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ON A CLASS OF SCALAR CONSERVATION LAWS 
WITH LOCALLY UNBOUNDED SOLUTIONS 

T E S E I A . , N A T A L I N I R. , R O M A , I taly 

1. I n t r o d u c t i o n 

Conservation laws which depend explicitly on the space variables, namely 
n 

(l.n dtu + ^2dtiiipi{x,u)] = o 

(x = ( a ; i , . . . , : r n ) ) , occur is several situations (e.g., flood waves [Wh], mathematical biology 

[SKT], exploitation of oil reservoirs [Ew]). This note is concerned with the existence and 

uniqueness of solutions to the Cauchy problem for scalar conservation laws of this kind, 

i.e. 

(12) ( dtu + dt[<p(x,u)]=0 i n R + x R 

\ w(0,x) = UQ(X) in R , 

where <p(0, u) = 0. 

The Cauchy problem has been investigated by the vanishing viscosity method for a 

class of conservation laws of the form (1.1) (see in particular [01], [Kr]). To our knowledge, 

however, the assumptions encountered in the literature guarantee the a priori boundedness 

of the weak entropy solutions (uniformly on the compact subsets of R + ) . An assumption 

of this kind reads for problem (1.2) (see [Kr]): 

(1.3) sup [—(y>xu(x, u)\ < const. 
i ea ,u€R 

Interesting phenomena can arise when (1.3) is not satisfied, even in very simple cases. 

As a mat ter of fact, it is easy to see tha t the Cauchy problem for the equation 

(1.4) dtu- -d£(xu2) = 0 i n R + x R 

has solutions which blow up in finite time at x = 0 (see Section 2). 

As (1.4) suggests, the problem (1.2) can be investigated in weighted spaces. This 

approach enables to prove the existence and uniqueness of weak entropy solutions to (1.2) 

(see Section 3), if the nonlinearity (p is of the form 

(i.5) V(x,«) = - V | x r - ^ — , 
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where m * > 0, pk G N satisfy the inequality 

(1.6) m : = max < m m = : M . 
*=i,...,n ph * = l , . . . , n p * - l 

2. A m o d e l equat ion 

Let us denote by [0,T] the maximal interval of existence of regular solutions to 

the Cauchy problem for (1.1). If T < co, then either (i) |« |oo(0 —• oo or (ii) 

|wt|oo(0 + |«x |oo(0 -> oo as f -4 T " (see [Ma]). If (i) is ruled out (e.g., by assuming 

(1.3)), then a loss of regularity occurs at t = T and discontinuous solutions have to be 

considered. 

It is easily seen t h a t for equation (1.4) bo th phenomena (i.e., blow-up in finite time and 

formation of shock waves) can occur. Let u0 > 0 be a regular Cauchy d a t a with compact 

support . By obvious symmetry arguments, we can restrict ourselves to the quadrant t > 0, 

x > 0. As an elementary calculation shows, the characteristic xQ for (1.4) starting at 

x = a > 0 is given by 

(2.i) ^)-«(i--fit)' ; 

moreover, 

UQ(OQ 
U a ( * ) : = м ( * » **(*)) = 1 _ !tl_.___' 

1 2 

Hence u blows u p in x = 0 at the t ime t\ = [u0(a)/2]~1, if shock waves haven't appeared 

at an earlier t ime. O n the other hand, it follows from (2.1) that characteristics issued at 

a , respectively a + da, can only intersect at the time *2 = Wo(oc)/2 + au'^a)]'1. Thus we 

have blow-up if au'Q(a) < 0 for any a > 0, or earlier appearance of shock waves otherwise. 

If blow-up arises, it only takes place at x = 0. It is also easy to control the 

corresponding ra te of divergence of u as x —> 0 + . In fact, v(t, x) := y/xu(t,x) satisfies the 

equation 

(2.2) dtv-^dx(v2) = 0 i n R + x R + . 

T h e characteristics of (2.2) are given again by (2.1) (a > 0), but now v = y/au0(a) = 

const, along xQ. This is no t surprising, since 

v(t,x) :=»(«,^) = §«(<> ~ ) (*>°) 
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satisfies the Burger's equation in (R+ x R+) in the weak sense (in this connection, wee 

[Wa]). 

In order to deal with the.case (1.5) it is useful to consider a general weight xp(p > 0). 

In the present case w(t,x) := xpu(t, x)(p -̂  1/2) satisfies 

(2.3) wt - ^Y^X-'W2 - ^-(w2)x = 0 in R+ x R+. 

Observe that (2.3) can be rewritten as follows: 

(2.4) wt - ^tl>x + ^ = 0 in R+ x R+ , 

where 

rl>(t,x):=x1-pw2(t,x). 

Singular scalar conservation laws of type (2.4) (where, however, ip doesn't depend 

explicitly on x) have been studied in [Sch], The same methods extend to (2.4), provided that 

p € [1/2,1]. Then, under this restriction, a unique (weak entropy) solution w € L°°(R+xR+) 

of (2.4) exists (see Section 3 for exact statements). Observe that w is infinitesimal of order 

p- 1/2 as x ->0+. 

3. Results 

Let us now consider the problem (1.2) with <p given by (1.5), and assume that (1.6) 

hold. The above discussion makes plausible the following definition. 

DEFINITION. A measurable function u is a weak entropy solution of (1.2) (with <p as 

in (1.5)) if: 

(i) w := \x\pu e L°°(R+ x R+) (p > 0); 

(ii) for any entropy pair (rj^q) the inequality 

dtr)(w) + dx[q(x, w)] - [qx(x,w) + -rf(w)il>(x,w)] < 0 
x 

is satisfied in the sense of distributions. Here 

il>(x\w) \=\x\p<?(x,w/\x\p) , 

(iii) there exists a set S of zero measure in R+ such that for any t € R+\£ the 

function w is defined a.e. in R and for any e > 0 

lim / \w(t,x) — \x\pu0(x)\dx = 0 . 
<—o+ J 
*& |x|<« 

We can prove the following result (see [NT]). 
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THEOREM. Let (1.5), (1.6) hold. Assume moreover p € [m,M]. Then for any bounded 

measurable Cauchy data with compact support there exists a unique weak entropy solution 

of (1.2). 

The existence proof makes use of the theory of compensated compactness [Ta]. The 

uniqueness follows by [Kr]. 
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