) \geqq 0$, $g(t) \in L_{l}([0, \infty))$.Then $\int_{0}^{t} e^{-r(t-s)} g(s) d s \in L_{p}([0, \infty))$ for all $p \geqq 1$.
Lemma 2. Let be $\int_{0}^{\infty} s|f(s)| d s<\infty$. Then $\int_{t}^{\infty}|f(s)| d s \in L_{p}([0, \infty))$ for all $\mathrm{p}: 1$.

Application of these lemmas on (8) gives
Theorem 2, Let A be a constant square matrix.Let $f(t)$ be continuous on $[0, \infty)$ and let

Then systems (4) and (5) are ($1, p$)-integrally equivalent, $p \geqq 1$.
We note that in the paper [2], Theorem 2 , we had the condition

$$
\begin{equation*}
\int_{0}^{\infty} t^{\ell-1}|f(t)| d t<\infty \tag{10}
\end{equation*}
$$

as suffictent for the asymptotic equivalence of (4) and (5).It seems that the integral equivalence implies the asymptotic equivalence.We shall see later that this is not true in general.

The motivation which we explained to get Theorem 2 gives us some ideas how to proceed by establishing the (\uparrow, p)-integral equivalence between

$$
\begin{align*}
& x^{\prime}=A(t) x+f(t, x), \tag{11}\\
& y^{\prime}=A(t) y . \tag{12}
\end{align*}
$$

There are three things to be used: formula of variation of constants, decomposition of fundamental matrix $Y(t)$ of (l2) into two matrices $Y_{1}(t)$ and $Y_{2}(t)$ exhibiting similar properties as (6) and (7), estimation and growth of $f(t, x)$.The last will be facilitated if we know the apriori estimation of the solutions of (11) and (12).

Using supplementary projections P_{1} and P_{2} we get that,if $y(t)$ is a solution of (l2),for the solution $x(t)$ of (ll) the integral equation

$$
\begin{equation*}
x(t)=y(t)+\int_{t_{0}}^{t} Y(t) P_{1} Y^{-1}(s) f(s, x(s)) d s-\int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) f(s, X(s)) d s \tag{13}
\end{equation*}
$$ holds.To prove that $\psi^{-1}(t)[x(t)-y(t)] \in I_{p}\left(\left[t_{0}, \infty\right)\right)$, it suffices to prove that the second and third terms on the right in (13) multiplied by $\tau^{-1}(t)$ belong to $L_{p}\left(\left[t_{0}, \infty\right)\right)$. To this aim serve Lemma 2 and

Lemma 3. ([1]) Let $\mu(t)$ and $\varphi(t)$ be positive functions for $t \geqq 0$, $Y(t)$ be a nonsingular matrix and P a projection.Let further be

$$
\begin{equation*}
\int_{0}^{t}\left|r^{-1}(t) Y(t) P Y^{-1}(s) \varphi(s)\right|^{p} d s \quad K \text { for } t \geqq 0, p>0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \exp \left\{-K^{-p} \int_{0}^{t} \varphi^{p}(s) 千^{-p}(s) d s\right\} d t<\infty \tag{15}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim \left|\gamma^{-1}(t) Y(t) P\right|=0 \text { as } t \rightarrow \infty \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sim^{-1}(t) Y(t) P\right| \in I_{p}([0, \infty)) \tag{17}
\end{equation*}
$$

Using Schauder's fixed-point theorem,Lemma 2 and Lemma 3 we can prove

Theorem 3.([1]) Let $Y(t)$ be a fundamental matrix of (12) and let $\psi(t)$ and $\varphi(t)$ be positive continuous functions for $t \geqslant 0$. Suppose that :
a) there exist supplementary projections P_{1}, P_{2} and constants $K>0$ and $2 \leqq p<\infty$ such that

$$
\begin{aligned}
& \int_{0}^{t}\left|\mathcal{F}^{-1}(t) Y(t) P_{1} Y^{-1}(s) \varphi(s)\right|^{p} d s+\int_{t}^{\infty}\left|r^{-1}(t) Y(t) P_{2} Y^{-1}(s) \varphi(s)\right|^{p} d s \\
& \geqq K^{p} \text { for } t \geq 0 ;
\end{aligned}
$$

b) there exists $g:[0, \infty) x[0, \infty) \rightarrow[0, \infty)$ such that
(i) $g(t, u)$ is nondecreasing in u for each fixed $t \in[0, \infty)$ and in-
tegrable on compact subsets of $[0, \infty)$ for fixed $u \in[0, \infty)$;
(ii) $\int_{0}^{\infty} s g^{p^{\prime}}(s, c) \mathrm{ds}<\infty$ for any constant $c \geq 0$, where $\frac{1}{p}+\frac{1}{p}=1 ;$ (iii) for each $x \in R^{n},|f(t, x)| \leqq \varphi(t) g\left(t, \psi^{-1}(t)|x|\right)$ a.e. on $[0, \infty)$
c) $\int_{0}^{\infty} \exp \left\{-K^{-p} \int_{0}^{t} \varphi^{p}(s) r^{-p}(s) \mathrm{d} s\right\} d t<\infty$;
d) $\int_{0}^{\infty}\left|P_{1} Y^{-1}(s) \varphi(s) g(s, c)\right| d s<\infty \quad, \quad c \geqslant 0$.

Then between the set of ψ - bounded solutions of (ll) and \uparrow bounded solutions of (12) there is ψ - asymptotic equivalence and also (ψ, p)- integral equivalence.

In this theorem the assumptions are concentrated mainly to the function $g(t, u)$. It is possible to change the assumptions in such a way that we will assume more about the expression on the left side of the inequality in a) and less about the function $g(t, u)$. It holds

Theorem 4. Assume that the following hypotheses from the Theorem 3 are satisfied: a), b) (i), (iii). Instead of b) (ii) let be satisfied only : $\left.\iint_{G^{p}}^{(} t, c\right) d t<\infty \quad 0<c<\infty$; instead of c) let be satisfied: $\int_{0}^{\infty} \varphi^{p}(t) \boldsymbol{\gamma}^{-p}(t) d t=\infty$. Finally, let the left side of the inequality a) belong to $L_{1}([0, \infty)$). Then the conclusions of the Theorem 3 are still valid.

The proof of Theorem 4 can be made in the same manuer as that of Theorem 3.The difference is only at the end by proving that $\boldsymbol{q}^{-1}(t)[x(t)-y(t)] \in L_{p}([0, \infty))$. In fact, we get in both cases that

$$
\begin{aligned}
\mathcal{F}^{-1}(t)[x(t)-y(t)] & =\int_{t_{0}}^{t} \mathcal{T}^{-1}(t) Y(t) P_{1} Y^{-1}(s) f(s, x(s)) d s- \\
& -\int_{t}^{\infty} f^{-1}(t) Y(t) P_{2} Y^{-1}(s) f(s, x(s)) d s
\end{aligned}
$$

Using the H8lder's inequality we get

$$
\begin{aligned}
& \mid f^{-1}(t) {[x(t)-y(t)] \mid \leqq } \\
&\left(\int_{0}^{t}\left|\tau^{-1}(t) Y(t) P_{1} Y^{-1}(s) \varphi(s)\right|^{p} d s\right)^{1 / p}\left(\int_{0}^{t} g^{p}(s, 2 \rho) d s\right)^{1 / p^{\prime}}+ \\
& \quad+\left(\int_{t}^{\infty}\left|f^{-1}(t) Y(t) P_{2} Y^{-1}(s) \varphi(s)\right|^{p} d s\right)^{1 / p}\left(\int_{t}^{\infty} g^{p}(s, 2 p) d s\right)^{1 / p^{\prime}}
\end{aligned}
$$

where 2 p is the of - bound of both solutions $x(t)$ and $y(t)$.Now, we can proceed either as it was done in the proof of Theorem 3 or

$$
\begin{aligned}
& \text { we can get } \\
& \left|\gamma^{-1}(t)[x(t)-y(t)]\right| \equiv\left\{\left(\int_{0}^{t}\left|\psi^{-1}(t) Y(t) P_{1} Y^{-1}(s) \varphi(s)\right|^{p} d s\right)^{1 / p}+\right. \\
& \left.\quad\left(\int_{t}^{\infty}\left|\psi^{-1}(t) Y(t) P_{2} Y^{-1}(s) \varphi(s)\right|^{p} d s\right)^{1 / p}\right\}\left(\int_{0}^{\infty} g^{p}(s, 2 p) d s\right)^{1 / p^{\prime}}
\end{aligned}
$$

which complets the proof of Theorem 4.
We note that the hypotheses of Theorem 4 were used by T.G.Hallam ([3] .He proved that to each solution $x(t)$ of (11) such that
$\psi^{-1}(t) x(t) \in L_{p}\left(\left[t_{0}, \infty\right)\right) \cap L_{\infty}\left(\left[t_{0}, \infty\right)\right)$ there exists such a solution $y(t)$ of (12) that $\boldsymbol{f}^{-1}(t) y(t) \in I_{p}\left(\left[t_{0}, \infty\right)\right) \cap I_{\infty}\left(\left[t_{0}, \infty\right)\right)$ and conversely.

Remark 2e If we substitute in Theorem 3 the condition b) (ii) by the condition : $\left(\int_{g^{p}}^{0}(s, c) d s\right)^{1 / p} \in I_{p}([0, \infty))$ and for p we assume that $l<p<t_{\infty}^{t}$, then the conclusions of Theorem 3 hold.

To complete the problem investigated in Theorem 3 it is necessary to investigate the cases when $p=1\left(p^{\prime}=\infty\right)$ and $p^{\prime}=1(p=\infty)$.We get the following corollaries:

Corollary 3.1. ([1]) Let $p=1$ ($p^{\prime}=\infty$). Let the assumptions of Theoren 3 be satisfied except b) (ii), which let be substituted by the condition

$$
\lim _{i \rightarrow \infty} \boldsymbol{J}_{c}(t)=0 \text { for each } c \geqq 0 \text { and } \boldsymbol{f}_{c}(t) \in L_{1}([0, \infty))
$$

where $\gamma_{c}(t)=\sup _{s \leqslant t} g(s, c)$. Then the conclusions of Theorem 3 still
hold.
Corollary 3.2. ([1]) Let $p=\infty \quad\left(p^{\prime}=1\right)$ and let the assumption a) of Theorem 3 be replaced by

$$
\sup _{0 \leq s \leq t} \int_{0} \varphi^{-1}(t) Y(t) P_{1} Y^{-1}(s) \varphi(s)\left|+\sup _{t<s<\infty} 1 \tau^{-1}(t) Y(t) P_{2} Y^{-1}(s) \varphi(s)\right| \leq K
$$

and let

$$
\left|t^{-1}(t) Y(t) P_{1}\right| \in I_{V}([0, \infty)), 0<v<\infty
$$

and let the other assumptions of Theorem 3 be valid.Then between the \uparrow - bounded solutions of (11) and those of (12) there is ($f+\mathrm{V}$)integral equivalence.

Theorem 5. ([1]) Let $\gamma(t), \alpha(t)$ and $\beta(t)$ be positive continuous functions for $t \geqq t_{0} \geqq 0$ with $\lim \psi^{-1}(t)=0$ as $t \rightarrow \infty$ and $\beta(t)$ vounded on $\left[t_{0}, \infty\right)$. Let $Y(t)$ be a fundamental matrix of (12). Let further $w:\left[t_{0}, \infty\right) x J \rightarrow J, J=[0, \infty)$, be such that
a) $|f(t, x)| \leq w(t,|x|)$ for $t \equiv t_{0}, x \in R^{n} ; w(t, r)$ is nondecreasing in r for each fixed $t \geqq t_{0} ; w(t, c \gamma(t))$ is integrable on compact subsets of $\left[t_{0}, \infty\right)$ for each $c \geqq 0$;
b) $\quad \int_{t_{0}}^{\infty} s \alpha(s) w(s, c \neq(s)) d s<\infty \quad$ for each $c \leqslant 0$;
c) $\left.\int_{t_{0}}^{t} \beta(t-s) \alpha(s) w(s, c \gamma(s)) d s \in I_{p}\left(t_{0}, \infty\right)\right)$ for each $c \geq 0$;
d) Let exist two supplementary projections P_{1} and P_{2} and a constant $c>0$ such that

$$
\begin{aligned}
& \left|Y(t) P_{1} Y^{-1}(s) \alpha^{-1}(s)\right| \leqq c \beta(t-s) \text { for } t_{0} \leqq s \leqq t, \\
& \left|Y(t) P_{2} Y^{-1}(s) \alpha^{-1}(s)\right| \leqq c \text { for } t_{0} \leqq t \leqq s<\infty .
\end{aligned}
$$

Then between the set of all $\psi-$ bounded solutions of (11) and the set of all \uparrow - bounded solutions of (12) holds ($1, p$)-integral equivalence, $p \geqq 1$.

As a special case of Theorem 5 we get
Theorem 6. ([1]) Let $\mathcal{\ell}, \mathrm{m}, \boldsymbol{\delta}, \mathrm{m}^{\star}, \boldsymbol{\lambda}$ be defined as before (at the beginning).Suppose that there exists $w: J x J \rightarrow J$ such that
a) $w(t, r)$ is nondecreasing in r for each $t \in J$ and $w\left(t, c e^{\lambda t} r_{m}(t)\right)$ is integrable on compact subsets of J for each $\mathrm{c} \geqq 0$;
b) $|f(t, x)| \leqq w(t,|x|)$ a.e. on J for each $x \in R^{n}$;
c) (i) $\quad \int_{0}^{\infty} t^{2} w\left(t, c e^{\lambda t} t_{m}(t)\right) d t<\infty \quad$ for each $c \geqq 0$ if $\lambda \geqq 0$;

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\lambda t} w\left(t, c e^{\lambda t} t_{n}(t)\right) d t<\infty \quad \text { for each } c \geqq 0 \text { if } \lambda<0 ; \tag{ii}
\end{equation*}
$$

d) $\quad \lim \frac{1}{c} \int_{t_{0}}^{\infty} e^{-\lambda t} w\left(t, c e^{\lambda t} t_{m}(t)\right) d t=0$ as $t_{0} \rightarrow \infty$ uniformly with reqpect $c \in[1, \infty)$;

Then the systems (11) and (12) are asymptotically equivalent and also ($1, p$)-integrally equivalent.

We note that the hypotheses b), c) (ii) d) guarantee the existence of each solution $x(t)$ on $\left[t_{0}, \infty\right)$ and the validity of the estimate $\left.|x(t)| \leqq D \exp \left\{\lambda\left(t-t_{0}\right)\right\}\right\}_{m}\left(t-t_{0}\right), \quad 0 \leqq t_{0} \leqq t$. (See [2], Theorem 5.) This is the fact which leads to the asymptotic and (1,p)integral equivalence between all solutions of (11) and all solutions of (12).

In almost all our Theorems we had the following situation: one part of assumptions has guaranteed the asymptotic equivalence and if we have added some further assumptions we obtained also integral equivalence.It might seem that integral equivalence implies asymptotic equivalence. We are going to demonstrate that this is not true in general.

Lemma 4. There exists a (nonnegative) function $f(t)$ defined and continuous on $[0, \infty)$ such that scalar equations

$$
x^{\prime}+a x=f(t), \quad y^{\prime}+a y=0, \quad a>0
$$

are (l,p)-integrally equivalent, but they are not asymptotically equivalent.

Proof, We have $x(t)=c e^{-a t}+\int_{0}^{t} e^{-a(t-s)} f(s) d s, y(t)=c e^{-a t}$. We are going to seek such $f(t)>0$, that $\int_{0}^{\infty}\left(\int_{0}^{t} e^{-a(t-s)} f(s) d s\right)^{p} d t$ exists for $1 \leqq p<\infty$ and $\lim \sup \int_{t \rightarrow \infty}^{t} e^{-a(t-s)} f_{0}^{0}(s) d s>0$. Put $g(t)=\int_{0}^{t} e^{-a(t-s)} f(s) d s$. Then $g(t)$ has to satisiy $: \int_{0}^{\infty} g^{p}(t) d t<\infty$ and limsup $g(t)>0$. Such functions exist and may be even unbounded. $T^{\hbar} \boldsymbol{H}$ construction of such a function $g(t)$ does not present any problem.Then for f we get $: f(t)=g^{\prime}(t)+a g(t)$.

Let us now make some observations concerning the problem of sufficient conditions for the integral equivalence to imply the asymptotic equivalence.We shall need the following lemma:

Lemma 5 Let $f(t) \in L_{p}\left([0, \infty)\right.$ for $1 \leqq p<\infty$ and $f(t) I^{\circ}$ be bounded on $[0, \infty)$. Then $\lim f^{p}(t)=0$ as $t \rightarrow \infty$.

The proof of this lemma is similar to that in [4], Lemma 6.The condition of boundedness of $|f(t)|^{\circ}$ can be relaxed by uniform continuity of $f(t)$ on $[0, \infty)$.(See [5], exercise 13.31.)

Theorem 6e Let $A(t)=A$ be a square matrix such that $\operatorname{Re} \mathcal{X}_{i}(A)<$ $<-a<0$ for all i.Let $f(t, x)$ be bounded for $0 \leqq t$, $|x|<\infty$ and let the systems (ll) and (l2) be ($1, p$)-integrally equivalent.Then they are also asymptotically equivalent.

Proof. Let $x(t)$ be a solution of (ll) and let $y(t)$ be a solution of (12) and such that they are ($1, p$)-integrally equivalent. Then $u(t)=x(t)-y(t)$ is a solution of the equation

$$
\begin{equation*}
u=A u+f(t, u+y(t)) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty}|u(t)|^{p} d t<\infty . \tag{19}
\end{equation*}
$$

Using the method of variation of constants we have

$$
\begin{equation*}
u(t)=X(t) c+\int_{0}^{t} X(t-s) f(s, u(s)+y(s)) d s \tag{20}
\end{equation*}
$$

where $X(t)$ is a fundamental matrix of (12) and following the assumption and (7) $|X(t)| \leqq c_{1} \exp \{-a t\}, t \geqq 0$.Then $|X(t) c| \leqq D$ for $t \geqq 0$.Further there exists $K>0$ such that $|f(t, x)| \leqslant K$ for $t \geqslant 0$ and $|x|<\infty$.Therefore from (20) we have

$$
|u(t)| \equiv D+K c_{1} \int_{0}^{t} e^{-a(t-s)} d s \leq D_{1} \text { for } t \geq 0
$$

Thus $u(t)$ is bounded.Then from (18) an easy calculus gives that $|u(t)|^{-} \leqq A D_{1}+K$.From this and from (19), using Lemnio 5 ,we have that $\lim u(t)=0$ as $t \rightarrow \infty$.

Remark 3. The negutivity of real parts of the characteristic roots of A and the boundedness of $f(t, x)$ does not guararitee the asymptotic equivalence of (11) and (12).As an example we give the following: $x^{\circ}=-a x+k, y^{\bullet}=-a y, a>0$. These two equations are neither asymptotically nor ($1, \mathrm{p}$)-integrally equivalent.

In the same way as Theorem 6 we can prove
Theorem 7e Let $A(t)=A$ and let
(21)
$f(t, x)=\lambda(t) w(|x|)$
where $\lambda(t)$ is a positive bounded function $, w(r), r \geq 0$ a real positive function.Let there exist ($1, p$)-intezrel equivalence between the sets of all bouncied solutions of (11) and of (12),respectively.Then there is l-asymptotic equivalence between these sets of solutions.

Theorem 3 . Let $A(t)=A$ and let all solutions of (12) be bounded. Let (21) hold with $\lambda(t)$ bounded and integrable on $[0, \infty)$ and let $w(r), r \geqslant 0$, be bounded, $w(r) \leqq D . L e t$ the systems (1l) and (12) be ($1, p$)-integrally equivalent, $1 \leqslant p<\infty$.Then the systems (11) and (12) are also l-asymptotically equivalent.

Proof. Let $Y(t), Y(0)=I$, be fundamental matrix of (12).Then from the boundedness of all solutions of (12) it follows that $X(t) \| C, t \cong 0$. Using the method of variation of constants we have for the solution $x(t)$ of (11) the representation

$$
x(t)=Y(t) X(0)+\int_{0}^{t} Y(t-s) f(s, x(s)) d s
$$

From this we get
$|x(t)|\left\{C|x(0)|+C \int_{0}^{\infty} \lambda(s) w(|x(s)|) d s \triangleq C|x(0)|+C D \int_{0}^{\infty} \lambda(s) d s=K\right.$. Thus all solutions of (11) are bounded.Let now $x(t)$ and $y(t)$ be solutions of (11) and (12),respectively, which are (l,p)-integrally equivalent. Then $u(t)=x(t)-y(t)$ is bounded and an easy calculus gives that $|u(t)|^{\circ} \leqq|A l l u(t)|+\lambda(t) w(|x(t)|)$.From this it follows that $|u(t)|^{\circ}$ is bounded. Because $u(t) \in L_{p}([0, \infty))$ the use of Lemma 5 gives that $\lim u(t)=0$ as $t \rightarrow \infty$.

Turn now our attention to the problem whether the of-asymptotic equivalence implies (ψ, p)-integral equivelence for some p. The following example demonstrates that it is not true in general.

Let $t_{k}=\sum_{i=1}^{k}(3 / 2)^{i(i-1)}, k=1,2, \ldots$ Evidently $\lim t_{k}=\infty a s k \rightarrow \infty$. Define the function $f(t)$ as follows: $f\left(t_{k}\right)=(1 / 2), f(t)$ is linear in interval [$\left.t_{k}, t_{k+1}\right], k=1,2, \ldots A n$ easy calculus gives that
$\lim f(t)=0$ as $t \rightarrow \infty, \int_{1}^{\infty} f^{p}(t) d t=\infty$ for every $1 \triangleq p<\infty$. Let us modify this function such that $f^{\prime}(t)$ exists and the above properties continue to hold.Then define $z(t)=f^{\prime}(t)+a f(t)$, a> 0 and consider the equations : $x^{\prime}+a x=z(t), y^{\prime}+a y=0$. Then

$$
x(t)-c y(t)=\int_{1}^{t} e^{-a(t-s)} z(s) d s=f(t)
$$

Evidently these two equations are asymptotically equivalent but not ($1, p$)-integrally equivalent for $1 \leqq p<\infty$.

After all,it is not without the interest the question, how many functions as $f(t)$ do exist ?If we denote by $C_{0}\left(\left[t_{0}, \infty\right)\right.$) the set of all continuous functions $g(t)$ on $\left[t_{0}, \infty\right)$ and such that $\lim g(t)=0$ as $t \rightarrow \infty$, then the problem is to characterize the set $H=C_{0}\left(r_{0}, \infty\right)$ - $\bigcup_{p>0} I_{p}\left(\left[t_{0}, \infty\right)\right)$.As it was told me by T.Šalát, to whom I have posed this problem, this set is of the second Baire cathegory.It means that ,, the majority " of the functions of $C_{0}\left(\left[t_{0}, \infty\right)\right)$ behave as our function $f(t)$.

At the end I want to note that I investigated here the systems (11) and (12) to facilitate the interpretation.All these problems can be discussed for the equations with deviating argument,for integral and integro-differential equations and others.The Lemmas introduced here will be helpful in those investigations.

REFERENCES
[I] Švec, M; Haščák, A : Integral equivalence of two systems of differential equations.Czech. math. J. (to appear).
[2] Švec,M.: Asymptotic relationship between solutions of two systems of differential equations.Czech.math.j., 24(99) 1974, 44-57.
[3] Hallam, Thomas G.:On asymptotic equivalence of the bounded solutions of two systems of differential equations. Mifhigan Math.J. 16(1969),353-363.
C4] Švec,M.:Sur le comportement asymptotique des intégrales de l'équation différentielle $\mathrm{y}^{(4)}+Q(t) y=0$. Czech.math. $^{(4)}$ j., 8(83) 1958,230-245.
[5] Hewitt,E.;Stromberg, K.: Real and abstract analysis.Springer Verlag,1969.

