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NONOSCILLATION THEOREMS FOR A CLASS 
OF NEUTRAL FUNCTIONAL DIFFERENTIAL 

EQUATIONS OF ARBITRARY ORDER 

JAROS J., BRATISLAVA, Czechoslovakia 
KUSANO T., HIROSHIMA, Japan 

Vie consider the neutral functional differential equation 

(Ao) -^n [x(t) - Xx(t-x)] + of(t. x(g(t))) = 0, 

dtn 

where n k 2, a = +1 or - 1 , X(^l) and T are positive constants, and g : [t0,°°) -*F and 
f - [tn,°°)xlR + 1R are continuous functions such that lim g(t) = «>, uf(t, u) > 0 for 
(t,u) € [tn,°°)x 1R and f(t, u) is nondecreasing in u for each fixed t £ tQ. 

It is easy to see that the following four types of asymptotic behavior at 
infinity are possible for nonoscillatory solutions x(t) of (Aa): 
(I ) lim x(t) = 0; 

t-*» 
lim 
t-x» 

{ n ) k lim x(t)/t = const t 0 for some k e {0, 1 n-1}; 

{m)p lim x(t)/t£ = 0 and lim x(t)/t£_1 = ~ 0r -~ for some £ € { 1 , 2 , . . . , n-1}; 4 t-x» t-*00 

(IV) lim x{t)/t"~l = co or -». 
t-~ 

A natural question then arises: Is it possible to characterize the classes of 
nonoscillatory solutions of (Aa) having the asymptotic behavior ( I ), ( n ) . , (HI)» 
and (IV), respectively? 

Our objective here is give a partial answer to the above question. Our main 

results are as follows: 

THEOREM 1. Let 0 < X < 1. If there exist constants u 6 (0, X) and a t 0 such 
that 

(1) J>Vt/T|f(t, aX^^JIdt^, 
then equation (Aa) has a decaying nonoscillatory solution x(t) with the property 

(2) x(t) = const-Xt/T + o(Xt/T) as t -> oo. 

THEOREM 2. Equation (Aa) has a nonoscillatory solution x(t) satisfying 

(3) lim x(t)/tk = const f 0 for some k € {0, 1, ..., n-1} 
t-*» 

if 0 < X < 1 and 

(4) 
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Í tn"k"1|f(t, a[g(t)]k)|dt < oo for some a t 0 



or if X > 1 and 

(5) | t ^ ' V f t , a[g*(t)]k)|dt < - for some a f 0, 

where g*(t) = max{g(t), t}. 

THEOREM 3. (i) Let 0 < A < 1 and let £ 6 {1, 2, ..., n-1} be such that 
n—2—1 

(-1) a =1. Equation (Aa) has a nonoscillatory solution x(t) satisfying 

(6) lim x(t)/t^ = 0 and lim x(t)/tl~l = °° or -«>. 
t-x» t-x» 

if 

(7) | t ^ ' V U . a[g(t)]£)|dt < «, for some a f 0 

and 
(8) J tn"£|f(t, b[g(t)]*"X)|dt = » for all b ? 0. 

(11) Let A > 1 and let I € {1, 2, ..., n-1} be such that (-l)n~l~lo = -1. Equation 
(Aa) has a nonoscillatory solution x(t) satisfying (6) if 

(9) | t ^ ' V u . a[g*(t)]£)|dt < « for some a r 0 

and 

(10) | tn"£|f(t, b[g(t)]£"1)|dt = » for all b ? 0. 

THEOREM 4. Let A > 1. Equation (A ) has a growing nonoscillatory solution 
x(t) such that 

(11) x(t) = const-At/T + o(At/T) as t -̂  -

if either 

(12) | tn'1|f(t, aAg*(t)/T)|dt < oo for some a f 0 

or 

(13) | V t / T | f ( t , aAg*{t)/T)|dt < oo for some y 6 (1, A) and a f 0. 

These theorems are proved by solving, via the Schauder-Tychonoff fixed point 
theorem, "integral-difference" equations of the types 

(14) x(t) - Ax(t-T) = c + (-l)""1^;,;.1})! f(s, x(g(s)))ds, 

(15) x(t) - Ax(t-r) = c(t-T)k/ki [or c(t- Tj^/tk- 1)!] 

+ ^ ' ^ 1 J ^ x(g(r)))drds, 

(16) x(t) - Ax(t-T) = -af •(n".
Si)i f(s> x(g(s)))ds, 

c and T being suitably chosen constants. For example, the proof of Theorem 4 under 
the condition (13) proceeds as follows. Suppose that a > 0 in (13). Let y € (u, A) 
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be fixed and choose c > 0 and T > tQ so that 2Xc/(X-v) £ a, 

T n = min { T - T , inf g(t)} > tn, t " "
1 ^ 1 < v t / T for t > T, and 

u t>T u 

|Vt/Tf(t, ax**(t)/T)dt < c. 

Define the set X c C[TQ,°°) and the mapping F : X -»• C[T0,°°) by 

(17) 

and 

(18) 

X = {x Є C[T
0
,») : |x(t)| < cv

t / т
 for t S T

Q
} 

F x ( t ) = -°\ (
(

n
"-

S
l)!

 f
<

s
- x(g(s)))ds. t > T. 

Fx(t) = 0. T
Q
 < t < T. 

where x : [
T

n
»°°) -»--R is given by 

(19) 
x(t) 

Лc
 л
t/т - I X x(t+iт), t > T, 

i=l 

x(t) = x(T), T
Q
 < t < T. 

It can be shown that F maps X continuously into a compact subset of X, so that there 

exists a fixed element £ 6 X of F by the Schauder-Tychonoff theorem. Since the 

function £(t) satisfies £(t) - AC(t-r) = £(t) for t > T, it turns out that £(t) is 

a solution of (16), and hence a solution of (Aa) on [T,°°). That £(t) grows like a 
t/r constant multiple of A as t •> °° is an immediate consequence of its definition 

(19). Note that £(t) satisfies ^(t) - X^(t-T) ->• -« as t -> °°. 

If, on the other hand, (12) is satisfied for some a > 0, then the desired 

solution of (Aa) in Theorem 4 is obtained as a solution rj(t) of the 

integral-difference equation (14) with c = 0. To see this it suffices to choose 

c > 0 and T > t n so that 2Xc/(X-l) < a, T n = min { T - T , inf g(t)} > tn and 

a, u t>T u 

t f(t, aX9 ^ )/T)dt < c, and then to apply the Schauder-Tychonoff theorem to the 

mapping 

(20) 
Gy( t) - (-^""^ptn".^)! f(-» Ў(g(s)))ds. t > т, 

Gy(t) = Gy(T), T
Q
 < t < T 

defined on the set Y = {y e C[T
n
,°°) : |y(t) | < c for t ^ T

n
) , where 

(21) 
Ў(t) 

'0 

;^n-X
t/T
- Ir

1
y(t+1x), t >T, 

i=l 
ÿ(t) = ў(т), т

0
 < t < т. 

It is clear that n(t) - An(t- T ) -»• 0 as t -*- °°. Since (12) implies (13), the 

condition (12) guarantees the existence of two different types of exponentially 
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growing solutions £(t) and n(t) such that 11m j£(t) - A£(t-T)| = °° and 
t-*» 

lim [n(t) - Xfi(t-T)] = 0, respectively. 
t-**> 

It would be natural to expect that analogues of the above theorems hold for the 

"companion" equation 

(Ba) - ^ n - W ^ + *x(t-T)] + af(t,x(g(t))) = 0. 
dt 

However, proving this conjecture does not seem to be an easy task; so far we have 

been able to prove only the following result which is an analogue of Theorem 2. 

THEOREM 5. Let A > 0, X f 1 and k t {0, 1, ..., n - 1}. If condition (4) holds 

for some a ^ 0, then equation (Ba) has a nonoscillatory solution x(t) such that 

0 < lim inf|x(t)|/tk, lim sup|x(t)|/tk < ». 

There is no essential difficulty in extending the above results to more general 

equations of the form 

-^-[x(t) ± X(t)x(x(t))] + of(t. x ( g A t ) ) , ..., x(gN(t))) = 0, 

dtn l n 

where X(t), x(t) and g.(t), 1 <= i <= N, are continuous functions on [tn,°°) such that 

X(t) is positive and bounded, x(t) is strictly increasing, lim T(t) = «> and 
t-K» 

lim g.(t) = co, 1 < i < N. 
t-K» n 

A systematic study of the existence and asymptotic behavior of nonoscillatory 

solutions of neutral functional differential equations was initiated by Ruan [4] and 

followed by Jaros7 and Kusans [2, 3]. For a result ensuring the existence of 

decaying nonoscillatory solutions we refer to Gopalsamy [1]. 
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