
EQUADIFF 7

Roberto Conti
On centers of type A and B of polynomial systems

In: Jaroslav Kurzweil (ed.): Equadiff 7, Proceedings of the 7th Czechoslovak Conference
on Differential Equations and Their Applications held in Prague, 1989. BSB B.G.
Teubner Verlagsgesellschaft, Leipzig, 1990. Teubner-Texte zur Mathematik, Bd. 118.
pp. 77--79.

Persistent URL: http://dml.cz/dmlcz/702341

Terms of use:
© BSB B.G. Teubner Verlagsgesellschaft, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702341
http://project.dml.cz


ON CENTERS OF TYPE A AND B 
OF POLYNOMIAL SYSTEMS 

CONTI R., FIRENZE, Italy 

1 - We shall consider a planar system 

(1.1) x = X(x,y) , y = Y(x,y) , 

2 

where X, Y are real polynomials of (x,y) e 3R , relatively prime. The 

degree n of (1.1) is the maximum degree of X, Y. 

Let S be a center of (1.1) and let N be the maximum neighborhood 

of S entirely covered by cycles surrounding S and no other singular 

point. 
2 

We say that S is a global center or a center of type A if N = _R . 
2 S 

For instance the origin 0 of _R is a global center for 
n . n . _ _ 

x = y , y = - x , n=1,3,5,... 

A global center cannot exist for a quadratic system (n = 2). This can 

be proved (cf. R. Conti [1]) by elementary geometric considerations 

based upon the wellknown fact that for a quadratic system the interior 

of any cycle is a convex set. Also, if (1.1) is a homogeneous system 

of even degree then there are no cycles. 

These two facts suggested (cf. R. Conti C2_) the conjecture: "A poly

nomial system of even degree cannot have a global center". 

Very recently M. Galeotti and M. Villarini (C3l) were able to prove the 

conjecture to be true. Actually, they proved more, namely:"A polynomial 

system of even degree has at least one unbounded trajectory". 

To do so they made a detailed analysis of the vector field obtained 

from (1.1) by compactification on the Poincar£ sphere. 

The problem remains open of characterizing (by the coefficients of X, Y) 

systems of odd degree with a global center. A necessary condition is 

contained in [31. 
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2 
2 - If N ĵ  3R then it is easy to prove (cf. C2]) that the boundary 

3N of N is an invariant set, namely the finite union of singular 

points and open trajectories. 

Then we can say that S is a center of type B if 9N does not con

tain singular points, so that it is the finite union of open unbounded 

trajectories. Such centers actually exist for systems of any degree 

n > 2. 

It is easy to show (cf. C2]) that for a given degree n > 2 the maximum 

number k(n) of trajectories in 9N cannot exceed n+1, i.e., 

(2.1) k(n) < n+ 1 , n = 2,3, .. . 

In a paper (cf. R. Conti C4]) to appear in a volume dedicated to Pro

fessor Qtakar Boruvka, examples were given showing that 

(2.2) n - 1 < k(n) , n = 2,3, .. . 

also holds. 

lit can be easily proved (cf. C1]) that 

(2.3) k(2) = 1 . 

(2.1), (2.2), (2.3) together suggest the 

Conjecture 2.1: k(n) = n-1 , n = 2,3,... 

or, equivalently k(n) ^ n, n + 1, n = 2,3,... 

Finally, let b(n) denote the maximum number of centers of type B for 

a system of degree n . 

The examples of C4] show that 

(2.4) n < b(n) , n = 2,3,.. . 

Since (cf. C1]) 

(2.5) b(2) = 2 



(2.4) and (2.5) suggest the 

Conjecture 2.2; b(n) =- n , n = 2,3, 
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