EQUADIFF 7

Ferenc Fazekas

Remarks to chaotic vibration in nonlinear dynamical systems

In: Jaroslav Kurzweil (ed.): Equadiff 7, Proceedings of the 7th Czechoslovak Conference on Differential Equations and Their Applications held in Prague, 1989. BSB B.G.
Teubner Verlagsgesellschaft, Leipzig, 1990. Teubner-Texte ur Mathematik, Bd. 118. pp. 243--247.

Persistent URL: http://dml.cz/dmlcz/702356

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

REMARKS TO CHAOTIC VIBRATION IN NONLINEAR DYNAMICAL SYSTEMS
 OF TECHNICS

FAZEKAS F., BUDAPEST, Hungary

0. Non-linear systems (nl.Ss) and their phenomena have basic importance in several sciences of our epoch. Fortunately, recent scientific results (e.g. ones about strange attractors) assured increasing efficiency for their investigations. It came to light, that ni.Ss already at small degree of freedom ($f \geq 2$) and at certain constellation of parameters - show irregular, aperiodical, s.c. chaotic behaviour (ChB), more exactly stochastic motion at deterministic noise. This appears as very sensitive to the initial conditions, that is small changes of them cause large ones in trajectories of motion which are mixed finally in complicated manner. These are important also for the engineers at handling nl. vibrating (v.) Ss.
1. A very ample set of technical vibrating systems can be described by the non-linear differential equation (DE) $[1-3]$

$$
m \ddot{x}+2 d_{0} \dot{x}+k_{1} x+k_{3} x^{3}=f_{0}+f_{1} \sin \omega t_{(0<m, \omega)}+f_{2} \cos \omega t
$$

with axial swing out x (or angular one φ), time t, mass m (or inertial moment θ), reversion k_{1} (lin.) and k_{3} (cub.), viscose damping $d=2 d_{0}$ (lin.), amplitudes f_{1}, f_{2}, f_{0} and circular frequency of exitation forces (period., const., resp.). - The eight parameters ($m, 2 d_{0}, k_{1}, k_{3} ; f_{0}, f_{1}, f_{2}, \omega$) can be reduced e.g. into five by special transform [11]

$$
\begin{align*}
& q=x \sqrt{\left|k_{3}\right| / m} \hat{=} \times \sqrt{\left|k_{3}\right|},<k_{1}=k_{1} / m, \delta_{0}=d_{0} / m, \tag{1,2}\\
& \left.\alpha_{i}=-\frac{s_{3}}{m} \sqrt{\left|\kappa_{3}\right|} \cdot f_{i}\right\rangle, \text { namely }\left(w i t h s_{3} \hat{=} \operatorname{sign} k_{3}\right) \\
& s_{3}\left(\ddot{q}+2 \delta_{0} \dot{q}+\kappa_{1} q_{1}\right)+q^{3}=\alpha_{0}+\alpha_{1} \sin \omega t+\alpha_{2} \cos \omega t . \tag{1,3}
\end{align*}
$$

There are important for the practice
α) the Duffing's case (Dc) $\mathrm{k}_{1}>0, \mathrm{k}_{3}>0 ; \beta_{1}$) the general pendulum's case $k_{1}>0, k_{3}<0$ and β_{2}) the math. one $k_{1}>0$, $k_{3}=-k_{1} / 6$ (for small angles $|q|<\varepsilon$); γ) the Holmes' case (Hc) $\left.k_{1}<0, k_{3}>0\right)$, etc.

- Referring to our detailed investigation on this large system given by (1), there will be shortly treated only some special cases showing s.c.
chaotic behaviours and some investigating methods to them.

2. The non-linear dissipative ($\delta_{0}>0$, so $E=H-D$), free oscillater (at $\forall \alpha_{i}=0$ and $s_{3}=1$) $[1,6]$

$$
\ddot{q}+2 \delta_{0} \dot{q}+\kappa_{1} q+q^{3}=0 \text {, resp. } \hat{\equiv}\left[\begin{array}{l}
p \\
\dot{p}
\end{array}\right]=\left[\begin{array}{c}
p \\
-2 \delta_{0} p-q\left(\kappa_{1}+q^{2}\right)
\end{array}\right] \hat{=} f(q)
$$

$$
\begin{equation*}
<p=\dot{q}, \quad e^{*} \hat{=}[q, p]> \tag{2,1}
\end{equation*}
$$

having the derivatives $F_{i}=F\left(\ell_{i}\right) \triangleq\left(\frac{d f}{d e^{*}}\right)=\left[\begin{array}{cc}0 & 1 \\ -\kappa_{1}-3 q^{2} & -2 \delta_{0}\end{array}\right]_{i}$
at the fixed point (s) l_{i} of rest $0 \hat{=} \dot{E}=f\left(\ell_{i}\right)$ and the characterristical equations $D_{i}(\lambda) \hat{=}\left|\lambda E-F_{i}\right| \hat{=} \lambda^{2}+2 \delta_{0} \lambda+\left(\kappa_{1}+3 q^{2}\right)=0 \quad(2,3)$ - for linearizations in small at ρ_{i} - results at $\kappa_{1} \hat{=} \omega_{0}^{2}>0$ (Dc) by (o) $\lambda=-\delta_{0} \pm i \sqrt{\omega_{0}^{2}-\delta_{0}^{2}}$ the sole $\ell_{0}=0$ as an attractor (stable focus (for $\delta_{0}<\omega_{0}$) $\frac{0}{\text { node (for }} \delta_{0}>\omega_{0}$)); but at $\kappa_{1}=-\omega^{2}<0$
$(H c)$ it ramifies, sc. "bifurcates" by $(1,2) \lambda=-\delta_{0} \pm i \sqrt{2 \omega_{0}^{2}-\delta_{0}^{2}}$ into two attractors $\ell_{1,2}= \pm \omega_{0} e_{1}$ (stable focuses (for $\omega_{0} \sqrt{2}>\delta_{0}$)
nodes (for $\omega_{0} \sqrt{2}<\delta_{0}^{2}$)) - with trajectories sundered by a separatlix (for $\delta_{0}=\omega_{0} \sqrt{2}$) - and into a hyperbolic point (instable saddle)

$$
\begin{equation*}
e_{0}=0 \quad[4,6] \tag{2,4}
\end{equation*}
$$

- In a conservative system ($\delta_{0}=0, H=c$), the sole stable centre ℓ_{0} at $\kappa_{1} \hat{=} \omega_{0}^{2}>0$ ($D C$) by (o) $\lambda^{0}= \pm i \omega_{0}$ "bifurcates" into two stable centres $e_{1,2}^{0}= \pm \omega_{0} e_{1}$ at $k_{1} \hat{=}-\omega_{0}^{2}<0 \quad(H C)$ by $(1,2) \lambda= \pm i \sqrt{2} \omega_{0}$ - with trajectories by the separatrix $p= \pm q \sqrt{\omega_{0-q}^{2} / 2}$ (at $H_{0}=0$)
- and into an instable saddle

$$
\begin{equation*}
e_{0}=0 \tag{2,5}
\end{equation*}
$$

3. A) The non-linear forced oscillator

$$
\begin{aligned}
& \ddot{q}+2 \delta_{0} \dot{q}+\omega_{0}^{2} q+\kappa_{3} q^{3}=\alpha_{1} \sin \omega t+\alpha_{2} \cos \omega t \hat{\equiv} \\
& \quad \hat{y} \alpha^{\prime} \sin (\omega t+\varphi) \\
& <q=x, \quad \kappa_{1}=+\omega_{0}^{2}>0, \quad \kappa_{3}=k_{3} / m \gtreqless 0 ; \\
& \alpha_{i}=f_{i} / m, \quad \alpha_{0}=0>
\end{aligned}
$$

responses to the first approach $q_{1}(t)=q_{0} \sin \omega t\left(0<q_{0}, \quad 0<\omega=\right.$?) - by Duffing's suppositions (s) $q_{0} \hat{=} q_{0} \omega^{-2}\left(\omega_{0}^{2}+\frac{3}{4} \kappa_{3} q_{0}^{2}{ }^{-} \alpha_{1} / q_{0}\right)=q_{0}$, (c) ${ }_{12} \hat{=} 2 \delta_{0} \omega^{\prime}-\alpha_{2} / q_{0}=0$ - with the second approach and with circular frequency equations [2]

$$
\begin{aligned}
& q_{3}(t) \hat{\triangleq} q_{0} \sin \omega t-\kappa_{3} q_{0}^{3} / 36 \omega^{2} \sin 3 \omega t \text { within } \omega^{2}=(3,2 a, b) \\
& =\left(\omega_{0}^{2}+\frac{3}{4} 3 q_{0}^{2}\right)-\alpha_{1} / q_{0}, \quad 2 \delta_{0} \omega=\alpha_{2} / q_{0}<\operatorname{ctg} \varphi=\alpha_{1} / \alpha_{2}= \\
& =\left(\omega_{0}^{2}-\omega^{2}+\frac{3}{4} \kappa_{3} q_{0}^{2}\right) / 2 \delta_{0} \omega, \quad \alpha=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}>\ldots
\end{aligned}
$$

The resonance curve $\left|q_{0}\left(\omega^{\prime}\right)\right|$ at $0<2 \delta_{0}<\varepsilon$ shows for the cases $\kappa_{3} \gtrless_{0}$ a finite "beak" bending to a parabola and for $\kappa_{3}=0$ (lin.) the extremurn $\left|q_{n}\right|_{\max }=\left|\alpha_{2}\right| / 2 \delta_{0} w_{0}$. One can refer here to stable and
instable solutions, to jumps, to nysteresis loop [110].
B) For the special case $\omega_{0}=0$ (at $0<2 \delta_{0}=\delta, 0<\kappa_{3} \ll 1$)
(const.)

$$
\begin{equation*}
\ddot{q}+\delta q+\kappa_{3} q^{3}=\alpha \sin (\omega t+\varphi) \tag{3,4a}
\end{equation*}
$$

a particular (approximate) solution of inhom. DE 1 s - frim (3,2) by derivation

$$
\begin{align*}
& \hat{z}_{1}(t) \hat{=} \dot{q}_{3}(t)=q_{0} \omega \cos \omega t-\frac{\kappa_{3} q_{0}^{3}}{12} \cos \text { s } \omega t \text { with } \\
& \omega^{2}=\frac{3}{4} \kappa_{3} q_{0}^{2}-\alpha_{1} / q_{0}=\alpha_{2}^{2} / \delta^{2} q_{0} ; \tag{3,4b-c}
\end{align*}
$$

the general (such) one of hom. DE - got by Poisson's small parametrical method

$$
\begin{align*}
& \left(\ddot{q}_{0}+\delta \dot{q}_{0}\right)_{0}+k_{3}\left(\ddot{q}_{1}+\delta \dot{q}_{1}+q_{0}\right)_{0}+o\left(r_{3}\right) \approx 0 \text { at } \\
& \dot{q}(t) \hat{=} \dot{q}_{0}(t)+k_{3} \dot{q}_{1}(t)=z_{20} e^{-\delta t}-k_{3} \frac{z_{20}^{3}}{2 \delta^{4}} e^{-3 \delta t} \tag{3,5a-b}
\end{align*}
$$

The general (approximate) solution $z_{2}(t) \hat{=} \dot{q}(t)$ ot Erom. $D E$ (3,4a) at an arbitrary initial value $\dot{q}_{0}(0)=z_{20}$ and its tendence at $t \rightarrow+\infty$ is as follows:

$$
\begin{equation*}
z_{2}(t) \hat{=} z_{2}(t)+\hat{z}_{2}(t) \rightarrow 0+\hat{z}_{2}(t)=\hat{z}_{2}(t+T) \tag{3,5c}
\end{equation*}
$$

so the periodic function $\hat{z}_{2}(t)$ is the s.c. limit cycle \hat{G}_{2} of velocity $q(t)$ for asymptotic motion $z_{2}(t)$ of $D E$.
C) Making on the plan $F \ni z \hat{=}\left(z_{1}, z_{2}\right) \doteq(q, \dot{q}) \triangleq \varrho$ a s.c.

Poincaré-mapping [4] on the time series $t_{i}=t_{0}+i T$ (at $0 \leqq t_{0}<T=$ $=2 \pi / \omega, 0<k_{3} \ll 1$ and $0<\varepsilon \hat{=} e^{-\delta T}<1$)

$$
\begin{aligned}
& e_{1} \hat{=} \ell\left(t_{1}\right) \approx \hat{e}\left(t_{0}\right)+\check{e}\left(t_{0}\right) e^{-\delta T} \hat{=} \hat{e}_{0}+\check{e}_{0} \varepsilon, \\
& e_{2} \hat{\equiv} e\left(t_{2}\right) \approx \hat{e}_{0}+\check{e}_{0} \varepsilon^{2}, \ldots, e_{n+1} \hat{=} e\left(t_{n+1}\right) \approx \hat{e}_{0}+\check{e}_{0} \varepsilon^{n+1}= \\
& =\hat{\varrho}_{0}+\left(e_{n}-\hat{e}_{0}\right) \hat{\equiv} P\left(\varepsilon_{n}\right) \rightarrow \hat{e}_{0} \hat{=} P\left(\hat{e}_{0}\right) \text { at } n \rightarrow \infty,
\end{aligned}
$$

consequently an arbitrary point $\hat{\varrho} \in \hat{G} \subset F$, so the whole limit cycle (LC) curve $\hat{Q}(t): \hat{G}=P(\hat{G})$ too is a stable (fixed) point/path of the asymptotic motion on the plane $\varrho \hat{\cong}(q, \dot{q})$ determined by the $D E(3,4 a)$. Remarkable that LC $\hat{e}(t) \quad(0 \leqq t<T=1)$ is a closed planar curve $\hat{G} C F$ with two loops (because of $\sin \omega t$ and $\sin 3 \omega t$); but it is projection of the closed space curve \hat{H} without loops in the phase space $S \ni \sigma \hat{=}(q, \dot{q}, \omega t)$.
D) Decreasing the frictional parameter $\delta\left(=\alpha_{2} / \omega q_{0}\right.$, so increasing the circular frequency ω) under the values of certain sequence $\delta_{1}>\delta_{2}>\ldots>\delta_{n}>\ldots \hat{N}_{i}>\delta_{\infty}(>\ldots)$, then sequential point-bifurcations $\hat{E}_{0} \rightarrow \infty \hat{E}_{\hat{E}_{2}}^{\hat{R}_{1}} \ldots$ (period-duplications of LCs)

$$
F \supset \hat{G}_{1} \hat{=} \hat{G}_{T} \rightarrow \hat{G}_{2 T} \hat{=} \hat{\mathrm{G}}_{2} \rightarrow \ldots \rightarrow \hat{\mathrm{G}}_{\mathrm{n}} \rightarrow \ldots \rightarrow \hat{\mathrm{G}}_{\infty} \quad(\rightarrow \text { chaos }) . \quad(3,7)
$$

Under δ_{∞}, the (general spatial) asymptotic motion $\sigma(t)$ becomes un-
periodical, its trajectories $\sigma_{01}^{(\infty)}(t)$ very sensitively depending from the initial values $\sigma_{o i}^{(\infty)}\left(t_{\rho}\right)=\sigma_{o i}^{(\infty)}$ adhere to a funny strange attractor (surface) $S \supset \hat{H}: \hat{\sigma}_{\hat{\sigma}}(\infty)(t)$, similarly to the projected (planar) asympt. motion $e^{(\infty)}(t)$, its trajectories $\hat{e}^{e^{(0)}}{ }^{(\infty)}(t)$ ad-
hering to the strange attractors (curve) $F \supset \hat{G}_{\infty}: \hat{e}^{(\infty)}$ (on which the points $\hat{e}_{i}^{(\infty)}$ jump at random); practically, the forecasting of the asympt. motion $e^{(n)}(t)$ and still more one of $\sigma^{(n)}(t)$ is impossible for $n>N$ [4].
4. A) In the former (mechanical) nl. vS (3.B-D), the developping of the chaos happened on the s.c. Feigenbaum-way (Fw.), namely through an infinite sequence r_{n} (with heaping value r_{t}) of period-doubling bifurcations (at the s.c. control parameter (cp.) $\mathrm{r} \hat{\equiv} \delta$). A similar chaotic formation presents itself in the (electronic) forced nl. vS Van der Pol given by the $D E$, or the equivalent SDEs

$$
\begin{aligned}
& \ddot{u}-\mu\left(1-u^{2}\right) \dot{u}+u=a \mu \cos \omega t, \quad(c p .: r \hat{=} a) \\
& \dot{u}=\mu\left[v-\left(u^{3} / 3-u\right)\right], \quad \dot{v}=-u / \mu+a \cos \varphi, \quad \dot{\varphi}=\omega,
\end{aligned}
$$

treated in detail in our [11c], together with variants. A such one describes the s.c. heart-arithmy meaning heartbeats with random variable time intervals (4,3). - The most simple nl. SDEs of 3 variables defines the s.c. Rössler-model [4]:

$$
\dot{x}=-(y+z), \quad \dot{y}=x+a y, \quad \dot{z}=b+x z-c z \quad(c p .: r \hat{=} c) \quad(4,4 a-c)
$$

has also a chaotic advance on Fw., further much S too [7].
B) A possible other way guides - by increasing of r - at a certain r_{t} to the chaotic state; a typical example is the (hydrodynamical) Lorenz-model $[4,7]$. - A third s.c. Hopf-Landau-way has a sequence r_{n} without r_{t}, then a fourth s.c. Ruelle-Takens-Newhouse-way contents 2 (or 3) r-values before r_{t} (hydrodyn. ones), etc.
C) As in 3., one of ten studies the ChB by Pm. (of 1-,2-dim., with a cp. r), e.g. in l-dim. case by $q_{t+1}=f\left(r, q_{t}\right)$ at q_{0} and $t=0,1,2$, ..., or specially by the logistic mapping (Lm) [11e]

$$
\begin{equation*}
q_{t+1}=r q_{t}\left(1-q_{t}\right) \triangleq f_{L}\left(r, q_{t}\right), \quad\left(0 \leqq q_{t} \leqq 1, \quad 1<r<4\right) \tag{4,5}
\end{equation*}
$$

and qualify its fixed points $\hat{q}_{i} \hat{\equiv} f_{L}\left(r, \hat{q}_{i}\right)=0$, ($r-1$)/r with Ljapunov's stability number [lle] $\lambda_{2}=\ln \mid f\left(\mathcal{L}_{q}\left(r, \hat{q}_{2}\right) \mid \leqq 0\right.$ at $1<r \leqq r_{1}$; similarly the $\hat{\mathrm{a}}_{2}$'s bifurc.

$$
\begin{align*}
& \hat{\mathrm{q}}_{j} \hat{=} \mathrm{f}_{\mathrm{L}}^{(2)}\left(\mathrm{r}, \hat{\mathrm{a}}_{\mathrm{j}}\right)=\hat{\mathrm{q}}_{3}, \hat{\mathrm{a}}_{4} \text { with } \lambda_{j}=0,5 \ln \left|\mathrm{f}_{\mathrm{Lq}}{ }^{2}\left(\mathrm{r}, \hat{\mathrm{a}}_{\mathrm{j}}\right)\right| \leq 0 \\
& \text { at } r_{1}<r \leqq r_{2} ; \ldots ; r_{\infty}=3,5699 \ldots \tag{4,6}
\end{align*}
$$

For r_{k}, one has the limit [11e]

$$
\lim \left(r_{k}-r_{k-1}\right) /\left(r_{k+1}-r_{k-1}\right)=4,6690 \ldots=\delta, \quad(4,7 a-b)
$$

so $r_{\infty} r_{k}=c \delta^{-k}$. This Feigenbaum's constant is universal, being for large set of 1 - and higher dim. mappings [11d]. Remarks about strange attractors and ones of fractal dim. (Hausdorff) [11e].

References

[1] A.V. Arnold: Matemat. metody classich. mechaniki. Nauka, 1978.
[2] A. Blaquière: Nonlin. system analysis. Acad. Press, 1966, NY.
[3] J.J. Stoker: Nonlin. vibrations etc. 1960, New York.
[4] Szépfalusy-Tél (edit.): A káosz. Akad. Kiadó, 1982, Budapest.
[5] Poston-Steward: Catastrophe theory etc. Pitman, 1978, London.
[6a,b]. A.V. Arnold: Közönséges diff. egyenletek. A diff. egyenletek geometriai fejezetei. Transl.Müsz. Könyvkiadó, 1987-8, Budapest.
[7] F.C. Moon: Chaotic vibrations. J. Wiley, 1988, New York.
[8] M.J. Thompson, H.B. Stewart: Non-linear dynamics and chaos. Wiley, Chister, 1986.
[9] J. Gleick: Chaos (Making new science). Heinemann, 1988, London
[10] I. Stewart: Does God play dice? (The mathematics of chaos.) Blackwell, 1989, Oxford.
[lla,e] F. Fazekas: Series of papers "Chaotic behaviour caused by bifurcations at non-linear dynamics systems" Parts I-V, publ. at the TU-Budapest in the "Bulletins for Applied Mathematics" (BAM) 556(L) p.7-20, 587(LI) p.29-46, 638(LII) p.239-250, 639 (LIII) p.9-42, 1988-89; it will be continued.
[12] F. Fazekas: Contributions to chaotic behaviours of certain nonlinear vibrating systems. Proc. of 18th Yugosl.Congr.f.Mech., Part A, p.85-88, Vrnjacka Banja, 1988.
[13] F. Fazekas: Contributions to non-linear vibrations in traction vehicles. Proc. of Semtrak' 88 conf., p.55-60, 1988, Zakopane.
[14] F. Fazekas: Chaotic vibration in parametric non-linear systems as maybe in motor vehicles. Proc. of lst Mini Conference on vehicle system, 16 p., 1988, TU-Budapest.
[15] F. Fazekas: Mathematical methods to investigate chaotic vibrations of parametric non-linear dynamic systems, Parts I-II . Guest lecture in the U-Trieste, manuscript, 1989.
[16] F. Fazekas: Chaotic vibrations in parametric non-linear dynamic systems. Proc. of 3rd Conf.f.Mechanics, p.69-74, 1989, Skoplje.

