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FACTORIZATION OF OPERATORS AND
WEIGHTED NORM INEQUALITIES

José Garcia-Cuerva
Madrid, Spain

The purpose of these lectures is to show how the theory of factorization of
operators developed by B. Maurey in the 1970's can be applied to obtain very in-
teresting results about weighted norm inequalities. The idea to carry out this
program is due to José Luis Rubio de Francia. He constructed a beautiful theory,
which culminates in the extrapolation theorem. This theory is presented in chapter
VI of our book [8] in the context of LP spaces. Here we have chosen to work in
a more general class of Banach function spaces, an approach that José Luis Rubio
also adopted in some later works [20], [21], [22]. There are two reasons to do
this. First of all, the presentation of the main results becomes much clearer, and
besides there are very nice applications to Banach lattices to be discussed in
Section 5. There are several approaches to extrapolation, giving rise to different
results. We have chosen the original approach of José Luis Rubio de Francia, but

we have completed the theory so that all the known results become part of it.

§ 1. Banach function spaces

Let (I , do) be a complete o-finite measure space. We shall denote by M,
the collection of all extended real-valued measurable functions on I and by /nf
the subcollection of M, consisting of those functions whose values lie in [0,«].

Definition 1.1. A mapping o : dﬂf — [0,»]) 18 called a funetion norm if, for
all f,8, f (n=1,2,3,...) in MY, for all constants a 2 0 and for all
measurable subsets E of I, the following properties hold:

1) p(f) =0 &9 £ =0 a.e.; p(af) = ap(f) and
p(f + g) 5 o(£) + p(g)

2) 0sgsf a.e. =P p(g) s p(f)

3) 0Sf +f ae. =D p(£) + 0(f)

4) |E|<w—3’o(xE)<°°



5) [E] <= = J £ do s Cpo(f)
E

for some constant CE , 0< CE < o , depending on E and p but independent
of f .
If p 1is a function norm, the collection X = X(p) of all functions ‘f in
M, for which p(|£]) < » is called a BANACH FUNCTION SPACE. For each f E X ,
we define
Iely = oCl2l)

The following result is easy to establish (see [1]):

Theorem 1.2. Let p be a function norm, and consider X = X(p) . Then (X, | ﬂx)
is a Banach space and the following properties hold for all " f , g , £, (n=1,
2,...) in M and all measurable subsets E in I

a) (lattice property) If |g| s || a.e. and £E€ X, then g€ X and .
lel, < Il

b)  (Fatou property) Suppose fne X, £, 20 (n= 1,2,...) and £, 4 £ ae.
If £€X, then |f |yt [£ly whereas if f@&X , then |f g + = .

c) (Fatou's. lemma) If fne X (n=1,2,...), fn — f a.e. and
lim inf |£ |y <=, then £€ X and |£]y s lim inf an||x .
n>o n>eo

d) Every simple function belongs to X .

e) To each set E of finite measure there corresponds a constant Cg »
0 < Cp <, such that

Jlf[ do s Clely for all fE€X.
E .
f) If £~ f in X , then £ — £ in measure on every set of finite measure;

in particular, some subsequence of £, comwerges to f a.e.

In view of theorem 1.2, we shall use the names BANACH FUNCTION SPACE or
BANACH LATTICE interchangeably. Here are some examples of Banach lattices:

1) The Lebesgue spaces P = Lp(dc) , -1 £ p s », and the weighted Lebesgue
spaces Lp(v) = Lp(vdc) ,i 1 £ p £, given for a weight function v 2 0 by:

- N\1/p
{ Jlf(c)lp v(o) dc}
z

P = {£e1’: g < =)

LP(v)
where 10 = {fe€M: |£(0)] <= a.e.} .

2) The Lorentz spaces L(p,q) , 1l < p,q s » , with the exception of L(1,»)

which is not even a normed space. These are defined by:



© q l/q
el g = (@0 [P @) aere] <o
0

L(p,q) = {fe1°

where £*(t) = inf {s > 0 : ’{Ifl > s}l s t} 1is the non-increasing rearrangement
of f .

3) The Orlicz spaces &(L) where ¢ is convex, strictly increasing in
[0,2) and ¢(0) =0,

(L) = {£ € 0 J ®(|£(0)|/a) do < » for some a > 0}
z

with

"fn¢(L) = inf {a > 0 : J o(|£(0)|/a) do = 1} .
3

4) The mixed-norm spaces Lpl’pz(i,do) if I = Zlbv I, and do= da1 ® doz

15p,p, 5=, defined by the condition:
Py/Py 1/py.
HfﬂLpl’Pz = [ i ( l |§(01,02)|p1 dal) dcz] <o,
2 b
Given a Banach lattice X = X(p) of functions on (Z,do) , its dual space
X* can not always be identified with a Banach lattice of functions on (Z,dg).
This leads us to consider the associate space, which Qe now define. First of all

we consider the associate norm p' defined by

0’ (g) = sup { J £(0) g(0) do : £€ MY, p(£) s 1} .
z

It is easy to see that p’ 1is also a function norm, and it makes sense to give

the following

Definition 1.3. Given a Banach lattice X = X(p) , the Banach lattice X(p')
determined by p’ will be called the associate space of X and it will be
denoted by X' . )

The main properties of the correspondence X — X' are collected in the
following result, whose proof can be seen in [1]:

1

Theorem 1.4. a) X' = {g & 0. fg el forall f €X} and

||g|;x,=3up{”fgdg ceex, el s 1) .
. z
b)  Every Banach lattice X coincides with its second associate space X" .
In other words, a function f belongs to X 1if and only if it belongs to X",
and in that case Hfﬂx = ﬂfﬂx” .

c) X' is (eanonically isometrically isomorphic to) a closed norming sub-

space of X* . Norming means that



tgex, ugﬂxr s 1}

fl, = sup f gdo
X
z
for all fEX.

Also in [1] we find this nice characterization of the Banach lattices X for
which X' = x*

Theorem 1.5. The Banach space dual X* is (eanonically isometrically isomorphic
to) the associate space x" if and only if every f € X satisfies the following
property: '

(1.6) for every € > 0 there is § > 0 such that |E| < § implies
lexghy <€«

Property (1.6) is referred to by saying that the function f has absolutely
continuous norm. When this happens for every f € X , we say that X has absolute-
ly continuous norm. Theorem 1.5 can be rephrased by saying: X' = x* €> X has
absolutely continuous norm. For example, all the P spaces have absolutely

continuous norm except L , and we have: (L”)' = ng wH* .

The absolute continuity of the norm gives us a version of the dominated con-

vergence theorem.

Proposition 1.7. f € X has absolutely continuous norm if and only if the follow-
ing holds: whenever £, (m=12,..0) and g are measurable functions satisfying
|£,] s |£] forall n and £ — g a.e., then |f -gly — 0.

As a consequence of theorem 1.5, we have the following nice characterization

of the reflexive Banach lattices:

Theorem 1.8. A Banach lattice X 1is reflexive if and only if both X and its

associate space X' have absolutely continuous norm.

Proof. If X and X' have absolutely continuous norm, then successive applica-
tions of theorem 1.5 give: X** = (X*)* = (x)* = (X')’ = X" = X . Since all the
identifications are the canonical ones, we conclude that X 1is reflexive. Suppose,
conversely that X is reflexive . Recall (theorem 1.4 c)) that X’ is.a closed
norming subspace of X* . If X' were a proper subspace of X* , by the Hahn-
Banach theorem, there would exist a nonzero functional A € X** such that

A(X') = 0 . The reflexivity of X allows us to represent A as
AE) = J f g do
z
for some g € X and all f €X' .



But A(f) = 0 for all f €X' . Since X’ is norming, this implies g = 0 a.e.
But then A = 0 , which is « contradiction. Thus X’ = X* and, according to
theorem. 1.5, X has absolutely continuous norm. From this, and the fact that X
is reflexive, we get (X')* = (X*)* = X = X" = (X')’ . Applying once more theorem

1.5, we get that X' also has absolutely continuous norm. )

For X a Banach lattice we shall use the notation
X+={x€X:x(0) >0 a.e.} .

Definition 1.9. For X a Banach lattice of measurable functions on (Z,do) and
a >0 we shall consider X° = {re l.o : |yl = x® for some x € X} and for
y €X® we shall define nylxa - "Iy'llaﬂ; .

Proposition 1.10. For 0 <a<1, XX =X and |xeyly s Ilga Iyl e -

Proof. We may assume ﬂxﬂxa =-1= ﬂyﬂxl_a . Then

I (e (1 R ) R T S R G P

and, consequently,

Ixeyly s allx| M2l + @ - Iy 2 =1 .

Proposition 1.11. If 0<asl, | ﬂxa is a norm and X® is a Banach lattice.
If a>1, | HX‘ ig, in gemeral, only a (1/a)-norm.

Proof. If a > 1 s we have

Ix + y|1/2 < |x|1/2 4+ |y|2/e

1 1 1 1 1 1
R Al [P b M T e MY [P MO A M A

and this implies

If 0 <a< 1, we have
1 : 1 -1
Dlx + y[M21 = Fix + y] o+ y] VO s
s Ul fx+ y | T8 ly) x| 0272

Now we use proposition 1.10 to conclude that
1 : 1 -
Hx+ v 1Mol s Ol + D) Hx + 912157

i.e. Ix + yuxa < "xﬂxa + ﬂyﬂxa . .

For some Banach lattices X , x2 is still a Banach lattice for some a > 1 .

For example if X = P s P>1, then X2 = Lp/a and this is a Banach lattice



for as p and not only for a =1 . This fact characterizes the p-convex Banach
lattices to be defined below.

Note that for X = Ll , proposition 1.10 is simply HSlder's inequality.

Definition 1.12. Let 1 S p,q £ « . The Banach lattice X is said to be

a) p-convex if

(or | sup ]x |" s M sup |x.| if p=w)
1sjsn 10X 1sjsn 3 X .

b) q~conecave if
n a 1/
(2, )

1/q
lx

RE Y

(or sup x|, s M| sup |x,||, if q =«).
15450 1% lsjsn 3 %

The main properties we shall need concerning these notions are collected in

the following statement whose proof can be seen in [19].

Proposition 1.13.

a) Every Banach lattice is l-convex and .w-concave.

b) If X <is py-convex and qq-coneave, then it is also p-convex for every
1sps P and q-concave for every 9 $qsw»,

z2) If X 18 p-convex and q-concave, an equivalent norm can be defined so that
inequalities a) and b) in definition 1.12 hold with M =1 .

d) X is p-comvex if and only if XP 1is a Banach lattice, with X renormed
according to c).

e) X 1is p-convex (resp. q-concave) if and only if X' is p'-concave (resp.
q’-convex) where p' <8 the expoment conjugate to p given by % + %7 =1.
Definition 1.14. a) We say that an operator T : E — Y from the vector space

E to the Banach lattice Y , is sublinear if it satisfies the following two

conditions:
1) |T(ag)| = |a] |Tf| , a.e., 2 €ER, fEE
2) |T(s + )| = |TE| + |Tg| a.e., £, g€E.

b) We say that T : E— Y is linearizable if there exists S : E — Y(B)

linear such that’ Tf(o) = HSf(o)"B for a.e. 0 £ L , where B 1is a certain

10



Banach space and
¥(B) = {y : £ > B s.t. ny(-)uBeY} .

c) If T:X—Y is sublinear and X and - Y are both Banach lattices,
we say that T is positive if |f]| s g a.e. implies |Tf| s Tg a.e.

Observation 1.15. Note that a linearizable operator is sublinear. But it is also
non-negative in the semse that Tf 2 0 for every f . Every sublinear operator

satisfies the condition

< |T(f - g)[ a.e.

|I2¢] - Il
However, if T is non-negétive sublinear, this condition becomes
(1.16) |T£ - 18] 5 |T(f - g)| a.e.

This condition also holds for linear operators. All the sublinear operators to be
considered will be either linear or non-negative sublinear. This justifies the
convention which we shall adopt, of calling T sublinear if and only if (1.16)
holds for every f , g . Accordingly when we have T : E—~ B and B is simply
a Banach space, we shall say that T 1is sublinear if and only if

(1.17) It - 18] = |TC£ - &) .

Observe that, with this restricted meaning, a sublinear operator T : A — B
between two normed spaces is continuous if and only if it is continuous at 0 ,
and this happens if and only if T is bounded, in the sense that |[Ta| < C|a|
for every a € A . When for a given sublinear operator T we say that T is
bounded from X to Y and also from Z to W , we shall implicitly assume that
XN Z is dense in both X and Z . This implies the uniqueness of its extension,

so that it is reasonable to consider it as the same operator.

§ 2. Factorization of operators

Definition 2.1. Let X be a Banach lattice of measurable functions on (Z,do) .
Let T : X — B be an operator sublinear and continuous into the Banach space B.
We say that T factors through LP? = LP(2,do) if there exist a continuous ope-
rator T0 : LP >.B and a function g(o) > 0 such that the following diagram is

commutative:

k "'*0
\,_p /

where Mg is the multiplication operator defined by Mg(x)(o) = x(0)+g(o) .

11°



In order for M_ to map X into L? we must have |x~g|p € L1 for every

x € X or equivalently |g|P € (xP)' . Thus g must belong to ((XP)')I/P L If

this is the case, we have ﬂMg(x)ELp s Clx]y where C = ﬂgﬂ((xp),)l/p .

Also since To(fg) = T(f) , the continuity of T, means

0

“Tfﬂg scP J|f(o)|p g(o)P do
I

that is: T : LP(v) — B with v=gP € (x*)' . This 1s a Banach lattice if X

is p=-convex.

Definition 2.2. Given a p-convex Banach lattice X, 1 S p < », we shall write
X, = (x")" .

We shall prove that if X is p-convex and has absolutely continuous norm,
the factorization of T : X— B through P is equivalent to the fact that the
vector extension T defined by sending each sequence (xj) of vectors in X to
the sequence (Tx,) , is bounded from x(2P) to kg . This means that we have an

i
inequality:

.

llpu
X

(110 < ] 1 1ey1)

Actually we shall formulate a slightly more general theorem valid for a family of

perators.

Theorem 2.3. Let J° be a family of sublinear operators T : X — B where X
i8 a p-comvex Banach lattice, 1 s p < =, and B a Banach space. Then the suffi-
eient condition for the inequality

1/p 1/p
P - |P . o~ .
(2.4) {g ITyx, B] s cﬂ[§ Ile ] Nx, ,ET ., x€X,

to hold is that there exists v € ip , v>0, with ﬂvﬂip s 1, such that:

u’rxﬂg < cP J]x(u)|p vio)do, TET , xex.
I
If X has absolutely continuous norm, the condition is also necessary.

The proof of theorem 2.3 will depend on the following version of the mini-max

lemma.
- Lemma 2.5. Let A and K be convex subsets of some real vector spaces, and

suppose that K 1is endowed with a topology that makes X compact. Let
¢ : AxK—RU{+o} be a mapping such that:

12



(1) ¢(*,b) <& concave for each fixed b €K
(i1) ¢(a,*) <& convex for each fixed a € A
(i11) ¢(a,*) & lower semicontinuous for each a €A .

Then min sup ¢®(a,b) = sup min ¢®(a,b) .
bEK a€A a€A bEK

For the proof of this lemma we refer to [81].

Proof of Theorem 2.3. Suppose that v exists. Let us prove (2.4):

P P P
E HzjjﬂB sc l § |xj(u)| v(0) do s

s cpﬂ§ |xj|Pﬁ Wl s cpﬂ[ z Ix |P] "ﬂ; .

¥ xP)’
Conversely, suppose that X has absolitely continuous norm and (2.4) holds. Let
{Xlx |p:x € X and ZIzjJIl Sl for some TjGJ}

A 1is clearly a convex subset of xP .
Let K= {z € ip : 220, Hz"i H 1} . Since XP has absolutely continuous norm,
P .
- (Xp)' = (XP)*, K 1is a convex subset of Xp and if we consider the weak-*
topology (the one given by xP ), K 1is also compact.
Consider now ¢ : A x K— R given by

o(y,2z) = - J y(o) z(o) do .
I

¢ 1is actually bilinear and is continuous in 2z . Thérefore, lemma 2.5 applies.

Note that
min ¢(y,z) = - sup J y(o) z(o) do = - [y] P s - L because of (2.4).
z€K ZEK % X cP
Then min sup &(y,z) = sup min &(y,z) s - L . This means that there exists
zEK yeA yeA z€K cP
z € K such that for every y € A, ®(y,z) s - l; . If we take y = lxIp/||Tx|g
C
we get

- P - L P
Jlx(u)l z(0) do s o HTxHB

T
which is what we wanted with v = z | a)

Now we want to consider the dual situation of factoring an operator
T : B~>Y where B 1is a Banach space and Y is a Banach lattice of measurable

functions on (ﬂ,dw) .

13



Definition 2.6. T : B — Y sublinear and continuous factors through
1P = 1P(Q,dw) if there exist a continuous operator To : B— L and a function
g(w) > 0 such that the following diagram is commutative:

T 5
B Y
>ﬁ\\\& ////é:
LP

Proposition 2.7. Assume Y 4is p-concave. Then M_ takes LP <into Y 4if and
only if g € (((Y’)P')')I/p’ , whieh is a Banach Za%tice. In that case M_ s a
continuous operator whose norm coincides with the nmorm of g 1in the»aboug men-
tioned lattice.

N ’
Proof. fg €Y VYi€1P&dnrgerl ¥re1P, ¥ney &ngerP
’ ’ r !
yney élglPe ! Ve a)? € el e «@nPH)HMP | mis isa
lattice because Yf is p’-convex, which is equivalent to the fact that Y is

p-concave. Also

e )l = j £ghde for some h with [nly, 51 .

Q
p' l/p’
thus e ly s bl Hanl® 10 s lel del , - g
Note that, since Tof =l(Tf)/g ; the continuity of TO means
J|Tf(w)\p g du s e}
Q

P ryP'yry1/p
that is T : B — g+L" 1is continuous where g & (((Y')* )") L If p <o,
- ’ ’
g-LP = LP(u 1) where u = gP e (((¥)P )')p/P .

Definition 2.8. Given Y a p-concave Banach lattice, 1 < p < = , we shall write
A ’ ’
T = (@nPHHPle
P )
Under certain conditions, we shall prove that the factorization of T : B — Y
through P is equivalent to the boundedness of'che vector extension T from &g

to Y(EP) . This means that we have the inequality
1/

“[ § 'Tf1|p]l/p”Y s C[ § "fj"g] i

As in the previous case, we shall formulate a general theorem valid for a family

of operators.

Theorem 2.9. ‘Let J ‘'be a family of sublinear operators T : B — Y where B

is 'a Banach space and Y <is a p-concave Banach lattice, 1 < p < » ., Then'a

14



sufficient condition for the inequality

1/p 1/p ; -
P < P .
(2.10) “[ § IijjI ) “Y < c[gf "fjllB] ; -Tj er, fj €B,

n .
to hold is that there exists u € T, u> 0 with nun? <1, such that
T

Jle(m)[P(u(m))‘l' dwscP|glP, Tes, feB.
2

’
If ()P is reflewive, the condition is also necessary.
Proof. The key observation is that
o/t 1P ’
(2.11) ||y||Y = min {[le(w)lp z(w) /P dw] 1z € ((Y’)p )', uzﬂ < 1}.
Q
Indeed,if y €Y , we have, for some y’ € Y’ with |y’| =1 :

1/p 1/p’
ly = [y = [ 522" s ([l ) ([l P%) s
Q Q

Q Q

1/p ’
3 Ulylp z'P/p'} for every z € ((Y/)P )‘; with Jz| s 1

and equality is achieved for some =z .

Assuming u exists, let us prove (2.10):
1/pyp -
I,[ ) |ijj|p] e J I Ine @ P @™ aws & [ g8
i Y 43 3

’
Conversely, assume that (2.10) holds and also that ()P is reflexive. We shall
apply again the mini-max lemma 2.5. In order to do that, we define

we(fimes Tieigen .

This is a convex set of Y’ . Let
K={z€@®Y tzz0, |z =s1}.

’ ’
This is a convex set and, since ((Y')p )' = ((Y’)p )* (theorem 1.8) it is also

weak-* compact.
Define ¢ : A x K — R U {+=} by
- ’
¢(x,2z) = J x(w) z(w) /P dw .
Q
® is linear in x , and therefore concave. The convexity of ¢ in 2z follows
from the fact that che‘maﬁping t> 2 , a>0, is convex in [0,»). Finally,

in order to see that ¢ 1is lower-semicontinuous in 2z , we need to see that, for

every x and every a, the set E = {z € K : d(x,z) = a} is closed in the weak-*

15



topology. But this set is convex. Also, sincek ((Y’)p')**- (Y’)pl » the weak-*
topology coincides with the weak topology. These two facts imply that we just need
to see that E 1s c¢losed in the norm topology of ((Y’)p,)' (see, for example
[23], theorem 3.12).
Now if- zj — z in the norm, there is a subsequence converging a.e.. Fatou's
lemma (theorem 1.2 c)) can be applied to show that zj € E implies z €E . We
are in a position to apply lemma 2.5 to ¢ :

min  #(x,z) = ﬂlxlllplg scP.

zE€K
Thus

min sup ¢(x,z) = sup min &(x,z) S cP .

z€K x€A x€A zeK
In other words: there exists 2z € K such that for every x € A ¢(x,2z) S cP .
In particular, if we take x = |T£|p/||_f|[§ for some f € B and some T& T , we
get .

JITf(w)]p 2 PP 4w s c"]]fllg .

Q

p/p' = ¢

This is what we wanted with u = z € Y, which satisfies Iuﬂ?p s1. 0

There is a version of theorem 2.9 for p = = . In that case, note that g €Y
and T maps B into geL” = {£€10: [E/g]_ <} .

Theorem 2.12. Let J be a family of sublinear operators T : B — Y . Then the
inequality

. T sc , 1,€7, B,
(2.13) Hsgp | jfj‘“Y S;lp “fj“B '1'j J f.J e

holds if and only if there exists u € Y, with ||uuY s 1 such that

Ite] o = Iﬁﬁ sclel, , T€T, f€8B.
u-l ® B

u

Proof. If u exists,

T, f .
sup I—J—llu ﬂu“ s C sup |£,]
P u oo Y 3 i'B

ﬂ‘;”’ AN
and we get (2.13). Conversely if (2.13) holds, let

A={sup |T.£. ]| : sup || s 1} .
1s4sn 33 1gjza 1B

This is a directed subset of the closed ball of center 0 and radius C in Y .
Then A has a least upper bound G €Y such that “G"Y S C (see [241). If we

set u = G/C , we have

s;np [ijj| sc smjxp "fjHB'“

16



and, consequently,

¢
u

s clely .

§ 3. Equivalence between weighted inequalities and vector-valued inequalities

Theorem 3.1. Let X and Y be p-convex Banach lattices of functions on (I,do)
and (Q,dw) respectively, 1sp <o . Let J be a family of sublinear ope-
rators T : X — Y . Then a sufficient condition for the vector-valued inequality

(3.2) |H§ |‘rjszp]lv/p[]y s CH[:Z; |xj|l’]1/"lx ; el x ex,

to hold is that for every positive u € ?p ‘there exists a positive v € xp such
that vz s Julz and ‘

R, *

JITx(m)|p u(w) dw s cP J|x(a)|p v(e) do , TET , x&€X .

If X has absolutely continuous norm, the condition is also necessary.

Proof. If the condition holds, let us prove (3.2)
1/pyp
z|rx|P] [] -l]-znx |PH_ sJ): 1T, [P u do
H[j 373 v 3 37370 diye P 373

for some u G?p , u>0, and nu!|§ S 1 . We get the corresponding v and
P

continue

< cP l j): Ilep v do c1’||2|xjIPEXPNVH,.-)Lp < CPM g: IXJ'P]UP”X

Conversely, let us assume that (3.2) holds and that X has absolutely continuous
norm. Let u>0, u€ ‘?p . We may assume Hu"g =1 . We see that Y C,Lp(u) .
Indeed, if y €Y, P

[ly@1P a@ @ s 15IPL, Tl = 1915 -
2 P
Thus we have a family of T : X — LP(u) = B such that

[ ) "zjjug]l/p - "[ ) Izjjlp]llp"B s C"{ ! lxilp]”p"x '

Theorem 2.3 applies, and we get v € ip , v >0 with ||v||)~( £ 1 such that
|4
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JITx(m)lp u(w) do = 1[Tx||§ < cP'Jlx(o)lp v(e)do , T€G, x€X.
Q

Thus, the condition is necessary. n]

Note that in theorem 3.1, we actually get that T is bounded from Lp(v)
' ot
to LP(u) because X 1is dense in LP(v) . Indeed,if h € (Lp(v)]*' = 1P vP /p)

is such that J x(0) h(o) do = 0 for every x € X , we have
s ;

I
he? P /p) (. X’ and, consequently h(c) =0 a.e.

Theorem 3.3. Let X and Y be p-concave Banach lattices of functione on
(£,do) and (R,dw) respectively, 1 < p < « ., Let T bea f‘amily of sublinear
operators T : X — Y . Then a sufficient condition for the vector-valued in-
equality (3.2) to hold is that for every positive v & ﬁp there exists a positive
vel such that lulg s Ivlg and

JITx(w)lp(u(m)]-l dw s cP J|x(c)|p(v(c))-1 o, TET.
Q P

’
If (Y)P  is reflexive, the condition is also necessary.

Proof. If the condition holds, let us prove (3.2). By (2.11) applied to the

lattice X,

NS HEL

A
for some v EXP s v >0 with ﬂv"ﬁ s 1 . By considering the associated

A
u €Y , we can continue writing:

1/p
S P ae D[ L]
2 @ XJ) § ITij(“’)l (u(w)] dw 2 @ § |zjj|

again by (2.11).

A
Conversely, suppose that (3.2) holds and (Y’)p is reflexive. Given v € xp,
v > 0 with “V")? =1 we have B = Lp(v-l) G X by (2.11). We may view T
as a family of opgrators T : B-—Y such that

“[jX 'ijj'p)l/p“Y : °»[§ lfj'P}”P“B i [ji "fd"g)w :

A
We can apply theorem 2.9 to conclude that there exists u GYP s, u>0, with

||u||§ <1 such that

J]Tx(w)lp(u(m))_l dw s cPlx|E = cP Jlx(c)lp(v(o)]—l do .
Q z

The case p = « is much simpler.



Theorem 3.4. Let [J be a family of sublinear operators T : X — Y , where X
and Y are Banach lattices of functions on (I,do) and (R,dw), respectively.
Then the inequality

(3.5)

sup [ ], cfewe 1 il

holds if and only if for every v €X, , there exists u €Y, such that
||u||Y s Mx and the operators T & T are uniformly bounded from v<L® to
ul® with |T| s c , that is: :

Tx
u

s c|®
v

© ©

Proof. To prove the sufficiency, let' v = sup [le . Then we have the correspond-

ing u , and since "x /vl[ s 1, we get: 3
L] el 5

sup |T [ ]I Hsup

which is (3.5). Conversely, if (3.5) holds and we are given v & X+ with ﬂv[ly =1,
we have v+L” Gy X since I=ly = lx/vllvly = Ix/vl, « Let B = v+eL” . Then (3.5)

gives

sup [T |“ s C-
3

SUP l—llu c Sljlp I=5lg -

Theorem 2.12 can be applied and we get u €Y+ with |{u[|Y s "v"x
Tx X

u C .‘“ '

Nu Vi ]

When we are dealing with a single Banach lattice X of functions on (Z,do) ,

s clxly, =

theorem 3.1 can be improved obtaining an inequality with the same weight in both
sides. This unification of the weight is achieved by the Rubio de Francia
algorithm ([19]) which we describe below.

Theorem 3.6. Let X be a p-convex Banach lattice of funetions on (£,do) ,
1sp<w,and let § bea family of eublinear operators T : X — X . -Then
a sufficient condition for the vector-valued inequality:

S “[§ 'Tj’*j“’]“plix s Cl“[:% "‘j‘p]l/P"x P ET . xEx

to hold is that for every positive u € f{p there exists a positive v &€ Xp such
that usv, |v]|z s2uly and '
XP XP

j[Tx(o)[p v(o) do < Cg Jlx(c)]p v(o) do ; TET, xeX.

I z

If X has absolutely continuous norm, the condition is also necessary. Moreover,

19



-1/p 1/p
2 sc /e, s 2P,

Proof. The sufficiency is proved exactly as in theorem 3.1, yielding

1/p
<
Cl s 27 C2

Conversely, if X has absolutely continuous norm, let us prove the necessity.
We assume that (3.7) holds, and that we have u >0, u €& ip . Theorem 3.1 gives
us UEX , U>0 with |uly = July and such that
P I
JITx(c)Ip u(o) do s cf Jlx(0)|p U(o) do , TETJ
z z
Let us call ug = u and uy = U , and use theorem 3.1 again to obtain Ul‘e ip s
> 0 with

Iﬂlllip

U1
s ﬂu ||~ s Iu||~
1 Xp Xp

and such that

JITx(o)|p u, (0) do s cp J|x(o)|p U()do, TET .

z
Now call u, = lI1 and continue. By induction we get u.:l & Xp s uj >0 with
uﬂ~ and

Iy, =

J}Tx(c)|p (o) do s Cp J|x(a)|p uj+1(c) do, TE€T, 3 =0,1,2,... .
.z I

©

Let v = z Z-j u, . Then vau, =u, |v||~ s Zuuﬂ~ and
P 0 % *p

J|Tx(c)|p v(o) do s cP J|x(o)|1’ Z 273 Uy (9) do s
z
s ZCII’ J |x() |P v(0) do
I
which is our condition with 02 H Zl/pC1 . O

There does not seem to be a direct way to unify the weight in theorem 3.3
or 3.4 when X =Y . However, if we are dealing with linear operators, we can

achieve the unification by using duality.

Theorem 3.8. Let § be a family of linear operators T : X — X where X 1is
a p-concave Banach lattice, 1 < p < = . Then, a sufficient condition for (3.7)
to hold is that for every positive u € R there existe a positive v e?(p such
that u s v , “""QP s Zp/p’““ﬁﬁp and
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J|Tx(o)|p(v(d)]-l do s cB jlx(a)l"(v(a))“1 do, TET .
T z
If X is reflexive, the condition is also necessary. Moreover,
27V s ¢ /e, s XL

Proof. The sufficiency is proved as in theorem 3.3, giving C1 s Zl/pc2
Conversely, let us assume that X is reflexive and that (3.7) holds. The
reflexivity implies (theorem 1.8), that X’ = X* . Thus, the family a*
consisting of the adjoint operators T* of the operators TE T, is well
defined as a class of operators on X’ . Besides (3.7) implies

1/p’ 1/p’
% P’ p’ -1
[ 3 1739517) "x,“l“j“’j‘ )7, e

Now X’ 1is p’-convex and has absolutely continuous norm because X is

reflexive Thus, we can apply theorem 3.6. Observe that (X’)p, - ((x')P ) =
14
= xg /p . Now, given a positive u € x , let U =uP "I» € (X')7, . We know that

there s V € (X’)7, such that UsV, |v| ., \~ s 2|u] and
P (X )pl

N3,

Ir*y(o)p" V(o) do S 2c‘l" J|y(o)|pl V(o) do , T* € J*
b

™M —

But this is equivalent to

o/ [ : - '
JITx(a)lp V() ®? 4q 5 2P/P Cg Jlx(o)lp V(o) PP aq .
z I
’
If we write vp/p =v € Qp we have:

’ ’
u = PP’ < yR/P -v,

= 1vye/p’ p/p yyye/®’  _ op/P’

Ivlg = V1% s 227 ToItE- = 2*®hulp.

and
Jlfx(o)lp[v(u))_l do s ZP/p’Cg Jlx(c)lp[v(c))—l do
L ‘T

14
which is what we wanted with C2 s 21/p Cl
0

We can also use duality for the case p = » , improving theorem 3.4 when

X = Y and the operators are linear.

Theorem 3.9. Let §  be a family of linear operators T : X — X , where X
i8 a Banach lattice. Then a sufficient condition for the inequality

(3.10) sup lle« N T ET

sup ITyx Iﬂ
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Proof.

to hold is that for every u& X+ there exists v € X+ such that u s v ,

Ivly s 2lul

Tx
v

»

/S

©

X

s C2 v

;s Te T .

©

If X s reflexive, the condition is also necessary. Moreover, we have:
1/2 s ¢C

The sufficiency is proved as in theorem 3.4 and gives C, s 2C

. If X

1 2

is reflexive, we have X’ = X* , and we may consider the class JT* formed by

the adjoint operators T* : X’ — X’ . If (3.10) holds, we claim that

o |1, <ol

Indeed, the left hand side equals

for some

be written as

J Z IT;yjI X = J § (T§Yj) aj(m) x(w) dw

z by
x € X with [x| 1 and sup laj(w)‘ < 1 . But the last integral can
j
J § ijj(ajx) < J §ij -sgp Tj(ajx) do =
) J
gHmy]" oup 7yago] 5 oyfoue lag] L 11s,1], s
] 1 i J x 1y h| x’

I

o |7y,

Once we know (3.11), we can apply theorem 3.6. Note that X’ has absolutely

continuous norm because X 1is reflexive, and also (X')I = X" = X . Thus, given

u G.X+

But, since

which is what we wanted to prove with C, £ 2C, . 0

, we have

v €,X+ such that u s v, "v"X = Znunx

IlT*y(o)I v(0) do s 2C, j|y(o)| v(o) do .
z

Tx

o

z

1‘ % ®
(L*))* = v-L” this is equivalent to

s 2C

X
ljv
®

2 1

Duality can also be used to obtain a variant of theorem 3.3 for a family of

linear operators. For the necessity we require that X has absolutely continuous

norm and also that Y is reflexive. These conditions are slightly different from

those in theorem 3.3.
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We shall end this section by writing versions of the previous theorems for

Lebesgue spaces.

Lemma 3.12. a) For q>p , (Lq); = 1% where i—- 1 —% .

b) For q<p, (L‘*)‘p-LB

where .. 1.
B q
Proof. a) 1% is gq-convex and, consequently, p-convex. Now (Lq); = (Lq/p)' =

- 1@/’ 1 ___,.p.1
L . But @’ 1 q- e

_b) L9 is q-concave and, consequently, p-concave

S S YPY 1A NS I ¢ S W PG |
@77 - ) gt Gr e -

@y = L@/ @)
p =

P

But .
N q P q B 0

It is interesting that in both cases the reciprocal of the exponent turns
out to be |1 - El . This allows us to combine in a single statement the versions

of theorems 3.1 and 3.3 for Lebesgue spaces.

We haye a family 5" of sublinear operators T : Lq(Z,dc) — Lr(Q,dm) .

We are interested in knowing when the following vector-valued inequality holds:

(3.13) H[jz lrjfjlp]l/p

1/p
sc“[llfjlp] “ ; Tjed’, ijLq.
r i q ’

The answer is as follows:

Theorem 3.14. Let 1 S p,qor < = , and define o« and B by %- -2,

1.9 -2
; |1 ql . Then
a) If p < q,r, (3.13) holds if and only if for every u €& L:(dw) , there

exists v € Li(do) such that “V“B H “““a and

JITf(w)|p u(w) do s cP J]f(c)|p v(g) do , Te& T .
Q I

b) ‘If p>qr, r>1, (3.13) holds if and only if for every v & Li(do),
there exists u€E Li(dw) such that |uf s "V"B and

JITf(m)|p(u(w)]-1 dw s P Jlf(u)lp(v(c))-l do , TET.
Q z
Actually, theorem 3.14 is true even for 0 < p,q,r < » , The same proofs

work with some minor changes.

The version of theorem 3.6 for X = LY will be this:

Theorem 3.15. Let 1 < p <q < and let T bea family of sublinear operators
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T : LY(2,do) — LY(Z,do) . Define o by é- 1 -‘E . Then the following con-
ditions are equivalent:
1/p 1/p
o (1) s [0 ] s e s gent.
g 1 q MUy T q 3 J

b) For every ue€ L:(dc) , there exists v & L:_(du) such that u s v ,
Hvﬂu = 2uuua and

jITf(a)Ip v(o) do s Cg Jlf(u)lp v() do , TE T,
P P ‘
Moreover, 27H/P g c,/c, s 217e

And here 1is the version of theorem 3.8:

Theorem 3.16. Let 1 <q<p<w= and let J bea family of linear operators
T : LY(5,do) = 1L9(3,do) . Define «o by -(1;- E - 1 . Then the following con-
ditions are equivalent:

1/p 1/p
2) “§ ’ijj'p) » 5“1“[§ 'fjlp] " > yef, et
q q

b) For every u€& Li(dc) , there exists v € Li(do) such that u sv ,
N ’
Il s 2P/® ful and.
J|Tf(_o)|p(v(o))—l do s c‘z’ J|f(u)|P[v(c)]-1 do, TET .
z

z
- ’
Moveover, 2-1P" < c,/C, s 21/

§ 4. Extrapolation .theorems

We are going to reformulate the theorems in section 3 tor iinear operators,
replacing the conditions given there by seemingly weaker ones which do not
assume any size relation between the weights. These conditions will suffice
because we can apply the general principles of Linear Analysis.

We start by recalling the relation between the lattices and the weighted

Lebesgue spaces.

Lemma 4.1. Let X be a Banach lattice.
a) If X ie p-comvex, then X = NLP@) , ue (ip)+ and

1/p .
Il = max {U|x(o)|p ) do] el s1. usof.
P
z
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- A
b) If X <8 p-concave, then X = ULp(v 1) s VE (Xp)+ and
1/p

-1
“xllx = min {[l‘x(c)‘p(v(o)) du} , nvnﬁp <1, v>o0}.

Proof. a) |x|pu € L1 Yue & )+ e !x‘p e (xP)” = xP e x € X . The
1/p

expression for the norm follows from Hxl[x = lllxlpﬂxp

b) The identity for the norm has been proved already. It is a reformulation
of (2.11). The expression of X as a union of LP spaces is an immediate

consequence. 0

Here is the new formulation of theorem 3.1.

Theorem 4.2. Let J be a family of linear operators T : X — Y , where X
and Y are p-convex Banach lattices. Then a sufficient condition for the in-
‘equality (3.2) to hold is that for every positive u € ¥ therf exists a positive
v E ip such that all ‘T € T are uniformly bounded from 1P(v) to 1P(u) .

Proof. Tt follows from lemma 4.1 that X@P) = NPWEP) , ve (ip)_{_ and
Y(R,p).- N LP(u)(z") » u€ ip)+ . What we havg to prove is that all the
operators. T (xg) — (zjj) obtained by choosing T:I € 7T are (uniformly)
bounded from X(&F) to Y(Ep) . What we assume implies that for every u € (§p)+’
there exists v &€ (f{p)_'_ such that T maps tPv)(eP) to LP(u)(2P) . Thus,
X(!Lp) is carried into all the Lp(u)(Ep)'s and, consequently, into Y(LP) .
Once we iknow that T carries X(lp) to Y(R.p) , the fact that it is continuous
follows from the closed graph theorem. Indeed, the graph of T 1is closed in
X(lp) x ‘I(Jl.p) because it is closed in Lp(v)(lp) x Lp(u) (Ep) and

x(2P) x Y(2P) G LP(v) (4P) x LP(u) (4P) . 0

Observation 4.3. Theorem 4.2 continues to hold for a family 7 of linearizable
operators.
There are two ways to prove this:

1) 1f Tj : X — Y is given by
zj(w) = ﬂij(m)llBj with 8, : X — Y(Bj)

linear, we consider the operator §: (xj) — (ijj) and we have to prove

that S is continuous from

P
X(¢9) to Y(g B;)
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2)

What we are assuming implies that for every u € (§P)+ , there exists
v E (Xp)+ such that S maps
PGP to Pw( @ B,) .
.oop J
2
Now we just have to use the fact that

= P ¥
M ?p B) = NP ?p By) u €,

to conclude that S takes

x(¢P) to Y( ® B,) .
P 3

Since S is linear, the theorem follows.

The other approach consists in associating to the operator T given by

Tx(w) = "Sx(w)"B , the family of linear operators {Th} where h ranges
over all functions in L (B*) having |h| s 1 , and T, x(w) = <8x(w),h(w)> .
Now we consider the family 7~ which is the union of all the families {Th}
when T € § . Since ]Thx(w)| H ﬂSx(m)ﬂB = |Tx(m)| , the new family J7 ,
whose elements are linear operators, satisfies the same condition that T in
terms of weights. Thus, the family J ' satisfies (3.2) and, consequently,

the family T also satisfies (3.2).

There is also a version for p-concave lattices:

Theorem 4.4. Let T be a family of linear operators, uniformly bounded from X

to

Y , both p-concave lattices with absolutely continuous norm. Then, a sufficient

A
condition for (3.2) to hold is that for every positive v € X_ , there exists a

positive u € Qp such that all T are uniformly bounded from Lp(v-l) to

P

..1)

Proof. It is clear that T sends X(ip) to Y(lp). To prove that it is con-

tinuous, we can apply theorem 4.2 to the family of adjoint operators. O

Observation 4.5. Theorem 4.4 is also valid for a family

J~ of linearizable

operators. The second approach adopted in observation 4.3 works equally well in

the p-concave case.
When we have one single lattice X , we get results with one single weight,
which correspond to theorems 3.6 and 3.8. We write them together as follows:

Theorem 4.6. Let X be a p-comvex (resp. p-concave lattice), 1 < p < o , with

absolutely continuous norm (resp. reflexive) and let

I be a family of linearis-

able operators. Then (3.7) holds if and only <if for every u &€ ip (resp. ﬁp )s
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. ~ A
u > 0 , there exists v &€ Xp (resp. XP ), such that u sv andall T € 9

are uniformly bounded in LP(v) (resp. Pl ).

Proof. That (3.7) implies our condition follows from theorems 3.6 and 3.8. Note
that even though theorem 3.8 is stated for linear operators, it can be applied to
linearizable ones just as in observation 4.3 2). Conversely, let us see that our
condition implies 3.7. For X p-convex, we just need to apply theorem 4.2, ex-
tended to linearizable operators. Indeed, u £ v implies Lp(v) G Lp(u) s0

that all T &€ J” are uniformly bounded from Lp(v) to Lp(u) , and this is
precisely the condition needed in theorem 4.2. For X p-concave, we apply
theorem 4.4, extended to linearizable operators. This requires that for each

u € (Xp)+ , we find veE (X ) such that all T € § are uniformly bounded from
P 1) to Lp(v ) . What we have now is v 2 u and T uniformly bounded in

Lp(v ) . But Lp(u ) G Lp(v-l) and we actually have what we wanted. 0

The case p = @ requires a special formulation, but it is proved with the

same method:

Theorem 4.7. Let T bea family of linearizable operators uniformly bounded
in the reflexive Banach lattice X . Then (3.10) holds if and only if for every
uEX, there exists v €X_ such that wsv andall T € T are uniformly
bounded in veL . : ’ :

The key to the extrapolation theorems is going to be a boundedness criterion
for linear operators obtained from theorems 4.2, 4.4 and 4.6 by means of the

following fundamental result due to Grothendieck and Krivine (see [13] and [141).

Theorem 4.8. Let T : X —~ Y be a Zin’gar operator, bounded from X to Y ,
both Banach lattices. Then

(5 1mey12)"],

where K. 18 Grothendieck's universal constant whose value 18 still unknown

although 1 < K, <2.

[ e

The corresponding theorem for Lebesgue spaces is due to Marcinkiewicz and

Zygmund and it is much simpler (see [8], chapter V).

Here are the boundedness criteria we get, where for simplicity we write X

instead of X, and X instead of X .

2 2

Theorem 4.9. Let X and Y be reflexive Banach lattices of measurable functions
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on (E,do) and (Q,dw), respectively and suppose we have a linear operator T
gending measurable functions on (I,do) to measurable functions on (Q,dw) .

Then:

a) If X and Y are 2-convex, T <ig bounded from X to Y <if and only if
for every u e Y there exists v ei‘,_ such that T <8 bounded from
2w to L .

b) If X and Y are 2-concave, T <ig bounded from X to Y if and only if
for every v & A , " there exists u& Y such that T <8 bounded from
I R

Theorem 4.10. Let X be a reflexive, 2-convex (resp. 2-concave)Banach lattice
of measurable functions on (E,do) and suppose T <8 a Zinéar operator sending
measurable funations on (I,do) to measurable functions on (Z,d0) . Then T
i8 bounded in X 1if and only if for every u € X (resp. X ) there exists

v ex+ (resp. ﬁ ) such that u sv and T is bounded in L (v) (resp.

Lo h).

In theorems 4.9 and 4.10 the exponent 2 was crucial because of the
Grothendieck—Krlivine inequality which is false in general for p # 2 . However,
if T 1is linear and positive, the boundedness T : X — Y implies the bounded-
ness T : X(2P) — Y(4P) for any 1 S p s © , as we see next.

Proposition 4.11. Let T : X — Y be bounded, linear and positive, where X
and Y are Banach lattices. Then

(SR R R [P, IR TR

and

sup Iij|” s | ﬁsup |xj|“ .
i Y 3 X

Proof. Assume 1 £ p < » . The proof for p = * is analogous, only the notation

is different.

n 1/p n
Dy P) 72| ] e
[j,l 3 55010
Since T 1is positive,

n 1/p
T[(jzlh‘ﬂp) ] JZaijj

n ’
whenever X lajlp s 1.

j=1




Hence

(3 ey 9] 7% e 1] S agmey| ¢ Fae? s a2 2 1y
Tx = sup a,Tx : a s 1) s T[ X )
j'l k] j'lj j j-l j j'l j

and, cpnsequently,
n 1/p n 1/p n
U I N (S A PRL R | BN LN (DD
DAE I WS L (ORI REN LR | PR

We can make the following

1/PH

Observation 4.12. If T is linear and positive,theorems 4.9 and 4.10 continue
to hold for p# 2, 1 Sp <= . Naturally we have to replace X by ip and
ﬁ by ﬁp . Even p = «» is admissible’'in the concave case. We just have to use
X instead of gp and veL~ instead of Lp(vnl) .

When the lattices are Lebesgue spaces, proposition 4.11 has the following
version valid for linearizable operators.

Proposition 4.13. Let T : X — Y be bounded linearizable and positive where
X = 1L3(Udo) and Y =19(vdw) , U>0, V>0 . Then, for every q sp <=,
we have T bounded from X(2F) to Y(P) with |T] = |7 .

Proof. When p = q the result is obvious, so that we have T: X(zq) - Y(Lq)
bounded. By the positivity we also have T : X(lw) — Y(2™) bounded since

sup |ij| s T(sup [xJ[) . Now the result follows by interpolation, which is
perfectly legitimate since we are really interpolating a linear operator

Ty xahH =y, T : X" — Y(p) associated to T

0 such that
|Tx| = "TOX"B . ]

0

We are finally ready to obtain the extrapolation theorems. We shall use the
following notations:
For an operator T sending measurable functions on (I,do) to measurable

functions on (Q,dw) and 1 s p < »,

V;(T) ={(u,v) :u>0 a.e.on 2, v>0 a.e.on I
and T is bounded from LP(v) to LP(w} .

In particular for p = 2 we shall simply write V(T) for VZ(T) . Also

vV (T) = {(usv) :u>0 a.e.on @, v>0 a.e. on I
and T 4is bounded from v.L~ to u-Lw} .

Observation 4.14. If T 1is sublinear and positive, (u,v) € V_(T) if and only

if |Tv] s Cu a.e. for some constant C .
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Indeed, T : veL” — u-L” bounded implies |Tv/u| s |T| |v/vl, = IT| . Conversely,
if lTvl < Cu , we have
d=
v

£
Loy
Since T is positive and sublinear,
f

v

v

l£] =

v .
®

|T£| =

En [Tv] < ¢ u .
Ve ©

Thus T : veL” — u-L” is bounded with |T| s C .

When I = Q , we shall consider Ror

WP(T) ={w>0. ae.on I=0:T 4is bounded in LP(w)},

1 $p <o . Also in this case when p = 2 we shall write W(T) for WZ(T) .
Finally, V .
W (T) ={w>0 ae.on I=0:T is bounded in w-L7} .

When T 1is positive sublinear we have, as before: w E‘ww(T)€r§ ’Twl s Cw a.e.

Here is, first of .all, the extrapolation theorem from L2 .

Theorem 4.15. Let S and T be operators sending functions on (Z,do) to

funetions on (Q,dw) , such that: -
a) S s linear
b) T 18 linearizable
Q) V() C V(D) .
If X and Y are reflexive Banach lattices of functions on (I,do) ‘and

(2,dw) , respectively, both 2-convex or both 2-concave and if S is bounded
from X to Y , then T s also bounded from X to Y .

In case X =Y , ¢) can be replaced by the weaker assumption
c') W(s)C w(T) .

Proof. Suppose that X and Y are 2-convex. Let u €-§+ . Since S : X — Y
is bounded, theorem 4.9 implies that there exists v &€ X+ such that

(u,v) € V(S) C V(T) . Now we can proceed as in theorem 4.2 and observation 4.3,
obtaining in particular that T is bounded from X to Y . The argument is

similar in the case of 2-concave lattices or in the case X =Y . 0

If S 1is linear and positive, extrapolation works from any 1 < p < « .

Theorem 4.16. Let 1 < p < » and suppose that S and T are operators sending

functions on (Z,do) to functions on (Q,dw) , such that:

a) S %8s linear and positive

30



b) T <s linearizable
c) VP(S) C VP(T) .

If X and Y are reflexive Banach lattices of functions on (I,dg) and
(2,dw), respectively, both p-convex or both p-concave, and if S is bounded
from X to Y, then T <8 also bounded from X to Y .

In case X =Y condition c) can be replaced by the weaker assumption
' w_(s w (1) .
c') p( )C P( )

Proof. Suppose that X and Y are p-convex. Let u & (ip)+ . Proposition 4.11
implies that S 1is bounded from X(Ep) to Y(J?.p) . Then theorem 3.1 implies
that there exists v € (f(p)+ such that (u,v) € Vp(S) C VP(T) . Then observation
4.3 gives the boundedness of T .

Similar arguments work for p-concave lattices or for X =Y with c').

0

From theorem 4.7 we can obtain an extrapolation theorem from p = = . How-
ever,when X # Y the result is trivial because V_(S) C V_(T) - |T£| s cs(|£]).

Indeed,
Tf

Sv

£

(8v,v) EV(S)C V (T) =>T : veL” — (Sv)-L” i.e. =

sC

Putting v = |f| we get |Tf| s CS(|f|) . However for X = Y we get an inte-
resting result.

Theorem 4.17. Suppose that X is a reflexive Banach lattice and

a) S s linear and positive
b) T <& linearizable
Q) W (S) C W (T) .

Then if S is bounded in X , T is also bounded in X .

For every fixea Py ana p » and weights u, v > 0 , the lattices X = LP(v)
and Y = LP(u) are either py-convex if Pg S p or py-concave if Py 2p .
Besides, they are reflexive provided 1 < p < » , If we apply theorems 4.15, 4.16
and 4.17 to this case, we obtain

Theorem 4.18. Let S be a linear operator and T a linearizable operator.
a) If Vv(S) C V(T) , then Vp(S) C VP(T) for every 1 <p < = .

b) If we have a single measure space and W(S) C W(T) , then wp(s) C wp(T)
for every 1 <p <=,

c) If s is positive and VoS C Vpo(T) for some 1 < py s>, then
VP(S) c VP(T) for every 1 <p <o,
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d) If we have a single measure space, S 18 positive and wpo(s) C wpo('r)
for some 1 < Py S, then wp(s) C wp(T) for every 1 <p < w .,

If the operator S is not linear, but still linearizable and positive, we

can get an extrapolation theorem from above, by making use of proposition 4.13.

Theorem 4.19. Let S and T be linearizable operators. Assume also that §

i8 positive.

a) If VPO(S) C VPO('I’) for some 1'< Pg S then VP(S) C Vy(m for every
1 <ps Py -

b) If we have a single measure space and wpo(S) C WPO(T) for some 1 < P So,
then wp(s)C wp(T) for every 1 < p s Py *

Proof. Let us see, for example, how to prove b). w ew (S) implies that S is
bounded in X = Lp(w) . Since p < Py » proposition 4. 13 applies to S , whiech is
linearizable and positive. Thus, § 1is bounded in X(% O) . Now theorems 4.6 or
4.7 can be used. Note that X is po—concave and reflexive. From the boundedness
of § , we get that for every U exp if Py <@ (or U €X if Py == ) with
U >0 , there exists VG-X if Py <® (or VEX if Py = ) such that
USV a.e, and V_ ew (s) if pg <© (or VEW(S) if py==). But
po(S) Cc wPo(T) and we can apply again theorems 4.6 or 4.7, this time to T and
in the opposite direction. We conclude that, in particular, T 1is bounded in X ,
that is: w €& WP(T) . O

Sometimes the classes VP(S) or WP(S) behave well under duality, and this
can be used to extrapolate from a given Py to any other p . Here is a result

in this direction:

Theorem 4.20. Let S be an operator linearizable and positive such that for
every 1 <p < o,

-n!
(4.21) wewp(s)(—>w1’ /Pewp,(s) .

Let T be a linearizable operator such that WPO(S) C WPQ(T) for some
1< P, S o . Then wp(s)pr(T) for every 1 <p < w» .,

Proof. We just need to consider Py <p < », since the remaining cases are

covered by the previous theorem. Assume T is linear,

!
wewp(s) =y P /"gwp,(s) . But p’ <p) and
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_ -po/Pg -Po/Po _
wpé(s) (wpo(s)) C [wpo('r)) WPZ)(T*) .

-n !
Theorem 4.19 yields Wp,(S) C wp,(T*) . Thus w P /e & wp,('r*) and this is
equivalent to w & wp(T) .

For T non-linear, we just need to consider the linearizations {Th}

in observation 4.3 2) and apply theorem 4.19 to the collection of the adjoints

{Tﬁ} . O

as

The last six theorems are variants of an abstract extrapolation theorem. By
making specific choices of the operator S , we get concrete extrapolation

theorems. Here are some candidates for S .

1) Let M be the Hardy-Littlewood maximal operator, sending a function
fe 1<.7c(R ) to

ME(x) = sup -—T Jlf(y)| dy ,

where the supremum is taken over all the cubes Q with sides parallel to the
coordinate axes and containing the point x . It was proved by Muckenhoupt [16]
(see also [4]) that for 1 <p < = WP(M) = AP ,» the class of weights defined by

1/p 1/p’
4.2  wea (—)sup [I_clﬁj ] [T?lz_l J w-pr/p] cw,
Q

where the sup is taken over all the cubes with sides parallel to the coordinate
axes. Also

W00 = A = (wz20:Mvscw a.ce.}.

2) 'Let M* be the strong maximal operator, sending a function f E.LlOCCR“)
to

M*f(x) = sup Jlf(y)l dy
Rax t

where the supremum is now taken over all the intervals (i.e.: Cartesian products
of intervals) containing x .

It can be seen (for example in [8] IV.6) that for 1 < p < WP(M*) = A; ,

the class of weights defined by

1/p 1/p’
@1 we st o [I_IJ } [l—éT J w-pr/p] <w,
R

where the sup is taken over all intervals. Also
W, %) = At ={wzo0:MwscCw a.e.} .

Alternatively,for 1 sp < >, w é’A; if and only if it is Ap in each variable,

with uniform constant, for a.e. determination of the other variables.

3 Krbec, Analysis 4 engl. R



3) The operator M 1is linearizable and positive but it is very interesting
to know that there is a linear operator giving rise to the same classes of
weights.

If n=1, we can take the Hilbert transform H given by:

p
HE(x) = p.v. % j;f‘—(-% dy

and we have ([81]): WP(H) = Ap , l<p<cwm,
If n> 1, we can take the Riesz transforms RI’RZ"“’Rn given by:

Ty ) I((n+1)/2
ij(x) =p.v. ¢, J -I-;l_—yl‘a:i f(y) dy 3 ¢ = —_,E%E;T%Zl
R?

If we consider R = R1 + Rz

W (R) = A l<p<ew,
p(‘) - P

+ ... # R, ve have (see [4] and [81])

4) Also for M* we can find a linear substitute which turns out to be the
multiple Hilbert transform H* given by:

H* (x) = lim J £(y) dy .
N L. %,y |¢ Gy =y Py = yp)eee (e = yp)
373073

n
We have (see [8] 1IV.6.) WP(H*) = A; s l<p<ce
For these particular examples we get the following extrapolation theorem:

Theorem 4.24. Let T be a linearizable operator whose domain and range consist
of measurable functions on R" . Suppose that either
(1) for some 1 < Py < T 18 bounded in Lpo(v) for every w 6%0
(resp. A* ) or
14 Apo
(11) T <8 bounded in weL  for every w €4 (resp. A’l" ).
Then
a) for every 1 <p <~ and every w eAp (resp. A; )s T 18 bounded in
Pw) .

Not only that, but in general
b) f X 18 a reflexive Banach lattice 2-comvex or 2-concave and R

(resp. H* ) is bounded in X , then T also is bounded in X .

Proof. Note that the classes A_ and A; satisfy condition (4.21), so that
theorem 4.20 can be applied with § = M or M* , obtaining a). In particular, a)
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holds with p = 2 and we can apply theorem 4.15 with S = R or H* to obtain b)
0

Observation 4.25. Condition (ii) can be replaced by this weaker one:

T maps welL” into B.M.0.(w) for every w € A1 s where

g € B.M.0. (w) €¥ sup 1 lg(x) - g,] dx < =
w(Q) Q
Q Q
with gQ = TéT J g .
Q

If we define g#(x) = sup L j[g(y) - g4l dy »
Qax IQI Q Q

we observe that for w & Al’

Fx) = sup ¥ _L_ J -
g € B.M.0. (w) => gf(x) 22 ol V@ le(y) gol dy =

S C.Mw(x) s Cw(x) =>gf e wel”

If ve define T'f = (Tf)# we see that TF satisfies (i1). Then if w & Ap,

1 < p < », we have
J[Tflpwscj ](Tf)#[pwscj [£]P w .
R" Rr" R"
For the first inequality see [8], chapter IV, theorem 2.20. The weaker condition

is sometimes easy to check whereas (ii) fails for many natural operators satisfy-

ing a).

We shall finish this. section by recalling briefly the history of the extra-
polation thegrem. It was first discovered by Rubio de. Francia [193 with a non-con-
structive proof of the type we have given, but only for the A_ classes. Then
Garcia-Cuerva [6] gave a constructive proof that used the particular definition
of the Ap classes plus the Rubio de Francia algorithm. Jawerth [12] proved a
general theorem for LP spaces by using the Rubio de Francia algorithm plus
interpolation. Then it came the general formulation of Rublo de Francia [20], [21]
in lattices, which is the one we have presented. The case Py = © was treated
in [10] and [71].

§ 5. Applications

We shall give a characterization of U.M.D. Banach lattices in terms of Ap
weights due to José Luis Rubio de Francia [22]. U.M.D. stands for unconditional
martingale differences. Here is the original definition of this condition:
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following inequality holds:

o l
€ d I

' sc If T

lemt < RIP ey PBlysy KipP (g
for all n , all e = + 1 , and all B-valued martingale differences (that is:
dk = fk - fk—l for a B-valued martingale {fk} ), p 1is some fixed exponent
with 1 < p < =@,

Even though this definition seeéms to depend on p , it does not. Actually
Burkholder [3] gave a geometrical characterization called p-convexity, which

is obviously independent of p .

We shall not use any of these characterizations. Instead, we shall base our

discussion upon the following

Theorem 5.2. The Banach space B is U.M.D. if and only if the B-valued ex-
tension Hy of .the Hilbert transform H (say, on the torus Y ) is bounded in
Lp(B) for some 1 < p < », This means, that the operator HB defined on

LP@B={] o ()b, ¢ cLP, b &b} by H (] ¢nb)= ] (H )b
AR T i LA EE LR T I

satisfies: |H_(£)] s )|
B Py LP(B)

so that it ewtends continuously to LP(B) .

That the boundedness of HB is necessary was proved by Burkholder [3] and
that it is sufficient by Bourgain [2]. When X is a Banach lattice of functioms
on (Z,do) we can view LP(X) = LP(I)(X) as a lattice of functions of two

variables f(t,0) , t&T , o0 € L . If we have an operator A bounded in P s

we can define A at least in LP ®X by
Af(t,0) = A(£(*,0)) (t) .
Note that H=H, on LP@X.

Here is the characterization of U.M.D. Banach lattices in terms of Ap

weights ¢

Theorem 5.3. Let X be a Banach lattice, reflexive and p(-convea for some
pg > 1 - Fix p such that 1 < p < Py - Then X 18 U.M.D. if and only if for
every u€ Lz(ip) , uz0, there exists w € Lz(ip) such that u s w ,

fwl s 2Ju] and w(-,0) € A wniformly in o for a.e. o€ T .

Proof. Let X be U.M.D. and take q = 2p . Then HX * is bounded in Lq(X) .



Not only that, It is easy to see that X(JLP) is also U.M.D., so that, H‘( has
an 2P extension. We can apply theorem 3.6 with Y = Lq(x) in place of the
lattice X appearing there. Observe that

7 = (LYPxP)) " = L2(%
¥ (LYP(xPy) L&) -

Thus, given u eLz(i ), uz0, we have w & Lz(ip) suchk that u s w ,

) P

lwl = 2ful and

(5.4) J J{fo(:,u)ﬂ’ w(t,c) dt do s C J flvf(t,c)ip w(t,o) dt do .
IT Ir

Let us apply this ineq\iality to £(t,0) = ¢(t) xE(o) where ¢ 1is a trigono-
metric polynomial with rational coefficients and E is a subset of I with
[EI < ® , Since fo(t,c) = H¢(t)-xE(c) , we have

J jl“(ﬂlp w(t,o) dt do £ C J J|¢(t)|p w(t,o) dt do
ET ET

and, consequently,

(5.5) Jiua;(c)[" w(t,0) dt s C jlm)l" w(t,o) dt
b b

for every o GEO , a set independent of ¢ and having lEol =0 .

This implies that w(+,0) is an A -weight with uniform constant for every
[ GEO . The converse is even easier. If given u & L &), 2 0 , we have
LZ(X ) such that u sw, [w] s 2fu] and (5.5) holds, we can obtain (5.4)
by a limiting process. Then, by the easy part of theoren 3.6, HX is bounded in
LX) so that X is U.M.D, 0
The condition in theorem 5.3 will be abreviated by saying that " Lz(ip) has
enough AP weights "

Incidentally, note that in theorem 5.3 the exponent 2 does not play any role and
we can use Ls(ip) for any 1 < s < =, Theorem 5.3 can be used to prove the
following

Theorem 5.6. Let -X be a U.M.D. lattice. Then there exists e > 0 such that
a

X® is U.M.D. for every 0 <a <1+ ¢ .

Proof. There are two different parts in this result. The deepest one is for

1 <a<1l+ e . Itis proved in the following way. If X is U,M.D., it is known
that X is superreflexive, and consequently P - convex for some Py > 1 . Fix
1 <p< Py - By theorem 5.3, L (X ) has enough Ap weights. It is a well known
fact in Ap theory that Ap weights satisfy a so called reverse Hblder's in-

equality (see [8]) and, consequently, every Ap weight is an Ap_s weight for
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some € > 0 depending only on the Ap constant. Thus Lz(ip) has enough Ap-e

weights for some ¢ depending only on p and the U.M.D. constant of X . Let
Y= Xp/(p-c) , so that Yp_s = XP . Then Y satisfies the condition in theorem
5.3 with p - € 1instead of p . It follows that Y = x* for some a>1 is a

U.M.D. lattice.

The second part of the result, the one for 0 < a < 1, is based upon the so

called " magical identity ". This identity works for the conjugate function

operator which sends the trigonometric polynomial Zaneint

polynomial z-i(sgn n)ane1nt . The difference between this operator and the

to the trigonometric

Hilbert transform H is dominated by the Hardy—Littlewood maximal operator so
that its associated weights are again the Ap weights, and it is also good to
characterize U.M.D. This justifies that we call H to the conjugate function
also. With this notation we have the magic formula

@£)? - £2 = ou(gue)

simply because (f + in)2 is analytic. Now the magic formula works equally well

for H , so that we have
fig(e, 0% = £(¢,00% + 26 (£i£) (¢, 0)

and this implies:

~ ~ 14 me12y2
Jie) it - (1213 s
LA(XX/Z) X1/2 X

. 2
J(ﬂf(t,a)zﬂx + 2|ficefin) |,) s

A

LY

2 J"f(t,u)zﬂi +8 J"ﬁ(fﬁf)n; s

4
20el”,
L' (X

20l +cjnf||2 me|?, )
L4(x1/2) X1/2 H "XI/Z

1A

s
12, + 8C Jufﬂfﬂx s

A

2 2
+ clf] | 8| <
) L4(X1/2) Lh(xl/z)

A

4
2ef ;
L4 xl/2

A

4 ~ b
Ce“fnLa(xl/z) + E"“f"LA(xl/z)

1/2 is U.M.D. By iteration we get that x* is U.M.D. if

This implies that X
a=2%,k=1,2,... . We obtain the result for every 0 < a <1 by inter-

polation. o

In order to present the next result, we shall use the notation [ , JO N
0 <© <1, for Calderon's complex interpolation method, and we shall also recall
Calderon's identity for Banach lattices. This holds provided at least one of the
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lattices Xo ’ Xl is reflexive:

-6,0 1-6_6
(Ro%,Jg = Xp X7 = fx + [xl = xg™x0 s x €%, x ex}

Corollary 5.7. Let X be a U.M.D. lattice in (I,do) . Then there exist ©

with 0 <0 <1 and another U.M.D. lattice X, such that X = [Lz(du).xo]e.

Proof. Take a > 1 such that X and (x*)? are U.M.D. Call Y = ((x%%)*,
also U.M.D. The key observation is that X = [LI.Y]l/a . In order tb verify this,
we just need to check that the duals coincide. But

([LI’Y]l/a)* - [Lw'(xﬁ)a]lla - (Ln)lla’((xi)a)l/s - x*

Then , 1/2
x = xM2%1/2 XUZ(ELI,YJUa)”z - 27 @ hyl/a'yl /e

' 1/a
- xl/Z(Ll)l/Za Yl/Za - (LZ)I/B’((Xa)l/ZYI/ZJ -

2 .8 2
= L5010 - 15Dy,

a
which is what we wanted because Xo = [X ,Y] 1/2 is U.M.D. a

Corollary 5.7 extends a previous result of Pisier [17] in which xo was
just a Banach lattice, not necessarily U.M,D.

The next theorem will allow us to obtain the boundedness of the vector-
valued extension to a U.M.D. Banach lattice of a huge class of operators.

Theorem 5.8. Let X bea U.M.D. Banach lattice and let T be a linearisable
operator which i8 bounded in P(w) = LP (r,w(t)dt] for every w € A and every
1 <p <=, Then TE(t,0) = T(E(+,0))(t) <is bounded in LP(X) = LP(T)(X) for
every 1 <p <=,

Proof. If Lp(x) is 2-convex or 2-concave, we just need to apply theorem 4.15
to the lattice LP(X) , the linear operator H and the linearizable operator T,
We need to see that w(ﬁ)C W(T) . In order to do that we proceed as in the proof
of theorem 5.3. We realize that if a weight w(t,oc) belongs to W(H) , then
w(*,0) 1is an Az weight with uniform constant for a.e. ¢ € ', Now by the
hypothesis we have assumed about T , we get an inequality like (5.5) with T

in place of H . Integrating on I and completing gives w ewd‘) . In the
general case, since X is U.M.D., we know that LP(x) 1s pg-convex for some
1< Py < » , We use the fact that M dis bounded in Lp(x) (see [22]) and apply
theorem 4,16 exactly as we did before. 0
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Corollary 5.9. Let us denote by

nh
s_£(t) = —g Fayelke

the n-th partial sum of the Fourier series of £ . Then if X <8 a U.M.D. Banach

lattice, we have the following convergence a.e. of the X-valued Fourier series

IS,£(0) - £(®)|g —> 0 ae, f€ P, 1<p<w.,

Proof. Let TE£(t) = sup ISnf(t)l be Carleson's maximal partial sum operator.
n

Theorem 5.8 can be applied to it (see [11]), and concludes that T is bounded in
Px, 1<p<o=, '

But then
I sup [s £(e) [} ae s j | sup |snf(c,~)|u§ de =
r r "
= | 1Tece, )R ae = TP s cfg|?
l X LP(x) P (0
which is enough for our purposes. O
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