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SOME FEATURES 
OF THE NODAL RECOVERY OF GRADIENTS 
FROM FINITE ELEMENT APPROXIMATIONS 
WHICH PRODUCES SUPERCONVERGENCE 

WHITEMAN J.R.,GOODSELL G., 
UXBRIDGE, United Kingdom 

1. Introduction 

In the solving of elliptic boundary value problems it is often the case that the 

quantity of major interest is not the primary unknown in terms of which the problem 

is formulated, but some secondary quantity which is derived from the primary 

unknown. Examples of this are flux in potential problems and stress in problems of 

linear elasticity, which depend on derivatives of the respective primary unknowns of 

potential and displacement. 

In the context of finite element methods for the numerical solution of elliptic 

problems of this type, these considerations have motivated techniques of recovery of 

gradients from finite element approximations to the (primary) solutions of the 

problems to be much studied, and for the topic of superconvergence to come to 

prominence in the analysis of errors. 

The idea of superconvergence is of course not new and was originally exploited 

by engineers who noted that for certain elements there exist specific points, stress 

points, at which the gradients of the approximations were superior to those found 

generally, see e.g. Barlow [3]. For meshes of triangular elements these special 

points occur at the Gauss points on the element sides and involve automatically 

tangential derivatives. However, if a recovery procedure is used to produce from 

these tangential derivatives recovered gradients of the finite element approximation 

at the element nodes, then the rate of convergence of the recovered gradients is 

higher than that found normally. This is the phenomenon of gradient 

superconvergence. It is possible, by interpolating to these recovered nodal 

gradients with vectors, each component of which is a function from the original 

finite element space, to obtain a recovered gradient function, which is itself 

superconvergent. A vast literature on gradient superconvergence now exists, and 

many of the publications in this field are listed in Krizek and Neittaanmaki [8]. 

There is, in the treatment of (nodal) recovered gradient functions based on 

piecewise linear and piecewise quadratic finite element approximations, a common 

thread of analysis which produces the superconvergent error analysis. In this 

present short paper we seek to describe the main features of this thread. 
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2. Bondary Value Problems and Finite Element Discretisation 

Let 0 c R- be a polygonal domain with boundary 38. We consider the mixed 

boundary value problem in which the solution u(x) satisfies 

L » - - I i: h3<«> &:) -f(x) ' x € ° - (2^ 
i,j=l x 3 

together with Dirichlet boundary conditions g D(x), x € 9oD an(j Neumann boundary 

conditions g N(x), x € 9ttN, where 9B 5 9BD U 9f.N and 

a. .(x) = a j i (x) . I a l j(x)« 1S j * c J £ 2 , « > 0 . (2.2) 

i,j=l i=l 

This formulation is written for the scalar case with a single differential equation 

in (2.1), but it can also cover the case where u(x) is a vector and (2.1) is a 

system of equations. 

The weak form of (2.1) together with the boundary conditions is that in which we 

seek u € H such that 

a(u,v) = (f,v) + (gN,v) M y v € H , (2.3) 
Э!.

N 

where 

# v - v { 3u 3v . 

a(u,v) = ) I a. . - — -z— dx , 
. *_, h

 1 ] 8 x i 3 xj 

1 , _ J - 1 

H^ = {v : v € H V ) , v = gD on 3QD} , (2.4) 

H - (v : v e H V ) , v - 0 on 9fiD} . (2.5) 

When ft is covered by a quasiuniform triangular mesh, a Galerkin technique is 

applied to approximate (2.3) using globally continuous piecewise polynomial functions 

over the mesh. Thus we define the finite dimensional subspace Sn(J2) c H1(Q) and the 

Galerkin problem, find un € S such that 

• < v v - l f - V • <-"-V80» y v h e H h - (2-6> 

where 

SE " K : Vh £ Sh(n)' Vh = 9I ° n 3"D) ' (2-7) 

H h = |vh : v h 6 S
h(J2), v h = 0 on 3n

Dj , (2.8) 

where g is the interpolant from the Galerkin space to g . 
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3. Superconvergence of Recovered Gradients 

The piecewise polynomial functions in Sn(8) have discontinuous gradients across 

element edges. However, using averaging schemes which utilise the fact that the 

tangential derivatives at the element edge Gauss points of the interpolant uj G S 

to u are exact for u a polynomial of one order higher than the polynomials in Sn(£)), 

gradients can be recovered at the nodes and to each component of these can be fitted 

a polynomial from Sn(Q), thus defining the recovered gradient function 

VRvn € (S
n(Q))2 for any vn G S

n(J2). This type of recovery has the property that 

VRuj is exact for a regular triangular mesh, when again u is a polynomial of one 

order higher than that of the polynomials in Sn(Q). 

In deriving the error estimates for un, the global regularity of u is paramount 

as un is a global approximation, the calculation of which is done over the whole of 

ft. As most problems of type (2.1) which are encountered in practice have solutions 

with low global regularity, u $ H2(n), in the derivation of error estimates for the 

recovered gradient functions it is necessary to work on subdomains where the local 

regularity is higher than that found globally. We thus define subdomains 

O,Q cc o.̂  cc J«2 c J. such that u has suitable regularity in ^2* ^2 ^s also 

constructed so that it can be meshed uniformly. 

In this case using the Bramble-Hilbert Lemma, [4], and the Sobolev embedding 

theorem, see Adams [1], it can be shown that 

I* - M . H * cha+1luUp,ao <3-» 
for piecewise polynomials of degree a, a = 1 or 2, and p = 2 or », see [5]-[7]. It 

follows immediately from (3.1), using the triangle inequality that 

I*1 - V \ l o , p , n o *
 C { K - %ll,p,Q0

 + h°+1|ula+2,P,ao} <3-2> 

so that in seeking estimates on |Vu-V u, we have to estimate |uT~*-vL o • 

This is achieved via the use of the property that a(u-u ,v,) = 0, v. € S0(JL), 

for u a polynomial of one order higher than that of the space Sn(J2). Again using 

the Bramble-Hilbert Lemma and the Sobolev embedding theorem, it can be shown that 

|a(u - v V | i Cha+1|uJo+2/P/DJvh|1 /p/(p.1)/Qi (3.3) 

which is the fundamental inequality in the derivation of the L2 estimate 

hi - »h.i.i.0
 s c(h - \lo,0l

 + ^hU^} < 3 - 4 > 

see [10]. 
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For the LoT case, we find that 

k - "J...-.-, * ch"~{k - -hli.0,+ -""HU-.oJ < 3 - 5 > 
see [6], [7] and [10] and using the result (3.4) on fi^ we obtain the estimate 

lUI - -hli.-.p, - -»""{K " "hlo.O, + -"TU-.B,} • <3-6> 

In (3.4) and (3.6) the controlling term is |u
T"

u
n 0 n.' -

 = -'*- which is itself 

controlled by |u~u
n|_ n' ^

or an-~ *- - °' s e e Nitsche and Schatz [9]. In the 

present case.optimal estimates are obtained by taking q = a-1 and the bound on 

ju-u, |_ naturally depends on the global regularity of u. Following this 

approach the best estimate for u
T~

u
n 0

 i s 0(ha ) when u 6 Ha (ft), thus 

giving in (3.2) a superconvergent (0(ha+1)) estimate. 

It has to be said that the estimates for the cases when u & Ha+1(tt) are of lower 

order than those above but can still be of higher order than the corresponding 

estimates obtained without recovery, see [7] and [10]. 
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