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ON SOME BOUNDARY VALUE PROBLEMS FOR SYSTEMS 
OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 

KIGURADZE I., TBILISI, USSR 

The theory of boundary value problems for systems of ordinary 

differential equations has been as a matter of fact constructed in 

the last thirty years. During that time the a priori estimate tech

niques and topological methods were essentially developed, enabling 

one to establish the solvability and correctness for a wide class of 

nonlinear boundary value problems (see [ij and references cited 

therein)• 

The present work contains new - not included in [1J - sufficient 

conditions of the solution existence for a system of vector differen

tial equations 

"cit ""
 т
iЛ 

satisfying boundary conditions of the form 

JL (u,
lr
..,lU.) = ̂ ^ r - X ) • 

(1) 

(2) 

These results were obtained by the method having much in common 

with A.M. Liapunov's second method. 

The following notation is used in the paper: 

R = ]-°°>+o°[, R...=[°,+«>[. 

I?k 

ft is a f< -dimensional real Euclidean space of vectors 

^
=
( n/-Ul<k with the norm 
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RÍ = -í(U.i»k6l?K:l.»0'-'Vo}> 

kxh 

with the norm 

kxh 
W i s the space of real k x h -matrices X ^ V n i / ^ H ^ 

' 3 1±<4±h 

k 
-3C-5J is the scalar product of the vectors DC and y^ri ; 

A A n k x n 

X is the product of the matrix f\ £ f-̂  and the column-

vector X c R n ; A * 
detA is the determinant of the matrix A , A is the trans

posed matrix A ; 
Q(Z(*'A1jR> ) »»d Ci^Alj R, ) are the spaces 

of continuous vector functions DC : C ̂  *> J """* fu and of matrix 

functions A ; L 0 u ; * ] — > XX, ; 

V^Vrt'^i'^y .£S .j-ne Bpace 0f continuous functions W
;[u ~~* |x , 

while C \{iy > ri ) is the space of functions W-* K—>R having con

tinuous partial derivatives of the first order; 

L([Oo£l;R) and L f C ^ ^ L R X ) are, respectively, the 
space of summable functions oc : CCu,-£]—> J<, and the space of 
matrix functions X:C°-o£]—> R" with components summable to 
the power P ; 

L(Ca-,«];R<)=[B£L(r^«lR):9t«50forierQ.^j}i 
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I u ( ^ ^ ^ > 5 ^ ) i s the Carathfcodory c lass , i . e . the set 
mappings | : [ex, 0 ] X2>< ~>2)^ such that f t ; oc): f Co, %] — > ^ 
i s measurable for any oc 6 iD.f • fCty):^ —* S o i s continuous 
for almost a l l -fc ££o~j$] and 

/ ^ {Bft.,a)||: *<:&}£L(r<M];£J 

for any compactum $ 0 C j)i 

In what follows it will be assumed everywhere that 

yj : Cf^^^l jR^ J "̂  V^ is a linear continuous operator 

-£, -CCCC^&l" RT) "̂  R/ *s a nonlinear continuous operator 
bounded on each bounded set of the space (^ vC&'>£\jrL ) • 

Prior to proceeding to the formulation of the main results let 

us introduce rUV* lO ̂  
D e f i n i t i o n . Let W € [^ [Ix, ', r w . The operators 

-t • CL^MXhRT «* * • C(r<M3, fc») —> RT 
will be said to be W -compatible if there exist a matrix function 

J Q L([^>&1)R/ * / and a positive number Y" sucn tnat 

1) the homogeneous problem 

has the zero solution only; 
2) the inequality 

SPCt)^' ^OUclV/C^) > 0 

i s fulfil led on [Ob^xR? ; 
3) the estimate 

W ( U K ) ) - W ( ^ t c u ) ) ^ ^T 

holds for any vector function Vu 6 [^ ([&?£]} rU / sat isfying 
the equality -£(UO = ot ^(-U.) for some ^l€[Oji] . 

T h e o r e m 1. Let there ex is t a function WE C (tZ jft) 
such that the operators -£ and -ft ar© W -compatible and on 
C O - ^ l X R 1 0 we have the inequal i t ies 
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^Jt,эc
<>
...

J
ocłv,)^^||at<и,...Jlûam||)- Җ ( t ) (3) 

and 

l|f,(i^,-.oc
m
)||^[^^)

+
^j^

(i
^

>
...^

(M)
jJ

0+I
,

a
,

i
,

|
)^ 

where 
yv> 

t l t . x , , . . . , ^ ) ^ ^ . , ^ ) ^ ^ 
ҷ,=н 

*i Z CiR-"1*'"*"* j&+) a~2,...,r»-) andthefunc-

tion 5̂ : fOL^^jXrL^ —^rv-t- is summable with respect to the first 

variable, does not decrease with respect to the last Y^ variables 

and 

+ 0 0 >
 (5) 

Ѓ 

P _ ^ + Oo 
l=«

 J
<< 

Then Problem (1)
t
(2) is solvable. 

R e m a r k 1. Condition (5) 1 B essential and cannot be neg

lected unless additional restrictions are imposed on the operators 

•C and -$ . 

R e m a r k 2. In the right-hand side of each of inequalities 

(4) the multiplier 4+ J|OCjl cannot be replaced by the multiplier 

(4+H.X.tll )^ + ̂  n o m
*tter how small Z >0 is. 

Let us consider the case when the boundary conditions (2) have 

the form 
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UгCa) = ЬlUч(«)+ 

•+• %ÍЩШ)...,ìL^cu))u.i(4),...,^tnФ) U = i>-> m) (21) 

where 

B.« F ^ , V C ( £ " Rn0 U-i~,»)• 
From Theorem 1 we obtain 

C o r o l l a r y 1. Let there exist nonsingular symmetric 

matrices A 4 € R, l i (̂  - t- - 0 ̂  ) such that on C<X^])C^ 
we have inequalities (3) and (4) where 

w> 

Y. » £". * ̂ T/ » CV (i:-=«2,»v|v0 a*1*3- cT are a number and functions 
satisfying the conditions of Theorem 2. Let, besides, one of the con
ditions below be fulfilled for any t^{i... ;m] : 

1) the matrix |3- A-B; ""At is positively defined and the 

function j; is bounded; 

2) the matrix (a A-B^*" ™i i s non-negatively defined and 

the function C * , , . . . , 3C..1. y o - v a ^ - ^ C - ^ + ^ ^ ^ r v X r . , , ^ - ' ^ 

is bounded. 
Then Problem (1),(2 ) is solvable-
Let us concretize Theorem 1 for the boundary value problems 

cЫ
4 

cJL* "
г
"' ""*' ' " t 

= +>>« *.t) , --Ь = &(i "-*' ̂ Л <
б
> 

U i < (o-)=^ (u,< a),Ua«--)> "-<<*)> - V t t X 
u/(«) = ^ ( 1 ^ , ^ ( 0 : , , ^ ) . U^č)) (7) 
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and 

uM = ía,u,u^), (8) 

U ř L f ^ Vcc) - ft (U.ÍO0, ui ice), \Ul\ u! t€ )), 

VL^\Z)^\^C^M(^\^^(4)) (9) 

where i 4 and -i% £ { I, 2 \ , 

^ eK.(Co,€>cn*',i RT) , ^eC(fiL"!> feř>) • 

T h e o r e m 2- Let there e x i s t a natural number ^0 and 
matrices At€ R > x n i ^ f , 2 ) such that on C a ^ J X ^ < + ^ we 
have the inequal i t ies 

ia,^i>^)> ^(M^iui^iD-^-fc), do) 
il^a,^^)NKt-t)^|ta,^,^)|](^«^'i), 
ft 4(L,oc^oc^)|| * [4(i ,^)+^C^) |^t i ,^^)(]6+* aa | l ) 

and on | ^ the inequality 

Â  %^i^>^^vA3-L^-i-Ai^(x<)x4A^).4.. x3_^ « 
Jo 

where 
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i0 (i, -Ci,^)--A Дft,*Ą> Aлx.г+A,«ц- A/Д*i> ^ ) , 
(11) 

^ 6 £ ( & * < ; £ + ) » and the function S*;rcc^jX ft? - * R,+ is 

summable with respect to the first variable, does not decrease with 

respect to the last two variables and 

ll-U^&Ut^^- (12) 
cu 

V£r* + 00 

Then Problem (6),(7) is solvable. 

R e m a r k 3. If l^ and ̂  is bounded, then (10) and 

(12) can be replaced by the conditions 

and 

(I 
^i^\S(i,?)eli-- + 0 0 i (15> 

if however A,{-\ » ̂ £~2 , ji is bounded and 

||^(^i,^A,MI~£<>i^) 

where J^ : (v —> fv-t is a continuous function, then instead of 

(10) and (12) it can be assumed that 

• ta*, , 3 ^ ) -*-§;-*)• 
C o r o l l a r y 2. Let there exist a positively defined 

symmetric matrix A € (£hyr) such that on [CX, -g] X ft we have 

the inequalities 
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-¥(i,oc,i).i\K>scijoLa)-J0&), 

ll^oc,a)ik[^(i,oc)+^t^)iiyiia]0+iiyii), 

and on rU the inequality 

^ere fceLfta,*!&•). ^ ( C M M f ; R + ) , ajeCff^Rj. 
V<£^.^ f and the function J:[a ;-J]Xru4—* rU + is summable with 
respect to the first variable, does not decrease with respect to 
the second variable and satisfies condition (13). Then Problem (8), 
(9) is solvable. 

R e m a r k -!-• Let 

Then condition (1-0 is fulfilled if and only if the matrix 

- A f e * , - A f e ^ . 
is non-negatively defined. 

Finally, we shall give one more existence theorem for Problem 
(6),(7)t complementing the above results. 

T h e o r e m 3* Let i*-{ , H,£=-2 * the function )j be 
bounded and the function *?„ admit the estimate 

where ji 6 ( ( ft • ru + J • Let furthermore there exist a natural 

number W0 and matrices P., € ru (i~1,-2) sucn *--•** on 

[0^£]>(K, 1 ^ we have the inequalities 
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•ЃД ° Ч «-»)>- SoCІJэcцłl+la-jЛ), 

t l ^ ( ^ ^ ^ ^ ü ^ c 5 ^ ^ ) ^ ^ « ^ 0 н - | ^ í ^e^C^^oc^^J^г 

and on [C the inequality 

^ra^/i+wo, 
where ^ i s the function given by (11), £teL(C<X,lJ} f £ + ) , 
fc\ e K C C ^ l x R ^ j R . + ) »2T: R.+—> ft+ i s a nondecreasing function 

sat isfying the condition 

9. ^ = 0 
jD—^ + OD 

and the function <£0'. IQ~}%]X fc^.—* K + is summable with respect to 

the first variable, does not decrease with respect to the second va

riable and 

(Z 
MrA s;a.;?)ek = o • 

Then Problem (6)f(7) is solvable. 

As an example we shall consider the following boundary value 

problem that arises in the optimal control theory (see 2 f § 3.2): 
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where 

Ft Uto-W""), He L*(W];f*) , 

Prom Theorem 3 we obtain ^ 

C o r o l l a r y 3. Let the matrix ~«-Af ("&J be positively 

defined for any t £ [ 0 ; ^ ] and let the matrix ^j^tt) be non-nega-

tively defined for almost all t£fCA^€]. -Get furthermore the inequa-

^COO-OC^O ; Cf^CC> ̂ CO))-OC ^0 

be fulfilled on rC . Then Problem (15)• (16) is solvable. 
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