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CONDITION NUMBER ESTIMATES 
FOR ELLIPTIC DIFFERENCE PROBLEMS 

WITH ANISOTROPY 

AXELSSON O., NIJMEGEN, The Netherlands 

1. Introduct ion 

Consider the solution of a linear system Ax. = b, where A is symmetric and positive definite by 

an iterative method, such as a preconditioned conjugate gradient or preconditioned Chebyshev iterative 

method. Let A be split as 

A = D-L-LT 

where D is the (block) diagonal of A and L is the strictly lower (block) triangular part of A. 

As preconditioner, i.e. an approximation of A with low computational complexity for the solution 

of systems with it, we shall analyse the generalized SSOR method (see, for instance [1], [3]), where 

(1.1) C = (X - L)X~X(X - LT) 

and X is (block) diagonal with positive diagonal entries (or positive definite diagonal blocks) chosen as 

to be described below. 

We have 

Let R° be defined by 

C = X + LX-lLт-L-Lт 

R = C-A = X-D + LX-lLт 

(^)iJ-{(LX-lLT)iJi !'#}• 
(In the block matrix case, (Ro)i,j denotes the i, j ' th block of Ro) Hence, R° consists of the "fill-in" 

entries, i.e. the entries of the matrix LX~lLT which fall outside the (block) diagonal. X is computed 

recursively from 

(1.2) Xi = Di-(LX-1LT)i,i- w(R°e),- , t = 1,2,..., 

where D» is the i'th block of D, e = (1,1,..., 1) T , and w(w < 1) is a relaxation parameter. Note that 

(R°e)i is a scalar if X and D are diagonal and a diagonal matrix if X and D are block diagonal. Hence, in 

the latter case, the off diagonal entries of X, are determined so that they are equal to the corresponding 

entries of Di — (LX~lLT)t,i. Hence, Xi is uniquely determined by (1.2). Note also that by choosing w 

sufficiently small (even negative, if necessary) we can guarantee that X,- becomes positive definite. 
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The method of using a relaxation parameter w was first introduced in Axelsson and Lindskog [5] (for 

a more general incomplete factorization method). It follows readily that for u) = 1 we have Ce = Ae, 

which is the rowsum criterion and a basis for the modified method of Gustafsson [6]. The relaxation 

parameter has the same effect on the spectrum of the iteration matrix C~lA, as the use of perturbations, 

which latter has been used by the present author in [1] and [3]. 

Next we shall derive upper and lower bounds of the extreme eigenvalues of the generalized eigenvalue 

problem 

(1.3) ACv = Av 

and derive estimates of the spectral condition number of C~lA as a function of u>. 

2. Upper and lower bounds of the extreme eigenvalues. 

To derive a lower bound note first that we have 

XC - A = (1 - X)(-A) + X(C - A), 

so 
XC-A = (1-X)(-A) + XR. 

Let fii() denote the t'th eigenvalue. Then it follows by the Courant Fischer lemma (see Wilkinson 

[8], p. 101) that for any positive A, the i'th eigenvalue of XC — A satisfies 

(2.1) m(XC -A)< fi(X) = (1 - X)»i(-A) + A/i+(R), 

where /J+(R) denotes the largest eigenvalue of R. 

Note now that fJ>i(XC — A) = 0 if and only if A is an eigenvalue of the generalized eigenvalue problem 

(1.3) and note that these eigenvalues are positive because C and A are both symmetric and positive 

definite. 

If fi+(R) > 0 then there exists a zero, Â  of /,(A) in the interval (0,1) and we find 

Xi>Xi = fJii(A)/\lii(A) + ii+(R)]. 

In particular, for the smallest eigenvalue we have 

(2.2) *i>><i=MA)/ll*i(A) + V+(R)] 

where we assume that the eigenvalues have been ordered in an increasing order. The method used above 

to derive a lower bound is based on an idea in Van der Vorst [7]. 

Next we shall derive two bounds for the largest eigenvalue of C~lA. We extend then a method used 

by the author in [2], see also Axelson and Barker [4]. We have 

AC = [(1 - \)X - L + i x ] ( I x ) - ' [ ( l - \)X -LT + \X] 
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AG - A = \VX~lVT + (2 - j)X - D 

where V = (\ — j)X — L. Hence, since VX~lVT is positive semidefinite, for any positive A we find 

(2.3) /.,(AG - .4) > /._((2 - i)X - D), 

where /*_() denotes the smallest eigenvalue. We shall assume that 2X — D is positive definite (which 

again can be achieved by a proper choice of a; in (1.2)). Hence, there exists a positive A for which 

/ i _ ( (2- i )X-D )>0 . 

Note now that 

\C-A = (l-i)(-A) + t(\C-A), 

so, by (2.3) and the same result in Wilkinson [8] as used before, it follows that 

/-.(AG - A) > 9i(\) = (1 - i)m(-A) + j M ( 2 - l)X - D). 

When /i-((2 — j>)X — D) > 0, there exists a zero, \{ of gt(\) in the interval [0, A] and this is then an 

upper bound of the t'th eigenvalue A< of C~lA. Hence 

A, < A, = \fii(A)/bn(A) + fi-((2 - l)X - D)]. 

In particular, for the largest eigenvalue we have 

(2.4) max Ai < A/[l + /i_((2 - i)X - D)/max/i,(,4)]. 

Next we consider an alternative upper bound for the largest eigenvalue, which is valid when A is an 

M-matrix i.e. in particular requires that the off-diagonal entries of A are non-positive. We have 

yA-C=(y-\)C+i(A-C) 

and for any positive 7, 

MT-4 - C) < (7 - 1)/-,(G) + 7 M - R ) 

or, i f / i+(-R) > 0, 

7i>7,==MG)/[ t i . (G) + /i+(--1-)], 

where 7,- denotes the i'th eigenvalue of j4_1G. 

Hence, if /-+(—R) > 0, the smallest eigenvalue satisfies 

7 1 > 1 / [ 1 + / M - R ) M ( G ) ] . 
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Since max A, = 7f * we have then 

(2.5) max A, < 1 + / i + ( -R ) / / i 1 (C) . 

To estimate H\(C), the smallest eigenvalue of C, we estimate first the largest eigenvalue of C"1, using 

(1.1). We find, using the property that X~XL has non-negative entries, 

(2.6) nlC)-* l - l 

mzxim(C-1) - max,{(X - LT)-lX(X - L)-le}<" 

Hence, (2.5) and (2.6) show that 

(2.7) maxA, < 1 +Ai+(-R)max{(X - LT)~lX(X - L)~le}i. 

We collect the results in a theorem. 

Theorem 2.1 . Let C be defined by (1.1), (1.2) and let R = C - A. Then 

a) if ,u+(R) > 0, the smallest eigenvalue of C~lA satisfies 

A^l/Il + M^MW]-

b) If 2X — D is positive definite and A is sufficiently small so that (2 — i ) X — D is positive semidefinite, 

then 

maxA, < A/[l + M ( 2 - i ) X - D)/maxta(A)]. 

c) If /i+(—R) > 0 and if A is an M-matrix, then 

max A,- < 1 + Ai+(-R)max{(X - LT)~1X(X - L)~le}i. 

Proof. This follows from (2.2), (2.4) and (2.7). • 

Remark 2.1. If X, D and 2X - D are M-matrices, then 

/i_((2 - i)X - D) > min{((2 - l)X - D)e},. 

In particular, if D is diagonal with constant diagonal, D = dly then 

M(2-i)-Y-D)>(2-i)*-rf, 

where x is the smallest diagonal entry of X. Note that when D is diagonal we can always scale A, i.e. 

consider D"rll3AD"1l2, where the scaled matrix has unit diagonal. We shall now derive an improved 

upper bound for the case where / i . ((2 - J )X - D) > (2 - i)x - d. This will be done by finding the value 

of A in (2.4) which minimizes the upper bound. It is readily seen that this value satisfies 

2(1_i)i. = l _ 1 
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and that 

* = -/[---£*] 

M ( 2 - І ) X - 0 ) = x- d + W 

V ' 2 

for this value. Hence, if fii < 2x — d we find /i_() > 0 and the value of A found gives the smallest upper 

bound Xi of Xi. This upper bound is 

T A*m{A) 
1 [ 2 x - d + /Xi(A)]2-

Further, if X,- = A, then for any /-i(-4), when 

(2-i)*-c. = 0, i.e.A = /(2-J) 
A z 

we find 

(2.8) maxAi<A = l j ( 2 - - ) . 

This latter value is hence the best upper bound in Theorem 2.1b when /--((2 — j)X — D) = (2 — i ) x — d. 

Next we consider an application of the above results to estimate the condition number of the pre

conditioned iteration matrix C~1A, when A is a central difference matrix. 

3. Application for an elliptic problem with anisotropy. 

Consider the selfadjoint elliptic problem — 6uxx — uyy = / in [0,1]2, where 6 > 0, a > 0 and with 

Dirichlet boundary conditions, discretized by central difference approximations on a uniform mesh. Using 

a natural ordering, one finds 

<-•,•_-> = —1» <-i,»-i = —£| <*i,i = d, ai.i+i = —6, atti+n = —1, 

where d = 2(1 + 6), and h = lj(n + 1). 

For the entries of X we find 

-,=<*, - £ < V 7 ' / j . -u>(ft°e),, «" = 1,2,... 

*< = 2(1 + i) - «»--.>. - «-_», -«<5(« i i , + -,-1.) 

(apart from corrections at points next to the boundary). We see readily that as i —• oo and h —• 0, a:,-

converges to a lower bound x, where 

x = 2(1 + 6) - (1 + 2u;6 + 62)/x 
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x = 1 + 6 + {26(1 -u)}1'2 

Then 

2 . r - d = 2{26(l-u;)} 1 / 2 

and 

fi+(R) = 26(1 - u)/xt fi+(~R) = 26(1 + u)/x (h — 0). 

Since we require /~+(R) > 0 and / i + (-R ) > 0 we shall assume that —1 < u < 1. 

Since m(A) = (l+6)(2sin7rh/2)2, we find from Theorem 2.1 and (2.8), with x = 1+6 +{26(1-u)}1'2 

- 26 (1-u,) 1 
1 - M + 6 x (2sin7rhj2)2' 

A ^ • /i//o rf\ 1 . 26(1+ w) x \ 
max Ai < mm < 1/(2 - - ) , 1 + — -- ^ 

i t x7 x ( x - ( l + 6))2J 
or 

and 
• f i+* 2 1 

mrA^mn^2{26(l-c,)}^'l^J/-

The condition number ft = 7l(u;) = max,- A,/Ai is therefore bounded above by 

* ( " > ^ min {*+»{«(!•.')}./.• • d b } I1+*i+s+wi-U)}uW] 
or 

*<"> - ^ { H i M d 1 - ' ) } ^ + x + { M ( 1 - w > } i / 2 ( " i ) ' 1 ] 

To minimize n(u), we need to choose 

1 ! + 6 / ^ 
W = Wopt = 1 -^--/il(^) 

and 

w = - l , 

respectively, for the two functions in the outer bracket. 

Hence 

min П(ш) = min ІH(шopt), 1 + 1 + 6 + 2лi/a ( * * - ) / 

• ř , 1 46 Ч_Д 
= m m \ ł + ^ ' 1 + ( Ï T б ï 7 ^ Ы / 
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and we find 

inм={ľt?«!i 
*>i ř . 1 (^ ) 1 / 2 , foru . = l - J 5 f / i , ( ^ ) 

-í/iiM)"1, ť £ . /n(A)1 / 2 . fot u, = - 1 . 

Note that as 6 decreases, the optimal value of u> switches for 6 ~ \fi\(A)1^2 from a value slightly less 

than unity to the value -1. 

We conclude that the spectral condition number is bounded above by 

i + (»A)->for<, = l - i - ± V ( ^ ) 

for any value of 6, but for 6 sufficiently small, 

1 + (l-f^l-)-^1^"1 • f o r w = - 1 

gives a smaller upper bound. 
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