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INTEGRAL AND ASYMPTOTIC EQUIVALEIICi; OF 77/0 SYSTK.S 

OF DIFFERENTIAL EQUATIONS 

Marko §vec 

Bratislava,Czechoslovakia 

The problem of approximation of solutions of a given differen

tial equation with aid of solutions of another differential equa

tion is not a new one;it is very important in the theory of diffe

rential equations as well as in the applications.It has already 

been investigated in great detail.These investigations gave birth 

to method of variation of constants,method of asymptotic integra

tion, etc.The mentioned problem is also closely related to the no

tion of asymptotic equivalence and integral equivalence of two sys

tems of differential equations.The problem of asymptotic equivalen

ce was investigated by several authorsfe.g. H.WeylfN.LevinsonfA. 

Wintner, V .A. JakuboviS f F .Bauer f J .S .V/ongf R .Conti ,1a .Svec,N .Onuchic f P • 

Talpalaru, T.G.Hallam, T.Yoshizava, J .Kato, etc. 

In this lecture we shall deal mainly with integral equivalence 

and with the relation between integral and asymptotic equivalence. 

Several of the results concerning integral equivalence presented 

here were obtained in cooperation with A.Hascak Cll. 

First,let's define basic notions required in the following: 

Let be given two systems of differential equations 

(a) x'= F(t,x) , (b) y'= G(tfy) 

where x,y,F,G are n-vectors , t = 0.Suppose that F and G are such 

that the existence of solutions of (a) and (b) on the interval 

Ct0>°° ) »*o * °»
 i s euarantedt»Let futher-y(t) be a positive conti

nuous function on Ct ,«o). 

Definition 1. We shall say that a vector function z(t), t = tQf 
is -J*- boundedtif there exists a constant M > 0 such that 

(1) lV"1(t)z(t)| * M, t £ tQ 
where I . | denotes a suitable vector (matrix) norm. 

Remark lt Under a solution of a differential equation we shall 

understand a solution existing on some infinite interval C.tQ,oo). 

The integral will be the Lebesgue integral. 

Definition 2. We shall say that the systems (a) and (b) are 

IT*- asymptotically equivalent if for every solution x(t) of (a) 

there is a solution y(t) of (b) such that 

(2) I^JtJDctt) - y(t)JI • 0 8 B t * « o 

and conversely.for each solution y(t) of (b) there is a solution 
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x(t) of (a) such that (2) holds. 
Definition 3. tie shall say that systems (a) and (b) are Vr , p ) -

integrally equivalent, p>0, if to every solution x(t) of (a) there 
is a solution y(t) of (b) such that 
(3) ^"1(t)Lx(t) - y(t). c L (Lt0,A.)) 

and conversely,to each solution y(t) of (b) there is a solution 
x(t) of (a) such that (3) holds. 

Here -*-D (L t »-•« )) denotes the space of all vector functions z(t) 
mesurable and defined a.e. on [t , • ) such that |z(t)|p is Lebes-
gue integrable on [t r o ) , 

We start our considerations with special systems,i.e. 
(4) x'-- A(t)x + f(t), 

(5) y'« A(t)y. 
Prom the relation that x(t) =- y(t) + x (t),where xQ(t) is a solu
tion of (4) we have immediately 

Theorem 1. The systems (4) and (5) are (-̂  ,p)-integrally equi
valent iff there is a solution xQ(t) of (4) such that y (t)x (t) 
belongs to --D(l-t ,-o)). 

We see that in this case the problem of (-̂  ,p)-integral equiva
lence turns into the problem of existence of solution x (t) of (4) 

-1/ 0 
such that f J-(t)xQ(t) € K(itQf *. )). 

We will discuss this problem in the case that A(t) « A is a con
stant matrix•Suppose that A has the Jorden canonical form.Let be 

(-U-,< ^ p c •••< r^a = ̂  distinct real parts of eigenvalues A-j(A) 
of A and let be m. the maximum order of those blocks in A which 
correspond to eigenvalues with real part ^U. .Denote m -» m.Let 
be a real number.Then let I =*• ro. if/**.* -M and l =- 1 if no A . 
equals^ .Suppose that A -= diag(AlfA2), where A-̂  and A 2 are square 
matrices such that Re^(A 1)</t ,Re.\i(A2) »/U for all i.Then 
Y(t) = diag (exp tA-j,exp tA2) is the fundamental matrix of (5) with 
Y(0) » I (identity matrix ) and 

Y-^t) = diag (exp tA-^O) , Yg(t) = diag (0,exp tA2) 
and such that 
(6) Y(t) » Y1(t) + Y2(t) , Y(t)Y"

1(s) » Y1(t)Y1
1(s)+Y2(t)Y2

1(s), 

Y±(t)Yi
1(s) « Y(t-s),i - 1,2 

and there exist numbers c-j> 0, c2 > 0 such that 
(7) lY-^t)!- Cl exp (<*-8) \jt)9 

lYg^tM-lY-^-t)! 6 c2 exp (-/ttt) fy(t)t t » 0 

where -5 » max[Re -^(A-^) -/^-]< 0, m*« mi if {".-/* « -5 and 
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A k li . o í t í i 
We are now able to represent the solution x(t) of (4)in the form 

* 7 
(8) x(t) =- Y1(t)xo + J Y1(t-s)f (s)ds - J Y2(t-s)f (s)ds 

o t 
using the formula of^variation of constants,the assumption that 
f(t) is such that | jY"1(s)f(s)dsl<A»and putting x »-JY0(t-e)f(s)ds. 

o o *" 
Taking ^l» 0 we have the majorants of the three terms on the right 
in (8): 

|Y1(t)x0|i|x0|e"^
t
f \\ Y1(t-8)f(B)da|t6 cA e" * (t"s) If (s)| ds, 

•o £ o 
HY2(t-s)f(s)dslS c2 J ^(t-s)|f(s)lds. 

Thus,we have to guarantee that 

S e"*(t"s)|f(s)|ds*L (£o,*o)), I ^|(t-s)|f(s)|ds J L (£0f<»)). 
o ^ t " 
The following lemmas will be useful ( see [1} ): 

Lemma 1. Let r b e a positive constant and let be g(t) » 0 f 
g(t) t L1(tOf«o)).Then 

J e" r(t"s)g(s)ds * L (l0f*O) for all p 2 1 . 
o p ^ 

Lemma 2. Let be Js If ( s ) | ds < «o .Then J l f ( s ) |ds fc L (tOf<»)) 
for all p * 1. ° t 

Application of these lemmas on (8) gives 

Theorem 2. Let A be a constant square matrix.Let f(t) be conti
nuous on tOf«») and let 
(9) 7t|f(t)|dt<«o. 

Then systems (4) and (5) are (lfp)-integrally equivalent, p = 1. 

We note that in the paper £2]*Theorem 2 fwe had the condition 

(10) J t'"1|f(t)|dt<oo 
o 

as sufficient for the asymptotic equivalence of (4) and (5).It 
seems that the integral equivalence implies the asymptotic equiva
lence .We shall see later that this is not true in general. 

The motivation which we explained to get Theorem 2 gives us 
some ideas how to proceed by establishing the (ffp)-integral equi
valence between 
(11) x'« A(t)x + f(tfx), 
(12) y'»A(t)y. 
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There are three things to be used: formula of variation of con
stants, decomposition of fundamental matrix Y(t) of (12) into two 
matrices Y-L(t) and Y2(t) exhibiting similar properties as (6) and 
(7),estimation and growth of f(t,x).The last will be facilitated 
if we know the apriori estimation of the solutions of (11) and (12). 

Using supplementary projections P-̂  and P2 we get thatfif y(t) 
is a solution of (12),for the solution x(t) of (11) the integral 
equation t ^ 

(13) x(t)=y(t)+ iY(t)P1Y"
1(s)f(sfx(s))ds- iY(t)P2Y"

1(s)f(sfx(s))ds 
t o -1/ holds.To prove that fL(t)Lx(t)-y(t)] * L (ttofco)),it suffices to 

prove that the second and third terms on the right in (13) multi
plied by *"f (t) belong to L (tt ,oo))«To this aim serve Lemma 2 
and 

Lemma 3-(til) Let **f*(t) and y(t) be positive functions fort ft 0, 
Y(t) be a nonsingular matrix and P a projection.Let further be 

(14) J l-t"1(t)Y(t)PY"1(s) y (s)|pds * K for t ft 0f p > 0 
o 

and 

(15) jexp{ -lTp | f p ( s ) ^ - P ( s ) d s } d t <.o . 

Then 
(16) lim l4rl(t)Y(t)Pl» 0 as t ••© 

and 
(17) l/t1(t)Y(t)P| 6 Lp(tO,*o)). 

Using Schauder's fixed-point theorem,Lemma 2 and Lemma 3 we can 
prove 

Theorem 3«(Cl3) Let Y(t) be a fundamental matrix of (12) and 
let *-f»(t) and ^(t) be positive continuous functions for t 5 0. 
Suppose that : 

a) there exist supplementary projections Pjt-?2 a n d constants 
K > 0 and 2 4 p<«© such that 

il'f1(t)Y(t)P1Y"
1(s) y>(s)|p ds + l|HT1(t)Y(t)P2Y"

1(s) Y ( s ) |
p ds 

o t 

2 Kp for t 6 0; 

b) there exists g:tO, —)x[p, •*) •COt*0) -«ixh that 
(i) g(tfu) is nondecreasing in u for each fixed t $ [0, «o) and in-

tegrable on compact subsets of t0»°°) *o* fixed uttO fea); 
(ii) Jsg^(sfc)ds <--o for any constant c ft 0 fwhere «• + ~,« 1| 

(iii) for each xtRnt!f(tfx)| i *(t)g(tf ̂ ( t ) Ixl) a.e. on tOf«©) 
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c) Jexp{ -K~p { Yp(a) f ~ p ( s ) d s } d t < oo ; 
o b 

d) í l p x Y ( s )>p(s )g (s ,c ) |ds <•© , c - 0 
0 

Then between the set of *f* - bounded solutions of (11) and *f> -

bounded solutions of (12) there is f - asymptotic equivalence and 

also ( *f* »p)~ integral equivalence. 

In this theorem the assumptions are concentrated mainly to the 

function g(t,u).It is possible to change the assumptions in such a 

way that we will assume more about the expression on the left side 

of the inequality in a) and less about the function g(t,u).It holds 

Theorem 4. Assume that the following hypotheses from the Theo

rem 3 are satisfied: a),b) (i),(iii).Instead of b) (ii) let be sa

tisfied only : J gp(t,c)dt < «*» , 0 <. c<«-» ; instead of c) let be 
o* o 

satisfied: / ^ ( t ) *-*""p(t)dt - «o .Finally,let the left side of the 
o 

Inequality a) belong to L., (tO, «o)) .Then the conclusions of the 

Theorem 3 are still valid. 

The proof of Theorem 4 can be made in the same manner as that 

of Theorem 3•The difference is only at the end by proving that 

V"1(t)[x(t) - y(t)] * L ([pfoo)).In fact,we get in both cases 

that 

P^ftlfxtt) - y(t)] « 
*o 

- rf""1(t)Y(t)P9Y"
1(s)f(s,3:(s))ds. 

t d 

Using the Holder's inequality we get 

I^OOlXt) -y(t)]|i 
1/p t , 1/p 

/f^ít^xít) - y(t)] « J t ^ t i m t ) ? ^ 1 (B)Í(B,x(a))da 

t , - „ 1/P t , l/pr 

( I l^ttmtjP.jY"'1^) * > Ы 1 Р
 ds) ( $ gp(s,2Ý)ds) + 

o 
«• 

\ 

o o 
«• , , n 1/p •• -„ 1/p 

+ ( ( l*f"1(t)Y(t)PPY"
1(fl) ¥(s)|p ds) ( í gP(s,2f )ds) 

where 2f is the *+ - bound of both solutions x(t) and y(t).Now, 

we can proceed either as it was done in the proof of Theorem 3 or 

we can get 

If^Ct^xtt) - y(t)]|S{(Slt"1(t)Y(t)P1Y"
1(s) <f(s)|pds) P + 

o 

(JI1;"1(t)Y(t)P2Y~
:L(a) <p (s)|pd6) j ( , gp(s,2^)d8) 

t o 
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which complets the proof of Theorem 4« 
We note that the hypotheses of Theorem 4 were used by T.G.Hallam 

(C3 3) .He proved that to each solution x(t) of (11) such that 
~f1(t)x(t) f I*p([t0»*»))

 A L ^ (ltQ9oo)) there exists such a solu
tion y(t) of (12) that -f1(t)y(t) * L (tt0,«))n L^(Lt0,<o)) 

and conversely. 

Remark 2. If we substitute in Theorem 3 the condition b) (ii) 
by the condition : ( T^vS-cJds) 1^' f L (t0,«o)) and for p 

we assume that l < p < © o ,then the conclusions of Theorem 3 hold. 

To complete the problem investigated in Theorem 3 it is necessary 
to investigate the cases when p « 1 (p'» oo ) and p'« 1 (p * *o ) .We 
get the following corollaries: 

Corollary 3.1. (til) Let p « 1 (p*« oo ).Let the assumptions of 
Theorem 3 be satisfied except b) (ii),which let be substituted by 
the condition 

lim %At) m 0 for each c B 0 and 4* (t) * L, (L0,«o)) 
t~+oo * C rC 1 

where J* (t) « sup g(s,c).Then the conclusions of Theorem 3 still 
hold. s"t 

Corollary 3.2. (fll) Let p « «© (p'« 1) and let the assumption 
a) of Theorem 3 be replaced by 
sup |-fT1(t)Y(t)P1Y"

1(s) y»(s)l + 3up |^"1(t)Y(t)P9Y"
1(B) y> (s)| tK 

0£s=t 1 UB<- * 
and let 

|*+"1(t)Y(t)P1l 6 Lv([0f «*)) , 0 < v <oo 
and let the other assumptions of Theorem 3 be valid.Then between 
the *f - bounded solutions of (11) and those of (12) there is (*,•)-
integral equivalence. 

Theorem 5. (til) Let *t(t), rf (t) and /5(t) be positive continu
ous functions for t B t B 0 with lim *fT 1(t) « 0 as H i d and 
fl(t) bounded on CtQ>€0).Let Y(t) be a fundamental matrix of (12). 
Let further w: L"t0t

i°)xJ "* J • J = [0, ««0,be such that 
a) lf(t,x)| * w(t,|x|) for t B tQ f xtR

41 ; w(t,r) is nonde-
creasing in r for each fixed t 2 tQ; w(t,c **f(t)) is integrable 
on compact subsets of It f oo) for each c - 0 ; 

b) J s pt(s)w(s,c*f»(s))ds < •• for each c - 0 ; 

t 
c) J (b (t-s)« (s)w(s,cf (s))ds € L (ttQf*o)) for each c 5 0 ; 
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d) Let exist two supplementary projections P, and P2 and a con
stant c > 0 such that 

I Y(t)P1Y"
1(s) oT^s) | £ c/S(t-s) for t0 2 a i t f 

|Y(t)P2Y"
1(s) ̂ ( s ) 1 t c f o r t 0 S t - s < * o . 

Then between the set of all *i* - bounded solutions of (11) and the 
set of all t - bounded solutions of (12) holds (l,p)-integral 
equivalence, p a l . 

As a special case of Theorem 5 we get 

Theorem 6. (Cll) Let JL9m9S,m*9X be defined as before (at the be
ginning) .Suppose that there exists w: JxJ •• J such that 

a) w(t,r) is nondecreasing in r for each .t € J and w(tfce 4"m(t)) 
is integrable on compact subsets of J for each c £ 0; 

b) lf(tfx)l-S w(tf Ixl) a.e. on J for each x t R
n; 

c) (i) rtlw(tfce
At|m(t))dt <-» for each c £ 0 if A * 0; 

o 
(ii) j e ^ w C t . c e * ^ (t))dt <•• for each c 5 0 if X < 0; 

O m» 

d) lim \ i e"Atw(tfce
At> (t))dt » 0 as t -*«© uniformly 

c j. \ m o 
to 

with respect cfcLl,**); 
e) i e"^(t-s)^mfc(t-s)t

/"1w(tfce
At^m(t)))dt t I^(Lt of•)), 

p 5 l. 

Then the systems (11) and (12) are asymptotically equivalent and 
also (lfp)-integrally equivalent. 

We note that the hypotheses b)fc) (ii) d) guarantee the existen
ce of each solution x(t) on LtQ9*o) and the validity of the esti
mate |x(t)l^ D exp{A(t-to)>^m(t-t0)f 0 * tQ ^ t .(See Ul,Theo
rem 5.)This is the fact which leads to the asymptotic and (lfp)-
integral equivalence between all solutions of (11) and all solu
tions of (12). 

In almost all our Theorems we had the following situation: one 
part of assumptions has guaranteed the asymptotic equivalence and 
if we have added some further assumptions we obtained also integral 
equivalence.lt might seem that integral equivalence implies asym
ptotic equivalence.We are going to demonstrate that this is not 
true in general. 

Lemma 4. There exists a (nonnegative) function f(t) defined and 

continuous on fOf *o) such that scalar equations 
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x'+ ax « f (t) , y'+ ay a- 0, a > 0 

are (l,p)-integrally equivalent,but they are not asymptotically 

equivalent. + 

Proof. We have x(t) * ce~at + J e~
a(t~s)f(s)ds ,y(t) - ce~at. 

o •• t /+ \ 
We are going to seek such f(t)>0,that J ( J e~ a U~ s ;f (s)ds)pdt 

t o o 
exists for 1 t p <•* and lim sup te~a(t~s)f(s)ds > 0. Put 

t /. x t-*** o •» 
g(t) - J e~ a u~ s ;f (s)ds. Then g(t) has to satisfy : Jgp(t)dt <•• 

o o 

and lim sup g(t) > O.Such functions exist and may be even unboun

ded. Tne construction of such a function g(t) does not present any 

problem.Then for f we get : f(t) • g'(t) + ag(t). 

Let us now make some observations concerning the problem of suf

ficient conditions for the integral equivalence to imply the asym

ptotic equivalence .We shall need the following lemma: 

Lemma 5. Let f(t) * Lp(t0,««)) for 1 *- p<«* andlf(t)l' be boun

ded on L0,«©).Then lim f(t) » 0 as t -fr •• . 

The proof of this lemma is similar to that in [41,Lemma 6 .The 

condition of boundedness of |f(t)|' can be relaxed by uniform con

tinuity of f(t) on t0,«*) .(See [5j, exercise 13.31•) 

Theorem 6. Let A(t) » A be a square matrix such that Re-Ai(A)< 

< -a < 0 for all i.Let f(t,x) be bounded for 0 - t , lx|<«* and let 

the systems (11) and (12) be (l,p)-integrally equivalent.Then they 

are also asymptotically equivalent. 

Proof. Let x(t) be a solution of (11) and let y(t) be a solution 

of (12) and such that they are (l,p)-integrally equivalent.Then 

u(t) * x(t) - y(t) is a solution of the equation 

(18) u « Au + f(t,u + y(t)) 

and ^ 

(19) Jlu(t)|pdt < ~ . 
o 

Using the method of variation of constants we have 
t 

(20) u(t) - X(t)c + \ X(t-s)f(s,u(s)+y(s))ds 

where X(t) is a fundamental matrix of (12) and following the assump

tion and (7) lx(t)| -5 o1 exp{-at} , t 5 O.Then |X(t)cl S D for 

t £ O.Further there exists K >0 such that |f(t,x)|£ K for t 6 0 

and fx|<«o. Therefore from (20) we have 

|u(t)|S D + Kox 5 e~
a(t""s)ds 1 Dx for t fe 0. 

336 



Thus u(t) is bounded.Then from (18) an easy calculus gives that 
|u(t)| ' m XD^ + K.Prom this and from (19)t using Lemriia 5fwe have 
that lim u(t) - 0 as t ••o # 

Remark 3. The negativity of real parts of the characteristic 

roots of A and the boundedne3s of f(t,x) does not guarantee the 

asymptotic equivalence of (11) and (12).As an example we give the 

following: x*« -ax + k f y*« -ay - a > 0.These tv/o equations are 

neither asymptotically nor (l,p)-integrally equivalent. 

In the same way a3 Theorem 6 we can prove 

Theorem 7. Let A(t) « A and let 

(21) f(tfx) « A(t)w(lxl) 

where A(t) is a positive bounded function fw(r) , r » 0f a real 

positive function.Let there exist (lfp)-integral equivalence bet

ween the sets of all bounded solutions of (11) and of (12),respec

tively .Then there is 1-acymptotic equivalence between these sets 

of solutions. 

Theorem 3. Let A(t) « A and let all solutions of (12) be bounded. 

Let (21) hold with A(t) bounded and integrable on L0,*») and let 

w(r)f r « 0,be bounded, w(r) « D.Let the systems (11) and (12) be 

(lfp)-integrally equivalent, 1 » p<*° .Then the systems (11) and 

(12) are also 1-asymptotically equivalent. 

Proof. Let Y(t)fY(0) • Ifbe fundamental matrix of (12).Then 

from the boundedness of all solutions of (12) it follows that 

b(t)l » Cf t « 0.Using the method of variation of constants v/e have 

for the solution x(t) of (11) the representation 
t 

x(t) « Y(t)x(0) + J Y(t-s)f(sfx(s))ds. 
o 

From this we get m M 

lx(t)|* Clx(0)|+ C jA(s)w(tx(s)r )ds « C|x(0)l+ CD jA(s)ds « K. 
o o 

Thus all solutions of (11) are bounded.Let now x(t) and y(t) be 

solutions of (11) and (12),respectively,which are (l,p)-integrally 

equivalent.Then u(t) » x(t) - y(t) is bounded and an easy calculus 

gives that |u(t)T t lAHu(t)| + A(t)w(|x(t)| ).Prom this it follows 

that |u(t)|' is bounded .Because u(t)e I*p([pt«*)) the use of Lemma 5 

gives that lim u(t) « 0 as t •*•• • 

Turn now our attention to the problem whether the *f*- asymptotic 

equivalence implies (*̂  ,p)-integral equivalence for some p fc l.The 

folloY/ing example demonstrates that it is not true in general. 

Let tk » £ (3/2)i^i"1\k«l,2,...Evidently lim tk ••» as k •*•• . 

Define the function f(t) as follows: f(t^) « (1/2)* , f(t) is line

ar in interval Ctkftk+1Jfk«lf2f...An easy calculus gives that 
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lim f(t) « 0 as t +•» 9 i fp(t)dt « oo for every 1 - p*«* .Let us 

modify this function such that f'(t) exists and the above properties 
continue to hold.Then define z(t) • f'(t) + af(t) 9 a > 0 and con
sider the equations : x'+ ax » z(t)9 y'+ ay « O.Then 

x(t) - cy(t) « 5 e~a(t"s)z(s)ds « f(t). 
1 

Evidently these two equations are asymptotically equivalent but not 
(l9p)-integrally equivalent for 1 £ p <oo • 

After all,it is not without the Interest the question9how many 
functions as f (t) do exist ?If we denote by C0(£to9«-»)) the set of 
all continuous functions g(t) on £to9«*) and such that lim g(t) « 0 
as t •*•• ,then the problem is to characterize the set H »C0([t0,«») 
- ^^--^(C^ot00))^8 -*•* w a 8 *old m e ^y T.Saldf 9to whom I have posed 
this problem, this set is of the second Baire cathegory.lt means 
that ,, the majority " of the functions of CQ(tt0,«*)) behave 
as our function f(t). 

At the end I want to note that I investigated here the systems 
(11) and (12) to facilitate the interpretation.All these problems 
can be discussed for the equations with deviating argument,for in
tegral and integro-differential equations and others.The Lemmas 
Introduced here will be helpful in those investigations. 
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