EQUADIFF 7

Marks Švec
Solutions to a differential inclusion of order n

In: Jaroslav Kurzweil (ed.): Equadiff 7, Proceedings of the 7th Czechoslovak Conference on Differential Equations and Their Applications held in Prague, 1989. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1990. Teubner-Texte zur Mathematik, Bd. 118. pp. 127--130.

Persistent URL: http://dml.cz/dmlcz/702349

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SOLUTIONS TO A DIFFERENTIAL INCLUSION OF ORDER n

ŠVEC M., BRATISLAVA, Czechoslovakia

We will consider the differential inclusion
(E)

$$
L_{n} x(t) \in F(t, x(\varphi(t))), n>1
$$

where $L_{n} x(t)$ is the n-th quasiderivative of $x(t)$ with respect to the continuous functions $a_{i}(t): J=\left[t_{0}, \infty\right) \rightarrow(0, \infty), i=0,1, \ldots, n, \int_{t_{0}^{\infty}}^{\infty} a_{i}^{-1}(t) d t=\infty$, $i=0,1, \ldots, n-1, \quad L_{0} x(t)=a_{0}(t) x(t), \quad L_{i} x(t)=a_{i}(t)\left(L_{i-1} x(t)\right)^{\prime}, i=1,2, \ldots, n ;$ $F(t, x): J \times R \rightarrow$ \{nonempty convex compact subsets of $R\}, R=(-\infty, \infty) ; p: J \rightarrow R$ a continuous function, $\lim \rho(t)=\infty$ as $t \rightarrow \infty$.

Under a solution $x(t) \in(E)$ we will understand a proper solution existing on some ray $\left[T_{x}, \infty\right)$.

Notations. $F(t, x) x>0(<0)$ means : $y x>0(<0)$ for each $y \in F(t, x)$; if $h: J \times R \rightarrow R$, then $F(t, x) \geq(\leq) h(t, x)$ means : $y \geq(\leq) h(t, x)$ for each $y \in F(t, x)$; if $B \subset R$, then $|B|=\sup \{|x|: x \in B\},\|B\|=\inf \{|x|: x \in B\}$.

For $t_{0} \leq c \leq t$
$P_{0}(t, c)=1, \quad P_{i}(t, c)=\int_{c}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{c}^{S_{1}} a_{2}^{-1}\left(s_{2}\right) \ldots \int_{c}^{\delta_{i-1}} a_{i}^{-1}\left(s_{i}\right) d s_{i} \ldots d s_{1}$,
 $i=1,2, \ldots, n-1$.

The basic assumptions. 1. $F(t, x)$ is upper semicontinuous on $J \times R$; 2. $F(t, 0)=\{0\}$; 3. $F(t, x)<0$ for each $(t, x) \in J \times R, x \neq 0$ or 4. $F(t, x)>0$ for each $(t, x) \in J \times R, x \neq 0$.

The notions of oscillatory and nonoscillatory solutions will be used in the usual sense.

Let $x(t)$ be a nonoscillatory solution of (E) existing on $\left[T_{x}, \infty\right)$. Then from the assumption $\lim _{t \rightarrow \infty} \varphi(t)=\infty$ and from the assumptions 1.- 4. it follows the existence of such $t_{1} \geq T_{x}$ that $L_{i} x(t) \neq 0, i=0,1, \ldots, n$, on $\left[t_{1}, \infty\right), x(t) L_{n} x(t)<0(>0)$ if 3. (if 4.) is satisfied. Therefore, all $L_{i} x(t), i=0,1, \ldots, n-1$, are monotone and $\lim _{t \rightarrow \infty} L_{2} x(t)$ exist in the extended sense. Only two cases are possible: a) $\quad \lim \left|L_{i} x(t)\right|=\infty$; b) there exists $k \in\{0,1, \ldots, n-1\}$ such that $\lim _{i \rightarrow \infty} \mathrm{I}_{k} x(t)$ is finite, $\lim _{t \rightarrow \infty} L_{2} x(t)=\infty \operatorname{sgn} x(t), i=0,1, \ldots, k-1, \lim _{t \rightarrow \infty} L_{i} x(t)=0, i=k+1, \ldots, n-1$. Thus, the set of all nonoscillatory solutions of (E) can be divided into disjoint classes defined in the following way: A nonoscillatory
solution $x(t)$ of (E) belongs to class V_{n} if the case a) occurs, and it belongs to the class $V_{k}, k \in\{0,1, \ldots, n-1\}$, if the case b) occurs.

Lemma 1. ([1], Lemma 4 and Lemma 6, [2], Lemma 3). Let $x(t) \in V_{k}$, $k \in\{0,1, \ldots, n-1\}$. Then there exists $T_{1}>t_{0}$ such that sgn $x(t)=$ $\operatorname{sgn} L_{k} x(t)$ for $t \geq T_{1}$. If $x(t) L_{n} x(t)<0$ on $\left[T_{1}, \infty\right)$, then for $n+k$ even (odd) $\left|L_{k} x(t)\right|$ increases (decreases) on $\left[T_{1}, \infty\right)$. If $x(t) L_{n} x(t)>0$, then for $n+k$ even (odd) $\left|L_{k} x(t)\right|$ decreases (increases) on $\left[T_{1}, \infty\right)$. If $\lim _{t \rightarrow \infty} L_{k} x(t)=c_{k} \neq 0$, then there exist two constants $0<\alpha_{k} \leq\left|c_{k}\right| \leq \beta_{k}$ and $T_{k} \geq T_{1}$ such that $a_{k} P_{k}(t, c) \leq a_{0}(t)|x(t)| \leq \beta_{k} P_{k}(t, c), \quad t \geq T_{k}$. Our aims are : to state the conditions which guarantee that $\lim _{i \rightarrow \infty} L_{k} x(t)=0$ for each $x(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$ and also to state the conditions which guarantee that the class $V_{k}, k \in\{0,1, \ldots, n-1\}$. is empty.

These problems for the case that instead of the inclusion (E) we have an equation were discussed in [1],[2],[3] and for (E) in [4],[5].

Theorem 1. Let the conditions 1.- 4. be satisfied. Let $G(t, u)$: $\mathrm{J} \times[0, \infty) \rightarrow[0, \infty)$ be continuous and for each fixed teJ nondecreasing in u such that

$$
\begin{equation*}
G(t,|x|) \leq\|F(t, x)\|, \quad x \in R . \tag{1}
\end{equation*}
$$

Let $k \in\{0,1, \ldots, n-1\}$ and let

$$
\begin{equation*}
\int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) G\left(s, \alpha a_{0}^{-1}(p(s)) P_{k}(p(s), c)\right) d s=\infty \tag{2}
\end{equation*}
$$

for all $t \geq T_{k}$ auch that $p(s)>c$ for $a \geq T_{k}, c \geq t_{0}$ and each $a>0$ or
(3) $\quad \lim \sup _{i \rightarrow \infty} \int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) G\left(s, \alpha a_{0}^{-1}(P(s)) P_{k}(P(s), c)\right) d s>0$ for each $\alpha>0$. Then for each $x(t) \in V_{k}$ we have $\lim _{t \rightarrow \infty} L_{k} x(t)=0$.

Sketch of the proof. Using the properties of $x(t) \in V_{k}$, Lemma 1 and (1) we get

$$
0 \leq \int_{t}^{\infty} a_{n}^{-1} Q_{k+1}(s, t) G\left(s, a_{k} a_{0}^{-1}(p(s)) P_{k}(p(s), c)\right) d s \leq\left|L_{k} x(t)-c\right|
$$

which leads to a contradiction.
Theorem 2. Let all assumptions of Theorem 1 be satisfied. Then, if 3 . is satisfied, the sets V_{k} for $n+k$ even are empty. If 4. is satisfied, then the sets V_{k} for $n+k$ odd are empty.

Denote $\gamma(t)=\sup \left\{s \geq t_{0}: p(s) \leq t\right\}, m(t)=\max \{\gamma(t), t\}, t \geq t_{0}$.
Theorem 3. Let the assumptions 1.- 4. be satisfied and suppose that :
$\left(H_{1}\right)$ To each measurable function $z(t): J \rightarrow R$ there exists a measurable selector $v(t): J \rightarrow R$ such that $v(t) \in F(t, z(t))$ a.e. on J.
$\left(H_{2}\right)$ There exists a continuous function $G_{1}(t, u): J \times[0, \infty) \rightarrow[0, \infty)$ such that : a) $G_{1}(t, u)$ is nondecreasing in u for each fixed $t \in J$;
b) $|F(t, z)| \leq G_{1}(t, z)$ for each $(t, z) \in J \times R$;
c) $\int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, t_{0}\right) G_{1}\left(s, a a_{0}^{-1}(p(s)) P_{k}\left(p(s), t_{0}\right)\right) d s<\infty$ for some $\alpha>0$ and each $t \in J$.
Then (E) has a solution $x(t) \in V_{k}$ defined on some interval $\left[T_{0}, \infty\right)$, $T_{0} \geq t_{0}$ such that $\lim _{t \rightarrow \infty} L_{k} x(t)=c_{k} \neq 0$.

Sketch of the proof. Let $n-k$ be even, let 3 . be satisfied and let $c_{k}>0$. To t_{0} we can find $T_{0} \geq \gamma\left(t_{0}\right)$ such that $\rho(t)>t_{0}$ for each $t>T_{0}$. We seek the desired solution in the set
$Y=\left\{u(t) \in C\left[t_{0}, \infty\right): \alpha_{k} P_{k}\left(t, t_{0}\right) \leq a_{0}(t) u(t) \leq \beta_{k} P_{k}\left(t, t_{0}\right), \alpha_{k}<c_{k}<\beta_{k}\right\}$ as a fixed point of the operator, $A: u(t) \in Y$
$A u(t)=a_{0}^{-1}(t)\left\{c_{k} p_{k}\left(t, t_{0}\right)+\int_{T_{0}}^{t} a_{1}^{-1}\left(s_{1}\right) \int_{T_{0}}^{s_{1}} a_{2}^{-1}\left(g_{2}\right) \ldots \int_{0}^{g_{k-1}} a_{k}^{-1}\left(s_{k}\right)\right.$
$\left.\int_{s_{k}}^{\infty} a_{n}^{-1}(s) Q_{k+1}\left(s, s_{k}\right) v(\varphi(s)) d s d s_{k} \ldots d s_{1}, v(p(t)) \in M(u(\varphi(t)))\right\}, t \geq T_{0}$ \mathbf{s}_{k}
$A u(t)=a_{0}^{-1}(t) c_{k} P_{k}\left(t, t_{0}\right), t_{0} \leq t \leq T_{0}$,
where $M(u(\varphi(t))$ is the set of all measurable selectors from $F(t, u(p(t)))$.

Assume now that all assumptions of Theorem 1 are satisfied. Let $x(t) \in V_{k}, k \in\{1,2, \ldots, n-1\}$. Then we have

$$
\begin{equation*}
0 \leq \int_{t}^{\infty} a_{n}^{-1}(s) G(s,|x(p(s))|) d s \leq\left|L_{n-1} x(t)\right|<\infty \tag{4}
\end{equation*}
$$

Our following considerations are based on this fact. Succesive integrations of (4), by respecting the fact that $\lim _{i \rightarrow \infty} L_{i} x(t)=0$, $i=k+1, \ldots, n-1$, and monotonicity of G and $L_{0} x(t)$, the properties of $\gamma(t)$ and $m(t)$ lead to the inequality

$$
\begin{equation*}
0 \leq R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} x(v)\right|\right) d s \leq\left|L_{0} x(v)\right| \tag{5}
\end{equation*}
$$

for $\left(t_{0} \leq\right) u<v$, where

$$
R_{k}(v, u)=\int_{u}^{v} a_{1}^{-1}\left(t_{1}\right) \int_{u}^{t_{1}^{1}} a_{2}^{-1}\left(t_{2}\right) \ldots \int_{u}^{t_{k-1}} a_{k}^{-1}(t) Q_{k+1}\left(t_{k-1}, t\right) d t d t_{k-1} \ldots d t_{1}
$$

Let

$$
p(v)=\int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(p(s))\left|L_{0} x(v)\right|\right) d s
$$

Then respecting once more the monotonicity of G we get
(6) $0 \leq \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(p(s)) R_{k}(v, u) p(v)\right) d s \leq p(v)$.

On the basis of (5) and (6) we are able to prove the following theorems ([4]).

Theorem 4. Let all assumptions of Theorem 1 be satisfied. Moreover, assume that for each fixed $t \geq t_{0}$

$$
\begin{equation*}
z^{-1} G(t, z) \text { is nondecreasing in } z, z>0 \tag{7}
\end{equation*}
$$

and for $k \in\{1,2, \ldots, n-1\}$

$$
\lim _{v \rightarrow \infty} \sup _{k} R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) c^{-1} G\left(s, a_{0}^{-1}(\rho(s)) c\right) d s>1
$$

for some $c>0$. Then the set V_{k} is empty.
Theorem 5. Let all assumptions of Theorem 1 be satisfied. Moreover, assume that for each fixed $t \geq t_{0}$

$$
\begin{equation*}
z^{-1} G(t, z) \text { is nonincreasing in } z, z>0 \tag{9}
\end{equation*}
$$

and for $k \in\{1,2, \ldots, n-1\}$
(10) $\quad \lim _{v \rightarrow \infty} \sup _{\mathrm{m}(\mathrm{v})} \mathrm{e}_{n}^{\infty}(\mathrm{s}) \mathrm{c}^{-1} \mathrm{G}\left(\mathrm{s}, \mathrm{R}_{k}(\mathrm{v}, \mathrm{u}) \mathrm{a}_{0}^{-1}(\varphi(\mathrm{~s})) \mathrm{c}\right) \mathrm{ds}>1$
for some $c>0$. Then the set V_{k} is empty.
From Theorems 1.,2.,4.,5. we get the final theorem.
Theorem 6. Let all assumptions of Theorem 1 be satisfied.
a) If the assumptions 1.,2.,3. hold and if (7) and (8) or (9) and (10) hold for $k=1,2, \ldots, n-1$, then for n even all solutions of (E) are oscillatory and for n odd each solution $x(t)$ of (E) is either oscillatory or $\lim _{t \rightarrow \infty} L_{i} x(t)=0, i=0,1, \ldots, n-1$.
b) If the assumptions 1.,2.,4. hold and if (7) and (8) or (9) and (10) hold for $k=1,2, \ldots, n-1$, then for n even each solution $x(t)$ of (E) is either oscillatory or $\lim _{t \rightarrow \infty} L_{i} x(t)=0, i=0,1, \ldots, n-1$ or it belongs to the class V_{n} and for n odd each solution $x(t)$ of (E) is oscillatory or belongs to the class V_{n}.

References.

[1] M.Švec, Behaviour of nonoscillatory solutions of some nonlinear differential equations, Acta Mathematica U.C. XXXIX-1980, 115-130.
[2] M.Švec, Oscillatory criteria for differential equations with deviating argument, Hiroshima Math.J. To appear.
[3] V.Šeda, Nonoscillatory solutions of differential equations with deviating argument, Czech.Math.J., 36 (111), (1986),93-107.
[4] M.Švec, Oscillatory properties of the solutions to a differential inclusion of order n. To appear.
[5] M.Švec, Ultimately positive (negative) solutions to a differential inclusion of order n. To appear.

