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GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS -
A SURVEY 

SCHWABIK S.f PRAGUE, CxechodovakU 

This is an account of tho work which started in 1957 by tha paper 
[l3] of J. KurzMBll. Tho creation of tho generalized (ordinary) dif-
ferential equations is the result of the effort to explain soma con
vergence effacta in tha classical theory of ordinary differential 
squations. 

HB settle some matters of notation. R denotes tho real numbers, 
Rn is tha n-dlmsnsional euclldean space, G « Rn*[a,b] whoro [a,b] 
1B an interval in R . 

If F 1 6-»Rn then the symbol 

(6DE) {£ - DF(x.t) 

is used for tho generalized differential equation. 

Definition. A function x 1 [d,/9]—»Rn is called a solution of (GDE) 

on [«,y5] if 

(x(s),a)€G , se[«,fl] 

and 

f a2 
x(s2)-x(Bl) • J DF(x(r),t), 3 1 B 2 G [ ^ . / 6 ] , 

where the expression on the right hand side is the genarallzed Perron 

integral in tho sense ot J. Ktirzwell [i-*]i[l6]. 

f s2 
Definition. / DF(x(r),t)€Rn is> rhc urnucalizod I'errcn integral nf 

řв
2 

. / DF(x(r 
J в

l 

F(x(r),t) ovor the interval [a
L
,s

2
] if fur uvrry ř > 0 theru 

exists a <T : [ s ^ ] " * (°- + aO (called a gouge on [c1,n2]) ouch 
that 

< t <l> |Ž[F(i|(«'1)(*lt)-F(x(c1)l«1.1)] - J DF(x(T),l)j 
1«1 •» Sĵ  

for every partition u^ •- * a
< * i < -•• < ^k " s2 ° r LBliB2.] l i l t n 

* i ^ [^.2• ** • 1 t I»li2 k which is .r-flnu, l.o. which satisfies 

(2) [«i-i. *Jc[T1.cTcrt), r^cTd^)] , 1-1,2 k . 

Remark. It is worth mentioning that if Kx(<),0 - g(r).t far 
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T, tG![s,,s2] then thte generalized Perron integral defined above 

f S 2 (*2 r n leads to a certain concept of integral I g(t)dt = D[g(c).tJ 
J s, sl 

which appeared to be exactly the nonabsolutely convergent Perron in
tegral of the function g over [s, ,s«] . Since in this case the cor
responding integral sums in (1) assume the form of Riemann sums 
2_z s(f ̂ ) • ( o( . - oc:.-_,) , the integral introduced by J, Kurzweil in [l3] 
was in fact a new Riemann type definition of the general nonabsolutely 
convergent Perron integral. The only difference in comparison with the 
original concept of B. Riemann is the notion of the refinement of the 
partition which is in our case determined in (2) by a gauge 6* . If 
only constants are admitted in the role of a gauge then our definition 
of the integral coincides with that of Riemann. 

A completely different approach conduced R. Henstock in 1961 to 
the same definition of the Perron integral. The Kurzweil-Henstock de
finition has given rise to an important and growing field in integra
tion theory which demonstrates the mutual influence of diff. equations 
and integral calculus as was the case in the times of I. Newton, A.L. 
Cauchy, H. Lebesgue and C. CarathSodory (see e.g. the contribution 
[20] of 3. Mawhin to this point of the history of mathematics). 

The following result forms a link between GDE's and classical 
ordinary differential equations (ODE's), see [26]. 

Theorem I.Assume that f : G—>R n satisfies the Caratheodory conditions 
and set 

(3) F(x,t) = (L) J f(x(s),s)ds, t e[a,b] , (x,t)€G 
J t o 

with the Lebesgue integral on the right hand side. 
If x : [<X,A]—*--Rn is the pointwise limit of finite step 

functions then 

DFu(T),t) = (L) f(x(s),s)ds, s, , s2 E [ °C,/3 ] . 
sl J sl 

Consequently, we have 

Theorem 2. x :[<x ,A] —* Rn is a solution of (GDE) with F given by 
(3) if and only if 

x(s2)-x(s1) = I f(x(s),s)ds, sx ,s2G [^,/3]C [a,b] , 

i.e. if x is a solution of 
(ODE) x' = f(x,t) 
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in the sense of C. Caratheodory. 

V.D. Mil'man, A.D. Myshkis and A.M. Samojlenko in the sixties 

started to study the so called systems with impulses (see e.g. the 

recent book [22] of A.M. Samojlenko and N.A. Perestjuk). 

Given a finite sequence of points a = t ^t,<t« < ... < t. ^ 

k+1 

(ODE) x' = f(x,t),t =f ti? i=l,...,k 

^t. . = b and mappings I. : Rn—*- Rn , i = l,2,...,k , the system 

(I) A x | t = x(ti + )-x(ti) = Ii(x(ti)) , i = l,...,k 

is called a system with impulses if f : Rnx[a,bJ—*-Rn satisfies 

the Caratheodory conditions. A function x : [ <*,/$] —> Rn , [c\,>3jc 

C[a,b] is called a solution of (0DE) + (I) if x satisfies (ODE) 

almost everywhere on every interval (t. , , t. )l~~l [« ,{$ J , i = l,...,k+l 

and if the "interface condition" (I) holds for every i such that 

t .eL*,^ ] . 
For the system with impulses (0DE)+(I) let us set 

pt k 
(4) F(x,t) = f(x,s)ds + XZl.(x)H+ (t) 

J tQ i=l *i 

with H/r(t) = 0 for t < T , Hr(t) = 1 for t > T . Then it is known 

(see [25]) that (GDE) with F given by (4) is equivalent to the system 

(0DE)+(I) in the same way as was stated above in Theorem 2 for the 

equivalence of (ODE) and (GDE) with F given by (3). 

This result shows t/hat the concept of (GDE) is more general than 

the concept of a classical ODE because the solutions are allowed to be 

discontinuous. 

The fundamental concepts of the theory of GDE's depend on the 

function F of the right hand side of (GDE). A fairly wide class of 

such functions is the class F(G,h,.Q ) defined as follows. Given 

G = Rn*[a,bJ , h : [a,bj—*-R nondecreasing, continuous from the left 

and H : [o,+oo)—*R increasing, continuous with 11(0) = 0 , we have 

Definition. A function F : G -*Rn belongs to the class F(G,h,.n_) if 

(i) ||F(x,t2)-F(x,t1) || ̂  |h(t2)-h(t1)| , 

(ii) [| F(x,t2)-F(x,t1)-F(y,t2)+F(y,t1)|| ^ n(|| x-y ||) |h(t2)-h(t1) | 

p r o v i d e d x , y € R , t , , t 2 £ [ a , b j . 

The fundamental results are the following. 

Theorem 3. If F£F(G,h,H) , (xQ,to)£G then the initial value 

problem 

(IVP) {j£ -- DF(x.t) , x(tQ) = xQ , tQe[*,/3j 

has locally a solution. 
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If x : [ « , / $ ] — * Rn is a solution of (GDE) on [<x ,/}] with 

P G F ( G , h , . a ) then 

||x(s2)-x(s1)|j<|h(s2)-h(s1)| , s1,s2e[«,/j] . 

Consequently, x E B v [ « , f l ] and x (s - ) = l im x (c r ) = x(s) for every 

3€<«,/3] • ^ ^ s -

Moreover, using the properties of the generalized Perron integral, 

it can be shown that 

x(s + ) = lim x(<5") = x(s) + F(x(s) ,s+)-F(x(s) ,s) , s£.[cx,/3) 
(? —» s+ 

for the solution x : [ « , # ] — * RR of (GDE). 

For F£F(G,h,I2) the problem of local uniqueness of solutions 

of (IVP) depends on the mutual interaction between the "modulus of 

continuity" H and the values of the function h at t .In general 

local uniqueness can be derived only for increasing values of t . 

Elementary examples show that local uniqueness for decreasing values 

of t (i.e. for t < t ) is no"t guaranteed even in very simple situ

ations; this is of course caused by the possible discontinuities of 

solutions. 

For example, if 

f U 1 lim 0 / \ di 
v->o+ J v £^y 

lim x.(t) = x(t) , t Є [<X,/3] . 

+00 for every u > 0 

then the solutions of (IVP) are unique for "
t >
"t

Q
 • 

The creation of GDE's was strongly influenced by the following 

discovery (I.I. Gichman, M.A. Krasnoselskij and S.G. Krejn, J. Kurz-

weil and Z. Vorel (1952-1957)). 

Let us have a sequence of ODE's 

x' = f
k
(x,t) , k=l,2,... , 

with solutions x. : [<*,/3] —• R
n
 for which 

(5) 

If 

(6) lim f f. (x,s)ds = lim F. (x,t) = F (x,t) = f f
n
(x,s)ds 

k-*oo J t
Q

 k
 k-oo

 k
 ° *

0 

with a certain suitable f : G —* R
n
 (e.g. f has to be a Caratheo-

o ° o 

dory function), then the limit function x : [ a ,/Q]—*• Rn
 given by (5) 

is a solution of the ordinary differential equation 
x' = f

Q
(x,t) 

on the interval [ex ,/}] . 
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Further theorems of this type have been successively derived, the 

assumptions on the kind of convergence in (6) weakened, and finally it 

was realized that for results of this type only the knowledge of the 

"indefinite integrals" to the right hand sides of the ODE's in question 

is required. The right hand sides them-selves serve only for determin

ing the concept of a solution.. GDE's are in fact the result of the 

effort to determine the concept of a solution of an ODE in terms of the 

"indefinite integral" F (see (6)) of its right hand side. 

The following result on continuous dependence on a parameter for 

GDE's is a relatively easy consequence of the dominated convergence 

theorem for the generalized Perron integral (see [26] or [16], [25]). 

Theorem 4. Assume that F k£ F(G,h, CL ) , k = 0,l,... and 

(7) lim F. (x,t),= Fn(x,t) , (x,t)<EG . 

Then we have 

Conclusion. If xk : [<* >/3 ] -~* Rn , k = l,2,... are solutions of 

(GDEk) jj| = DFk(x,t) , k = l,2,... 

on [^J/^] such that 

(5) lim x. (t) = x(t) , t G [oc,/5] 
k - co k ! 

then x£BV |_<x ,/3 J is a solution of 

< G D Eo> H ? = * D F 0 ( x , t ) 
on [rf,^] . 

Using the equivalence of an ODE with a GDE a continuous dependence 

result for ODE's can be obtained via (3). Nevertheless, from the point 

of view of some applications the requirement that all Fk belong to 

the same class F(G,h,H) is too restrictive. In a special case we 

have the following result. 

Theorem 5. Assume that FkEF(G,h,a) , k = 0,l,2,... where hk : 

[a,b]—*-R , k = l,2,... is nondecreasing continuous from the left, 

h : [a,b]—*R is nondecreasing and continuous and 

lim sup (hk(t2)-hk(t1)) < ho(t2)-hQ(t1) , t x^t 2 . 

Let 

(7) lim Fk(x,t) = F (x,t) , (x,t)GG . 
k->oo 

Then Conclusion of Theorem 4 holds. 

Theorem 5 enables us to derive the following averaging result 

for GDE's. 
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Theorem 6. Assume that G = R
n
x[o,+co) , FEF(G,h,H_) , h is nonde-

creasing and continuous from the left on [o,+oo) . Assume further 

that 

lim sup — (h(r+oO-h(tO) ̂ - C = const, for every * -̂ 0 , 
г-*o 

lim \ F(x,r) = F (x) , xER
n 

r-*o 

and that y : [o,+oo) —*• R
n
 is a uniquely determined solution of the 

autonomous ordinary differential equation 

r = F
Q
(y) 

on [o,+oo ) . 

Then for every u/> 0 and L>0 there exists an C >0 such 

that for 0 < £, < t we have 

||*tf
t>-У£,(t)||<(u/ for t ф ^ ] , 

£f = o[eF(x,t)] 
on [o,L/e.] such that xe(0) = y(0) and y is a solution of the 

averaged equation 

x' = £FQ(x) 

on [0,L/e] such that yB(0) = y(0) (i.e. y^(t) = y(et) ). 

Remark. This result has evidently the form of the well-known Bogoljubov 

theorem on averaging and can be directly applied e.g. to systems with 

impulses for obtaining averaging in this case, too. Averaging results 

for systems with impulses have been derived by A.M. Samojlenko [2l] ; 

of course they have been achieved by different methods. 

If the assumption of continuity of the function h in Theorem 4 

is omitted then the conclusion of this theorem is false in general. 

Example. Let us have a "cT-sequence" of functions cT : [-1,1J —• R , 

k=l,2,... ; e.g. 

<Tk(t) = k for t€(0,l/k] , cfk(t) = 0 for t G[-l ,l] \(0,1/k]. 

Assume that A, B are n«n-matrices. Let us consider the sequence 

of linear ODE's 

(8) x' = [A + cTk(t).B]x 

with the initial condition x(-l) = x . Using the facts mentioned 

above this sequence of systems of ODE's is equivalent to the sequence 

of GDE's 

(9) {jf - D[(At + Д
k
(t)B)x] , 
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where A k(t) = ] ó~k (s)ds 

It is easy to check that the function x. : [-l,l]—>R given by 

for t e [ - l , 0 ] , f e A ( t + 1 ) x 

x k ( t ) = e ( A + k B ) teAx o for t € ( O f l / k ] 
[eAteAxQ for t E ( l / k , l ] 

is a solution of this i n i t i a l value problem and that 

for t e [-1,0] , 
(10) 

Гe A ( t + 1 ) x c 

lim x . ( t ) = z( t ) ={ 
k->co к At B A 

le e e x_ foг t Є ( 0 , l ] 

It is also easy to see that 

0 

lim Д.(t) = H(t) 
k-*cc

 к 

foг tє[-l,o], 

[l foг tЄ(0,l] 

and consequently, the right hand sides of the corresponding GDE's (8) 

satisfies 

lim (At + A.(t)B)x = (At + H(t)B)x . 
k-*co

 K 

Nevertheless, the solution of GDE 

dx { j | = D[(At + H(t))x] 

with x ( - l ) x is given by 

•eA(t + l ) 

x(t) 

e
At
(I + B)e\ 

foг tє[-l,o], 

foг tЄ(0,l] 

and we can see that the limit z(t) of the sequence of solutions 

given in (10) is different from x(t) with the exception of the very 
P 

special case when I + B = e for the matrix B . 

This limit behaviour of the sequence of ODE's (8) is caused by 

the emphatic influence of the term cf.(t)B for large k on the sup

port of the k-th term cT. of the " cT-sequence". On the support of 

cf. the ODE (8) behaves like the equation 

y' = kB.y 

and a simple transformation of the independent variable shows that the 

"jump" in the limit equation is determined by the increment of the 

solution of the ODE z' = B.z over the interval [0,1J . Convergence 

effects of this type are explained by the notion of emphatic conver

gence which formally delineates the general situation corresponding to 
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that occuring in this example (see e.g. [14] or [26j). 

The limit z(t) of solutions of the initial value problems in 

this example given by (10) is a solution of the linear GDE 

(11) {j| = D[(At + (eB-I)H(t))x] 

with x(-l) = x . 

In [[l5] J. Kurzwe.il mentioned that one of the good reasons for 

introducing GDE's is to close the class of classical ODE's with respect 

to the convergence of "indefinite integrals" to their right hand sides, 

i.e. with respect to the convergence given by (7). The above example 

shows that the limit equation for a sequence of ODE's is not an ODE in 

general; indeed, (11) is a GDE which does not represent any classical 

ODE because of the discontinuity of the solution at the point t = 0 . 

In certain cases GDE's form a good frame for developing abstract 

concepts. Let us shortly mention e.g. the concept of topological dy

namics for nonautonomous equations. (It is easy to see that transform

ing, an autonomous ODE into the corresponding GDE we do not obtain any 

relevant new information.) 

Let us assume that F is a class of functions F : R xR—*-R 

with the following properties: 

For every compact ACR n there exist JU/. : (0 ,+00 ) —+• (0 , +00 ) 

and NA —0 such that 

1. F is continuous, F(x,0) = 0 . 

2. For ACR compact there exist 1. F , k» F : R—* R nondecreas-

ing, continuous, 1. p(0) = k. p(0) = 0 and 

|| F(x,s2)-F(x,s1)|| ̂  l1A,F(s2)-1A,F(sl)| ' 

|F(x,s2)-F(x,s1)-F(y,s2)+F(y,s1)||<||x-y||.|lA?F(s2)-lA?F(s1)| 

for x,y£Rn , s-^s^R, 

where | v | < ju/.( k) implies 11. p(s+v)-l. p(s)| < e for every sE R 

and |kA p(s + l)-kA F(s)|^NA for' sGR . 

For the class F we have the following results: 

F is a topological space with the convergence given by the uni

form convergence on compact subsets of R *R . 

The topological space F is compact. 

Let us denote by (P(t,y,F) the unique maximal solution of the 

initial value problem 

{|f = DF(x,t) , x(0) = y 

with FEF , yER n . Let I, F>>CR be the maximal interval of defi-

nition of the solution ($ . 

Define 
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(12) 7r(t,y,F) = (0(t,y,F)fFt) , (t, y ,F)G R*Rn*F , 

where Ft(x,s) = F(x, t + s)-F(x, t) , x£R n , t,sGR . 

Using the results on continuous dependence on parameters (e.g. in 

the form of Theorem 5) the following result can be derived. 

Theorem 7. The mapping 

K : {(t,y.F);(y,F)ERn*F,tei(y)F)}— R
n* F 

is a local flow on RnxF in the sense of G.R. Sell (see e.g. [l]>[30], 

[3l] and others). 

The compactness of the topological space F and the fact thatJT 

given above is a local flow open the access to methods of topological 

dynamics for GDE's. These methods are relevant for classical ODE's, 

too, due to the fact that the class of ODE's with respect to the topo

logy of the space F of the corresponding "indefinite integrals" is 

not closed in general but the closure is contained in the class of 

GDE's. The first and main contribution to these problems belongs to 

Z. Artstein [l] (see also [26]). 

To conclude this short survey let us mention some other fields 

where the ideas of J. Kurzweil concerning the concept of GDE's have 

been used. 

A. There is an extensive theory of linear GDE's of the form 

(13) ^: = D[A(t)x + f(t)] , 

where A,fG.Bv[a,b] , [a,b]CR being an interval. Interesting is the 

case when (13) is considered together with a side condition of the type 

(14) I d[K(sjlx(s) = r Г d[к(s)] 

with KEBv[a,b] (see e.g. [28],[29]). 

It is perhaps of interest to mention that for the linear problem 

for the classical ODE 

x' = a(t)x + g(t) 

with the side condition (14) the methods of functional analysis lead 

to an adjoint problem which cannot be described by classical ODE's; 

the adjoint problem is a certain GDE with a side condition (see [28]). 

This fact and the common mathematical struggle for symmetry motivates 

the study of the problem from its very beginning in the framework of 

GDE's. 

B. Kurzweil's concept of integration is very useful for studying 

Volterra-Stieltjes and Fredholm-Stieltjes integral equations of the 

form 
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x(t) - d[к(t,s)]x(s) = f(t) , tЄ[a,b] 
<b 

in the space BV[a,'bj of functions of bounded variation on [a»b] 

(see [29] for a complete Fredholm theory for such equations). 

C. K. Kreith in [10] started to study the so called second order 

systems with strong impulses of the form 

v - [ . ^ • - - X ^ - V - 2 > 

-" =L^iT + I>
i
^t-t

i
)]v 

and obtained results on the "zeroes" of such systems. These problems 

can be also treated in the framework of GDE's with the aim of obtaining 

analogous results by other techniques developed in [29], for GDE's, 

see for example [6] . 

D. There is an interesting theory of "interface" type problems for 

ODE's (see e.g. [3] , [1] , [23] ). Problems of this type fit into the 

framework of GDE's with right hand sides belonging to the class 

F(G,h,fL) (see [23]). 

E. Recently there have been new results on ODE's written in the form 

of an integral equation 

Г f(x(s),í x(t) = x(a) + (P) f(x(s),s)ds , 

where the Perron integral is used. The interest in this generalization 

of an ODE comes from new convergence theorems for the Perron integral 

(see e.g. [4] , [5] , [lo],[l7]). 
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