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ON THE COUPLING OF FINITE ELEMENTS 
AND BOUNDARY ELEMENTS 

FOR TRANSONIC POTENTIAL FLOW COMPUTATIONS 

BERGER H.,WARNECKE G.,WENDLAND W., 
STUTTGART, FRG 

For the improved treatment of the far field boundary conditions in nonlinear compressible transonic 
flow computations around airfoil profiles we suggest the following method. Assuming that the far 
field is subsonic, the full potential equation may be linearized to the Prandtl-Glauert equation 
in the exterior of a bounded region Q containing the supersonic flow regions. The solution of 
the Unear equation in the exterior can easiUy be reduced to a boundary integral equation on the 
boundary Too- (see Figure 1). This leads to a coupled finite element/boundary element method 
for the flow problem. The numerical results show a considerable improvement in comparison with 
the commonly used method of taking the normal projection of the far field flow on Too [3], [5], 
[7] .With our method we obtain results which show that the computational FEM domain can be 
chosen much smaller when the coupling is used. In the following, we describe briefly the method, 
a more detailed description including error analysis will be given in [4], 
A simple model for transonic flows with weak shocks is the full potential equation 

div (/>(|Vu|J) Vu) = 0 (1) 

The density function is obtained under the assumption of isentropic flow from Bernoulli's law as 

p(s) = po 11 JTT~3 I where /c denotes the adiabatic exponent and ao the speed of sound in 
\ 2ao / 

the motionless gas. In order to have a flow potential in Q we have to introduce a sUt E across 
which we assume Vw to be continuous, whereas the potential has a finite constant jump /?, which 
gives the circulation of the flow and which is determined by the Kutta- Joukowski condition. This 
implies a smooth flow with a stagnation point at TE (see [6]). For convenience we take the sUt 
from the trailing edge point TE. On the profile, we take the non 
Figure 1 
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penetration condition dnu := Vu • n = 0 on Vp where n denotes the normal vector. The 
simplest approximation of the exterior boundary condition is 

P(\Vu\2)dnu - P(\voo\2) voo - a on rTO. (2) 

This condition was used in [3], [5] and [7]. 

Boundary condition (2) will be compared to the following coupling procedure. For the linear 
Prandtl-Glauert equation we introduce a perturbed potential 

(p := u — Voo'X — — arctan (y]1 - M^\ x2 / xy J in Uc. (3) 

This leads to the following transmission problem. 
Find the functions u,(p and the constant /? satisfying the 

Interior full potential problem, 

(4) 

div(p(\Vu\2)Vu) = 0 in ӣ , 
дnu = 0 on Vp , 

u+~u~ = ß onE, 

ð „ u + - ð „ u - = 0 

F(ß) = | V u + ß в - | V u - ß E = 0, 

Exterior Prandtl-Glauert problem, 

(1 - Ml) <pXlXl -r <pX2X2 - 0 in £lc , 
Vy? = o(l) for \x\ —> co 

ip+ _ (p- — o on_c, 

dn<p+-dn<p- = o 

(5) 

Coupling conditions on r ^ , 

u = ip + Voo-x + —- arctan (y/1 - M^ x2 / xx J , 

p(\Vu\2)0nu = p(\voo\2) { ( ( l - M ^ V ? * . , ^ ) >n + voo-n (6) 

+ L v a rc*an ( ^ 1 - M £ .r2 / .n ) • n } . 

The exterior Prandtl-Glauert solution u(x) is given by (3) where the perturbation potential <p is 

represented via Green's theorem as 

^ ( x ) = / ^ i Ч>Ш(x,y)dsy , J G(xìУ) X(y)dsy 
y/l - Ml ^oo PooyJ\ - Ml ^oo 

(7) 

for x 6 Qc in terms of the Cauchy data ip^^ and 

Ky) = Poo{(l-M2

00)(pyin1(y) + ^y2n2(y)} for y e T ^ . (8) 

Here G(x,y) and K(x,y) are given by 

ht \ ! / -/ \ *v \ ( ^ i - y i ) n i ( y ) + ( x 2 - y 2 ) n 2 ( y ) 
G ( x , y ) : = ~ 2 ~ ^ r ( a ; ' y ) ' A ( X ' y ) 2 * f ( * - y ) ' ( 9 ) 

where 
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For the coupled FEM-BEM procedure we introduce a family of quasi-regular triangulations of 
(2\S with maximum meshwidth h and associated piecewise linear continuous finite elements Vh C 
W1,2(Q\E) satisfying additionally v£ — vj~ = /? on E. On rTO we consider a family of continuous 
piecewise linear periodic splines j / ^ subject to particions of maximum meshwidth h of the arc 
length. The coupled boundary value problem (4), (5), (6) is then approximated by: 
Find Uh G Vh, ^h € V?h> ^ ^ where Uh satisfies the speed condition |V«/.|2 < SQ < -^- and a 
modified entropy condition 

- / Vuh • V7Thi/>dx < K / TThHx + o(l)max \i/;(x)\ 
Jtt In r€ft 

For h —i• 0 anfl? /or a// ^ € CJ°(ft) itf-i/i ^ > 0 .swell t^at Me variational equations 

a(uh\uh,Vh) - (A ,̂v^>= (/>oo(voo + —-Varcfan ft/l - M2, x2 / xij) • n,v/.y , 

(GAj, ̂ > = - / [ I - K] (uh - t/oo • x - ^arc/an (^/l - M^x2 / xM , tf-\ 

ana* Me Kutta-Joukowski condition 

\Vut\TE = IVt.jg.jj (11) 

ore satisfied for all «/, 6 V* and «// ̂  6,i>i(roo). Here we have used the notations 

(v,tj>) := fr<xy v(x)tl>(x) dsx, g(u|u,i;) := /„ p(|Vu|')Vu • Vudx, 

GX(x) := 2Jr X(y)G(x,y)dsy/ ( p ^ l - M J , ) , 

KV(x) := 2 f v(y) K(x,y) ds, / Jl - Ml. 
«Toc 

7T/j denotes the interpolation operator associated with Vh. The above coupled problem is an exten­
sion of the linear coupling method of Johnson/Nedelec [8] to nonlinear equations. For the solution 
of the nonlinear equations we use an improvement by Berger [2] of the conjugate gradient method 
by Glowinski/Pironneau [7]. Some error analysis for this coupled FEM-BEM method will be pre­
sented in [4]. 
For two standard test cases of flows around the NACA-0012 profile, we made some numerical com­
putations. We compare the use of the boundary condition (2) in the coupling method described 
above. Two different sized C-grids were used, a large grid with 115 by 15 nodes and Too with 6 
chord lengths distance from the profile and a smaller grid with 111 by 13 nodes and Too 3 chord 
lengths distance. The lift coefficients ca were calculated from the pressure distribution along the 
profile for a purely subsonic flow with Moo = 0.63, a = 2°. We obtained 0.3392 for the large and 
0.3403 for the small grid versus 0.3333 due to Kroll/Jain [9] with a potential and an Euler code. 
(Without coupling 0.3455 for the large and 0.3639 for the small grid.) For a transonic flow with 
Moo = 0.8,« = 1.25° we obtained 0.4455 for ca on the large and 0.4485 on the small grid via 
lift coefficients between 0.5 and 1.1 due to Rizzi/Viviant [10] and between 0.35 and 0.37 due to 
AGARD [1] obtained with Euler equations. 

230 



Figuгe2 

Mach numbsr dlstributionв (laгgo grid) Mach number distributions (small grid) 
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