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FACTORIZATION OF OPERATORS AND 

WEIGHTED NORM INEQUALITIES 

Jose Garcia-Cuerva 

Madrid, Spain 

The purpose of these lectures is to show how the theory of factorization of 

operators developed by B. Maurey in the 1970's can be applied to obtain very in­

teresting results about weighted norm inequalities. The idea to carry out this 

program is due to Jose Luis Rubio de Francia. He constructed a beautiful theory, 

which culminates in the extrapolation theorem. This theory is presented in chapter 

VI of our book [83 in the context of Lp spaces. Here we have chosen to work in 

a more general class of Banach function spaces, an approach that Jose Luis Rubio 

also adopted in some later works [203, [213, [223. There are two reasons to do 

this. First of all, the presentation of the main results becomes much clearer, and 

besides there are very nice applications to Banach lattices to be discussed in 

Section 5. There are several approaches to extrapolation, giving rise to different 

results* We have chosen the original approach of Jos£ Luis Rubio de Francia* but 

we have completed the theory so that all the known results become part of it. 

§ 1. Banach function spaces 

Let (Z , do) be a complete o-finite measure space. We shall denote by Ay 

the collection of all extended real-valued measurable functions on I and by At 

the subcollection of Jh consisting of those functions whose values lie in [0,«»3. 

Definition 1.1. A mapping p : Jl —• [0,»3 is called a function norm if, for 

all f , g , f (n * 1,2,3,...) in JL , for all constants a £ 0 and for all 

measurable subsets E of I , the following properties hold: 

1) p(f) - 0 <H f - 0 a . e . ; P(af) - ap(f) and 

P(f + g) S p(f) + p(g) 

2) O S g H a .e . *-» p(g) S p(f) 

3) O H H a .e . —> p(f ) + p(f) 
n n 

4) | E | < oo «~^ P ( X E ) < «, 



-»í 5) |E| < • -? J f do _ C_p(t; 

E 

for some constant C_ , 0 < C_ < °° , depending on E and p but independent 
J— _ 

of f . 

If p is a function norm, the collection X - X(p) of all functions f in 

AJ for which p(|f|) < • is called a BANACH FUNCTION SPACE. For each f € X , 

we define 

| f | x - p ( | f | ) • 

The following result is easy to establish (see [1]) : 

Theorem 1.2. Let p be a function norm, and consider X - X(p) . Then (X, || |L) 

is a Banaoh spaoe and the following properties hold for all f , g , f (n - 1, 

2,...) in (/W and all measurable subsets E in I 

a) (lattice property) If |g| _ |f | a.e. and f € X , then g £ X and 

uix - |f|x 

b) (Fatou property) Suppose f € X , f _ 0 (n - 1 ,2, . . . ) and f \ £ a.e. 

If f € X , then ||f |L t ||f|L whereas i f f $ X , then ||f |L t• - . 
n x x n A 

c) (Fatou's lemma) If £ € X ( n - 1 , 2 , . . . ) , f —* f a .e . and 
n n 

lim inf |f |L < » , then £ € X and ||f|L < lim inf ||f ||_ . 
n x x n x 

n->co n-*co 

d) Every simple function belongs to X . 

e) To each set E of finite measure there corresponds a constant C , 

0 < C_ < «>, sue/z t h a t 
_ 

í|f| da _ C_|f|x for all f € X . 

E 

f) If £ —»• f in X , then £ —> £ in measure on every set of finite measure; 

in particular} some subsequence of £ converges to £ a.e. 

In view of theorem 1.2, we shall use the names BANACH FUNCTION SPACE or 

BANACH LATTICE i n t e r c h a n g e a b l y . Here are some examples of Banach lattices: 

1) The Lebesgue spaces Lp - LP(da) , 1 _ p _ <*>, and the weighted Lebesgue 

spaces Lp(v) - LP(vda) , 1 < p _ °o, given for a weight function v > 0 by: 

L«Чv) - {f Є L° : ||f|
Lp(v)
 = ( J|f(

0
)|

p
 v(

0
)'da) < 

where L° = {f £ Ji : |f(a)| < » a. 

2) The Lorentz spaces L(p,q) , 1 _ p,q _ oo , with the exception of L(l,«>) 

which is not even a normed space. These are defined by: 



oo 1/q 

L(p.q) - {£ € L° : ||f«L(p>q) -"((q/p) |(t
1/p f*(t) ) dt/t) < -} 

0 

where f*(t) -- inf {s > 0 : |{|f| > s}| S t} is the non-increasing rearrangement 

of f . 

3) The Orlicz spaces $(L) where $ is convex, strictly increasing in 

[0,«) and $(0) = 0 , 

$(L) - jf € L° : $(|f(a)|/a) da < » for some a > 0} 

E 

with ||f||$(L) - inf {a > 0 : | •(|f(a)|/a) da £ l) . 

E 
pi ,po 

4) The mixed-norm spaces L l ^(E,da) if E = E v I and da - da. ® da„ 

1 <. Pi»P2 -» °° » defined by the condition: 

P2/Pl ^ 1 / P2 

"U.P2-(í íI l ř (V->| P l*'l) P 2 P l*'2) 
L v v 

Given a Banach lattice X = X(p) of functions on (E,da) , its dual space 

X can not always be identified with a Banach lattice of functions on (E,da). 

This leads us to consider the associate space, which we now define. First of all 

we consider the associate norm p' defined by 

p'(g) - sup { J f(a) g(a) da : f € </H+, p(f) S i } . 

E 

It is easy to see that p' is also a function norm, and it makes sense to give 

the following 

Definition 1.3. Given a Banach lattice X =- X(p) , the Banach lattice X(p') 

determined by p' will be called the associate space of X and it will be 

denoted by X 

The main properties of the correspondence X —• X are collected in the 

following result, whose proof can be seen in Cl3: 

Theorem 1.4. a) X' = {g 6 L° : fg e L1 for all f € x} and 

|g|x, - sup {|J f g do| .: f e x , ||f||x S 1} . ' 

E 

b) Every Banach lattice X coincides with its second associate space x" . 

In other words, a function f belongs to X if and only if it belongs to X" > 

and in that case ||f | - ||f || ,/ . 

c) X' is (aanonically isometrically isomorphic to) a closed norming sub-

space of X* . Norming means that 



ff - sup { f g da : g€X', |gL/ š l} 
"X l * Hollv 

I 

/bi» flU f € X . 

Also in [1] we find this nice characterization of the Banach lattices X for 

which X' = X* . 

Theorem 1.5. The Banach space dual X* is (canonically isometrically isomorphic 

to) the associate space x' if and only if every f € x satisfies the following 

property: 

(1.6) for every e > 0 there is 6 > 0 such that |E| < 6 implies 

i-x,!- < * • 

Property (1.6) is referred to by saying that the function f has absolutely 

continuous norm. When this happens for every f G. X , we say that X has absolute­

ly continuous norm. Theorem 1.5 can be rephrased by saying: X' «• X* 4r}> X has 

absolutely continuous norm. For example, all the Lp spaces have absolutely 

continuous norm except L , and we have: (L°°) * L S (L**)* . 

The absolute continuity of the norm gives us a version of the dominated con­

vergence theorem. 

Proposition 1.7. f G X has absolutely continuous norm if and only if the follow­

ing holds: whenever f (n - 1,2,...) and g are measurable functions satisfying 

If I <. if I for all n and f —• g a.e., then If - g|L —> 0 . 
• n n " n " A 

As a consequence of theorem 1.5, we have the following nice characterization 

of the reflexive Banach lattices: 

Theorem 1.8. A Banach lattice X is reflexive if and only if both X and its 

associate space x' have absolutely continuous norm. 

Proof. If X and X' have absolutely continuous norm, then successive applica­

tions of theorem 1.5 give: X** * (X*)* - (X')* * (X')' • X" - X . Since all the 

identifications are the canonical ones, we conclude that X is reflexive. Suppose, 

conversely that X is reflexive . Recall (theorem 1.4 c)) that X' is a closed 

norming subspace of X* . If X' were a proper subspace of X* , by the Hahn-

Banach theorem, there would exist a nonzero functional A 6 X** such that 

A(X') •» 0 . The reflexivity of X allows us to represent A as 

A(f) = J f g da 
I 

for some g € X and all f €. X' . 



But A(f) » 0 for all f € X' . Since X' is norming, this implies g m 0 a.e. 

But then A * 0 , which is « contradiction. Thus Xr - X* and, according to 

theorem 1.5, X has absolutely continuous norm. From this, and the fact that X 

is reflexive, we get (X')* - (X*)* - X - X" * (x')' . Applying once more theorem 

1.5, we get that X' also has absolutely continuous norm. -, 

For X a Banach lattice we shall use the notation 

X+ - {x 6 X : x(o) > 0 a.e.} . 

Definition 1.9. For X a Banach lattice of measurable functions on (I,do) and 

a > 0 we shall consider Xa - {y <£ L : jy| — xa for some x € x} and for 

y 6 Xa we shall define |y| a *- |||y|
1/a|lx • 

Proposition 1.10. For 0 < a < 1 , Xa*Xl~a - X and |x*y|x << ||x|| a |y| 1 - a . 

Proof. We may assume jx| a • 1 - |y| ,_a . Then 

|x.y| - (|x|l/a)Xa(|y|1/(1-a))1_a - a|x|1/a + (1 - a)|y|1/(1"a> 

and, consequently, 

|x.y|L SaI|x|
1 / aL+(l- a)I|y|

1 / ( 1- a )L-l 

Proposition 1.11. If 0 < a £ 1 , || | a is a norm and Xa is a Banaoh lattice. 

If a > 1 , I j a {.&, in general, only a (1 /a) -norm. 

Proof. If a > 1 , we have 

|x + y | 1 / a <. | x | 1 / a + | y | 1 / a and this implies 

llx + y | | 1 / a - I|x + y | 1 / a | | x < I | x | 1 / a l x + | | | y | 1 / a | x * ||xi1/a^ + Iy| |1 / a . 

If 0 < a < 1 , we have 

I|x + y | 1 / a | x - i |x + y| Ix + y l " ^ - 1 ^ ^ 

X 
S [|x| | x + y | ( 1 - < 0 / a | x + | | y | | , + - | » - - > ! - | 

Now we use proposition 1.10 to conclude that 

l|x + y|1/afx S (|x,xa + ||y|xJ | |x + y|
1/a!x-

a , 

|x+yI x a S|x| x a+IyI x a. Q 

For some Banach lattices X , X is still a Banach lattice for some a > 1 

For example if X » Lp , p > 1 , then Xa »- Lp and this is a Banach lattice 



for a ̂  p and not only for a ^ 1 . This fact characterizes the p-convex Banach 

lattices to be defined below. 

Note that for X - L , proposition 1.10 is simply Holder's inequality. 

Definition 1.12. Let 1 £ p,q .5 » .The Banach lattice X is said to be 

a) p-convex if 

I n 1/pn n 1/p 

( I k l p ) U M ( I ||x |P) 
j - 1 J i x J-1 J x 

(or 1 sup |x||-SM sup ||x|| if p = • ) 
lSjSn J X lSjiSn J A 

b) q-concave if 

>1/c- II, S . .^1/q|| 
X 

n 1/q ii n 1/qn 
(I l*Al) S M ( I |x.|q) L 
j-l J X • j-l- J P 

(or sup (jx ||x £ M|| sup |x ||x if q - » ). 
l^j^n J l̂ ĵ n J 

The main properties we shall need concerning these notions are collected in 

the following statement whose proof can be seen in [19]. 

Proposition 1.13. 

a) Every Banach lattice is l-convex and ..«»-concave. 

b) If X is p^-convex and q^-concave^ then it is also p-convex for every 

1 £ p ̂  p and q-concave for every q s q s » , 

z) If X is p-convex and q-concave3 an equivalent norm can he defined so that 

inequalities a) and b) in definition 1.12 hold with M = 1 . 

d) X is p-convex if and only if Xp is a Banach lattice^ with X renormed 

according to c). 

e) X is p-convex (resp. q-concave) if and only if x' is p'-concave (resp. 

q'-convex) where p' is the exponent conjugate to p given by — H j = 1 . 

Definition 1.14. a) We say that an operator T : E —> Y from the vector space 

E to the Banach lattice Y , is sublinear if it satisfies the following two 

conditions: 

1) |T(af)| = |a| |Tf | , a.e., a £ E , f <= E 

2) |T(f + g)| £ | Tf | + |Tg| a.e., f , g £ E . 

b) We say that T : E —* Y is linearizable if there exists S : E —•* Y(B) 

linear such that Tf(a) = |Sf(a)J for a.e. a €. I , where B is a certain 



Banach space and 

Y ( B ) - { y : Z - * B s.t. jy(-) ||g €: YJ- . 

c) If T : X —+ Y is sublinear and X and Y are both Banach lattices, 

we say that T is positive if |f | <= g a.e. implies |Tf | << Tg a.e. 

Observation 1.15. Note that a linearizable operator is sublinear. But it is also 

non-negative in the sense that Tf ^ 0 for every f . Every sublinear operator 

satisfies the condition 

j|Tf| - |Tg|| < |T(f - g)| a.e. 

However, if T is non-negative sublinear, this condition becomes 

(1.16) |Tf - Tg| <; |T(f - g)| a.e. 

This condition also holds for linear operators. All the sublinear operators to be 

considered will be either linear or non-negative sublinear. This justifies the 

convention which we shall adopt, of calling T sublinear if and only if (1.16) 

holds for every f , g . Accordingly when we have T : E —• B and B is simply 

a Banach space, we shall say that T is sublinear if and only if 

(1.17) ||Tf - Tg| <. ||T(f - g)| . 

Observe that, with this restricted meaning, a sublinear operator T : A —>• B 

between two normed spaces is continuous if and only if it is continuous at 0 , 

and this happens if and only if T is bounded, in the sense that ||Ta|| < C|a|| 

for every a € A . When for a given sublinear operator T we say that T is 

bounded from X to Y and also from Z to W , we shall implicitly assume that 

XflZ is dense in both X and Z . This implies the uniqueness of its extension, 

so that it is reasonable to consider it as the same operator. 

S 2. Factorization of operators 

Definition 2.1. Let X be a Banach lattice of measurable functions on (Z,da) . 

Let T : X —• B be an operator sublinear and continuous into the Banach space B. 

We say that T factors through Lp • Lp(£,da) if there exist a continuous ope­

rator TQ : L
p —• >B and a function g(a) > 0 such that the following diagram is 

commutative: 

">B 

л 

/ 

where M is the multiplication operator defined by M (x)(a) • x(a)»g(a) 
8 8 

11* 



In order for M to map X into Lp mm pust have |x»g|p € L for every 

xfi X or equivalently |g|P 6 (Xp)' , Thu« g must belong to ((Xp)')1/p . If 

this is the câ se, we have ||Mg(x) 1 ^ £ c|x|x where C - M((xp)f)l/V ' 

Also since TQ(fg) - T(f) , the continuity of TQ means 

|T£|» SC P J|f(o)|pg(0)
pda 

I 

that is: T : Lp(v) —• B with v - gp £ (XP)' . This is a Banach lattice if X 

is p-convex. 

Definition 2.2. Given a p-convex Banach lattice X , 1 <. p < », we shall write 

xp - «»)' . 

We shall prove that if X is p-convex and has absolutely continuous norm, 

the. factorization of T : X -+ B through Lp is equivalent to the fact that the 

vector extension T defined by sending each sequence (x.) of vectors in X to 

the sequence (Tx.) , is bounded from X(£P) to £p . This means that we have an 

inequality: 

U / P H t ^i/pii 

$"- , '!)"HI51-,' ') L 
Actually we shall formulate a slightly more general theorem valid for a family of 

perators. 

Theorem 2.3. Let fF be a family of sublineav opevators T : X -• B wheve X 

is a p-aonvex Banach lattice, 1 £ p < «, and B a Banach space. Then the suffi­

cient condition fov the inequality 

(2.4) ( Z I » 1 - J I S ) I / , - C | ( I I - - | ' ) 1 / P | J { , x j € r , X j . e x , 

to hold is that theve exists v € X , v > 0 , with |v|~ £ 1 , such that: 

P Xp 

|Tx||P ̂  Cp ||x(o)|p v(a) da , T € T , x £X . 

I 

If X has absolutely continuous novms the condition is also neaessavy. 

T n e proof of theorem 2.3 will depend on the following version of the mini-max 

lemma. 

Lemma 2.5. Let A and K be convex subsets of some veal veatov spaces* and 

suppose that K is endowed with a topology that makes K compact. Let 

$ : A x K - ^ H I J {+«} be a mapping such that: 

12 



(i) $(#,b) is concave for eaoh fixed b e K 

(ii) *(a,») is convex fdr eaoh fiaied a € A 

(iii) *(a,«) is lower semioontinuous for eaoh a g A . 

Then min sup *(a,b) « sup min *(a,b) . 
b€K a6A a6A b€K 

For the proof of this lemma we refer to [_]. 

Proof of Theorem 2.3. Suppose that v exists. Let us prove (2*4) : 

j *j
л
j"в - J J ' T 

_ |vJ5_-C
p
 ( I |x

4
(a)|

p
 v(a) daš 

\-'P||P 
* c F ; ; : ; _;••; _ ;; ;; _ , ";;; _ ; _;", pAp , vW s c P it | , x; | P) X 

Conversely, suppose that X has absolutely continuous norm and (2.4) holds. Let 

n n 
A -- { _ |x, |P : x, € X and _ |T,x,|p - 1 fot some T, € T } 

•isst J «* 4-«_ J J ° J 

A is clearly a convex subset of Xp . 

Let K « { z € r X : z 2 0 , 12IIY -* -} • s----<-e X has absolutely continuous norm, 
P P 

X - (Xp)' " (Xp)*, K is a convex subset of X and if we consider the weak-* 
P P 
topology (the one given by XF ), K is also compact. 

Consider now * : A x K - ^ H given by 

*(y,z) • - ' yW 2(<0 <-<* . 

i 

$ is actually bilinear and is continuous in z . Therefore, lemma 2.5 applies. 

Note that 

min *(y,z) * - sup y(a) z(a) da « - fyf _. because Of (2.4). 

z€K z€K •_ x P Cp 

Then min sup *(y»z) »- sup min $(y,z) £ - -— . This means that there exis ts 
z€K yeA y«A zt?K Cp 

z €r K such that for every y 6 A, *(y,z) _i . If we take y ,-» | x | p / | T x | p , 

we get 

- J |x(a)|p >(a) daí - Ҷ tтx||p 

which is what we wanted with v - z . 
D 

Now we want to consider the dual situation of factoring an operator 

T : B "-*• Y where B is a Banach space and Y is a Banach lattice of measurable 

functions on (fi,dw) . 

13 



Definition 2.6. T : B —> Y sublinear and continuous factors through 

Lp = Lp(£2,du0 if there exist a continuous operator Tn : B —• L
p and a function 

g(o)) > 0 such that the following diagram is commutative: 

T 

LP 

Proposition 2.7. Assume Y is p-concave. Then M takes Lp into Y if and 

only if g € (((Y')p') ) p , which is a Banaeh lattice. In that case M is a 

continuous operator whose norm coincides with the norm of g in the above men­

tioned lattice. 

Proof. fg€Y Vf € LP 4=Hf g e L1 Vf € LP , Vli € Y' 0*hg £ LP' 

V-heY'-f»>k|g|P'e L1 Vk€(Y')P'f=> |g| e(((Y')P')')1/p' . This is a 

lattice because Y' is p'-convex, which is equivalent to the fact that Y is 

p-concave. Also 

||M (f)||Y - f g h do) for some h with | | h | Y . S, 1 . 

a 
Thus ||Mg(f)||Y < |f||Lp ||gh|

p'|1/p' < |g| ||f||Lp . Q 

Note that, since TQf - (Tf)/g , the continuity of TQ means 

||Tf(u))|P g(o))-p dш < CP
|f P II -F 11 P 

that is T : B —* g*L
P
 is continuous where g e (((Y')

P
 )')

 p
 . If p < 

g-L
P
 - L

p
(u-

L
) where u -= g

P € (((Y')P') ' ) p / p ' . 

Definition 2.8. Given Y a p-concave Banaeh lattice, 1 < p < °° , we shall write 

Y 
P 

T. - (((Y')pV)p/p' 

Under certain conditions, we shall prove that the factorization of T : B —*• Y 

P 
B through LP is equivalent to the boundedness of the vector extension T from Jl p 

to Y(£p) . This means that we have the inequality 

r^/Pl! f r^^P 

I |Tf | P <C I ||f ||P . 

j J J By l j J j 

As in the previous case, we shall formulate a general theorem valid for a family 

of operators . 

Theorem 2.9. Let T be a family of sublinear operators T : B —> Y where B 

is a Banaeh space and Y is a -p-concave Banaeh lattice., 1 < p < °° . Then a 



sufficient condition for the inequality 

(2.10) | ( p j < / ) \ M , n ^ ) 1 / P ; v ? , f j 6B. 

to hold is that there exists u €: Y , u > 0 with ||U|A <= 1 , such that 
p P 

J|Tf(W)|
P(u(a)))"1 do) < CP||f||p , T e : T , f € B . 

A ' 
p' I/ (Y') is reflexivej the condition is also necessary. 

Proof. The key observation is that 

(2.11) ||y||Y = min {[J|y(u))|P z(a))""p/p'da)j : z € ( ( Y ' ) P V , | z | <- l } . 

Indeed,if y £-Y , we have, for some y ' € Y' with | y ' | - 1 : 

Iy|Y - ( yy' - f yz^Vz
1''' * ((|y|p t^f* ((iy<|p'z)1/P' * 

fi U Q SI 

'< [J|y|P z""p/p,j P for every z e ( ( Y ' ) ^ with ||z|| < 1 

ft 
and equality is achieved for some z . 

Assuming u exists, let us prove (2.10): 

III ? | T J f j | p ) 1 / p r - 1 ? i"J
f
J<

t t>ip u(*ri d ^ c ? ? iifjiii -
p ' 

Conversely, assume that (2.10) holds and also that (Y') i s ref lexive. We shal l 
apply again the mini-max lemma 2.5. In order to do tha t , we define 

A - {"I |T.f.|P ': I UAl*l} • 

This i s a convex set of Yp . Let 

K - {z < £ ( ( Y ' ) p V : z S 0 , ||z|| S 1} . 

This is a convex set and, since ((Y')p )' - ((Y')p )* (theorem 1.8) it is also 

weak-* compact. 

Define $ : A x K —• H U {-H»} by 

$(x,z) - x(o)) z(w) p p dw . 

ft 
$ is linear in x , and therefore concave. The convexity of $ in z follows 

from the fact that the mapping th+ t , a > 0 , is convex in CO,00). Finally, 

in order to see that $ is lower-semicontinuous in z , we need to see that, for 

every x and every a, the set E - {z 6 K : $(x,z) <= a} is closed in the weak-* 

15 



topology. But this set is convex. Also, since ((Y')P ) * * * (Y')P , the weak-* 

topology coincides with the Weak topology. These two facts imply that we just need 

to see that E is closed in the norm topology of ((Y')p ) (see, for example 

[23], theorem 3.12). 

Now if z. —•*• z in the norm, there is a subsequence converging a.e.. Fatoufs 

lemma (theorem 1.2 c)) can be applied to show that z, € E implies z € E . We 

are in a position to apply lemma 2.5 to $ : 

-*» -.w/ - 1MJ
1/P||P <- P 

z€K 

Thus 

min •(>.•) - | | * Г P | S SC p . 
z€Ќ 

min sup $(x,z) -- sup min $(x,z) £ Cp . 
z6K x£A x6A zeK 

In other words: there exists z €, K such that for every x € A #(x,z) £ Cp . 

In particular, if we take x «• |Tf|p/||f|p for some f £ B and some T S T , we 

get 

J|Tf(»)|P z < » ) ~ p / p ' do> < Cp|f||p . 
a 

This is what we wanted with u « zp P € Y which satisfies |u||£ £ 1 . n 

P 

There is a version of theorem 2.9 for p • °° . In that case, note that g € Y 

and T maps B into g-L* *- {f € L° : Jf/gl^ < *} . 

Theorem 2,12. Let !T be a family of sublinear operators T : B —*• Y . Then the 

inequality 

(2.13) ||sup l^fjl j Y * c sup 1^1^ , r^e f , fj S B , 

holds £/ and on£# £/ there exists u €: Y + witfc ||u|L S 1 swch t h a t 

|if| • - IN sc|f | , ief, J O . 
u»L IIu ll» ° 

Proof. If u exists, 

i T f 

|sup iTjfjlJ-y < ||sup ( - ^ l l M y " C SUP lfjlB 

and we get (2.13). Conversely If (2.13) holds, let 

A - { sup |T f | : sup |f | < 1} . 
lSj$n 3 3 l<.jg.n J 

This is a directed subset of the closed ball of center 0 and radius C in Y . 

Then A has a least upper bound G £ Y such that |G|| £ C (see [24]). If we 

set u -» G/C , we have 

sup |T f | <. C sup |f.|L-u 
j J 3 J 3 
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and, consequently, 

Щ s c | f " в - п 
»co ГJ 

§ 3. Equivalence between weighted inequalities and vector-valued inequalities 

Theorem 3.1. Let X and Y be ^-convex Banaoh lattices of functions on (E,do\) 

and (ft,d<o) respectively, 1 % p < <» . Let (f be a family of sublinear ope­

rators T : X —*• Y . Then a sufficient condition for the vector-valued inequality 

(з.2) | (пvД1 ү Ч(p/) V т^e î , x.€X, 

to hold is that for every positive u €? Y there exists a positive v € X such 

that ||v|~ £ ||u|~ and 
P P 

J|Tx(w)|p U(O)) dto £ Cp J | x ( a ) | p v(a) da , T € T, x e x . 

If X has absolutely continuous norm, the condition is also necessary. 

Proof. If the condition holds, let us prove (3.2) 

lHP|P 

(pл'p) ÌHJ iv/lүP

 s Í11V/» 
for some u 6 Y , u > 0 , and |u|~ S I . We get the corresponding v and 

p P 
continue 

s c P l | h i P v d a s c t h i t p i i ^ s c 1 ( l | x j | P ) 1 / P I x -
Conversely, let us assume that (3.2) holds and that X has absolutely continuous 

norm. Let u > 0 , u € Y .We may assume |u|~ » 1 . We see that Y C!>Lp(u) . 

Indeed, if y € Y , P 

J|y(u>)|pu(a>) du>S |||y|PlYp ||u|]~ - |y||P . 

a p 

Thus we have a family of T : X —»• Lp(u) H B such that 

J i v . i » 5 ] l / p - 1 ( j • V J ' * ) 1 / P I B " * C I ( J ««3" "' 
Theorem 2.3 applies, and we get v € X , v > 0 with ||v||~ £ 1 such that 

P xp 
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j |Tx(o)) |p U(W) do) - ||Tx|p <, C p j | x ( a ) | p v(a) da , T e f , x € X . 

ft Z 

Thus, the condition i s necessary. D 

Note that in theorem 3.1, we actually get that T is bounded from LP(v) 

to Lp(u) because X is dense in Lp(v) . Indeed, if h €(LP(v)]* = Lp'(v"p'/'p) 

is such that x(a) h(a) da = 0 for every x £ X , we have 

h € Lp (v"p /p) C> X' and, consequently h(a) - 0 a.e. 

Theorem 3.3. Let X and Y be ^-concave Banach lattices of functions on 

(Z,da) and (ft,da>) respectively3 1 < p < °° . Let U be a family of sublinear 

operators T : X —+• Y . Then a sufficient condition for the vector-valued in-

equality (3.2) to hold is that for every positive v £X there exists a positive 

u e Y such that lull* <, |v||£ and 
p P P 

f|Tx(a))|p(u(o)))"1 da) <, CP ||x(a)|p(v(a))"1 da , T € ( T . 

Q I 

If (Y')P is reflexive3 the condition is also necessary. 

Proof. If the condition holds, let us prove (3.2). By (2.11) applied to the 

lattice X 3 

l i, ip] T - [ i |X eoipfvfc))-1..-
-j J ) II V i A J 

for some v € X , v > 0 with |v||* rS 1 . By considering the associated 
A P Ap 

u € Y , we can continue writing: 

. i ? | i i v . ( . ) | p ( u ( U ) r 1
d . . ^ | | ( i i v J i p ) 1 / P | 

C ft J C J 

again by (2.11). 

p A 

Conversely, suppose that (3.2) holds and (Y') is reflexive. Given v i»= X , 
v > 0 with |v[£ = 1 we have B = LP(v-1) Q. X by (2.11). We may view T 

P as a family of operators T : B —*• Y such that 

vvAV'Wv'A'x-ii'^r-
heorem 

||u||̂  <= 1 such that 

We can apply theorem 2.9 to conclude that there exists u €; Y , u > 0 , with 

JlTxUOl^uOo))"1 du. * Cp||x||p - Cp | | x ( a ) | P ( v ( a ) ) " 1 da 
P 

ft 

The case p = °° is much simpler. 
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Theorem 3.4. Let (T be a family of sublinear operators 1 : X —> Y , where X 

and Y are Banaoh lattices of functions on (£,da) and (_.,du))., respectively. 

Then the inequality 

(3.5) sup |T.x. | ._ CIsup | x . | 
II j 3 J llY II j J llx 

holds if and only if for every v £ X . there exists u £ Y, suoh that 

|u|L -. ||v|| and the operators T £: T are uniformly bounded from v L to 

u-L00 with |T| | -. C , that is: 

IN s _N . 

Proof. To prove the sufficiency, let- v •* sup |x.| . Then we have the correspond­

ing u , and since fx./vf̂  £ 1 , we get: 

sup | l x 11 . fsup | ^ - 1 | | | u | _ _ C | - | _ 
A -* J 'I Y " j ' ' "CO 

which is (3.5.)* Conversely, if (3.5) holds and we are given v <£ X with |v|| =* 1, 

we have vL°° G> X since ||x[x S | | x / v | J v | x - ( x / v ^ . L e t B - vL°° . Then (3.5) 

gives 

|sup | T j X j | | * C-|sup l ^ l l S C sup | | X j [ B . 

Theorem 2.12 can be applied and we get u £ Y with | u | __ | v | and 

N S c|x|L = cNI . n 
flu " "B v U 
II II CO II II 0 0 

When we are dealing with a single Banach lattice X of functions on (2],da) , 

theorem 3.1 can be improved obtaining an inequality with the same weight in both 

sides. This unification of the weight is achieved by the Rubio de Francia 

algorithm ([19]) which we describe below. 

Theorem 3.6. Let X be a ^-convex Banach lattice of functions, on (E,da) , 

1 _J p < » , and let T be a family of sublinear operators T : X —* X . Then 

a sufficient condition for the vector-valued inequality: 

» I / P I i r - . ,ўү'Ц 
<3-7) IKfiv/) V^IKp/j v T-er- "-"• 
to hold is that for every positive u € X there exists a positive v G. X suoh 

that u _i v , ||v||~ g 2||u||~ and 
'% -p 

j|Tx(a)|p v(a) da S Cp ||x(a)|p v( 

Z Z 

If X has absolutely continuous norm, the condition is also neoessary. Moreover, 



2~ 1 / p < C^Cj < 2 1 / p. 

Proof. The sufficiency is proved exactly as in theorem 3.1, yielding 

C1 S 2
1/pC2 . 

Conversely, if X has absolutely continuous norm, let us prove the necessity. 

We assume that (3.7) holds, and that we have u > 0 , u € X . Theorem 3.1 gives 

us U € X , U > 0 with |u|=i <= ||u||~ and such that 
P xp xp 

д(a) da й ďл I |x(a) |
p
 U(a) da , T Є Í 

2 

Ux > 0 with 

and such that 

||Tx(a)|p u(a) da < Cp ||x(a) 

I t 

Let us call u 0 * u and u. -» U , and use theorem 3.1 again to obtain U1 £ X , 

\ \ a "ui»xp
 s \ \ 

t 

||Tx(a)|p ux(a) da < C
p ||x(a)|p U^a) da , T 6 f , 

I £ 

Now call u~ « U. and continue. By induction we get u. 6 X , u. > 0 with 

flu.!-; < |u|~ and 

J | T x ( a ) | p
 U j ( a ) da < Cp | | x ( a ) | p u j + 1 ( a ) da , T <£ ft j - 0 , 1 , 2 , . . . . 

. t I 
00 

Let v - £ 2~j u. . Theft v >. un - u , ||v||~ £ 2|u|~ and 
j -0 j ° XP XP 

í | T x ( a ) | p v ( o ) do < Cp | | x ( a ) | p J 2 ~ j u j + 1 ( o ) do < 

î f Ix(a) 
ľ 2 

< 2CP J | x ( a ) | p v ( o ) da 
ľ 

which is our condition with C. S 2 PC. . n 

There does not seem to be a direct way to unify the weight in theorem 3.3 

or 3.4 when X - Y . However, if we are dealing with linear operators, we can 
achieve the unification by using duality. 

Theorem 3.8. Let ^ he a family of linear operators T : X —• X where X is 
a p^oonoave Banaoh lattice, 1 < p < » . Then, a sufficient condition for (3.7) 

A . A 

to hold is that for every positive u £f X there exists a positive v € X such 
that u < v , |v|A < 2p/p'|u||£ and 

P P 
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||Tx(a)|p(v(a))"1 da £ Cp f|x(a)|P(v(a))~1 da , T f i f . 

Z Z 

If X is reflexive $ the condition is also necessary. Moreover, 

2-1/p' S Cx/C2 S 2
1 / P . 

Proof. The sufficiency is proved as in theorem 3.3, giving C. £ 2 C2 . 

Conversely, let us assume that X is reflexive and that (3.7) holds. The 

reflexivity implies (theorem 1.8), that X' •» X* . Thus, the family JT* 

consisting of the adjoint operatprs T* of the operators T € (T » is well 

defined as a class of operators on X' . Besides (3.7) implies 

Now X' is p'-convex and has absolutely continuous norm because X is 

reflexive. Thus, we can apply theorem 3.6. Observe that (X')p, - ((X')p ) * 

- XP P . Now, given a positive u € X , let U - uP P £: (X')~, , We know that 
P P P 

there is V € (X')~, such that U £ V , ||v|LvM~ _$ 2 U|LvM-> and 
P V* Jj>r \* )pt 

||T*y(a)|p' V(a) da $ 2CP' ||y(a)|p' V(a) da , T* € .T* . 

Z Z 

But this is equivalent to 

||Tx(a)|p V(a)"p/p'da S 2p/p'cp ||x(a)|p V(a)~p/p'da . 

Z Z 
o/o' A 

If we write Vr v - v € X we have: 
P 

u - U P / P ' S V P / P ' - v , 

iivi5p - i v i p / p ; ; / < 2 p / p ' i u i p / p ; ; / . 2 p / p ' i o i ^ 

and 

J|Tx(a) |p(v(a))- 1 da S 2p/p'cP f |x(a) ^ ^ ( a ) ) " 1 da 

Z 'Z 

which is what we wanted with C, ̂  2 P C. . 

• 

We can also use duality for the case p = » , improving theorem 3.4 when 

X * Y and the operators are linear. 

Theorem 3.9. Let T be a family of linear operators T : X —*• X , where X 

is a Banaah lattice. Then a sufficient condition for the inequality 

(3.10) Isup |T,xj| £ C.Isup |x,|| , T, 6 T 
• j 3 3 "X *» j 3 "X 3 



to hold is that for every u £ X there exists v E X ŝ c?z £?zat u ^ v , 

|v||x < 2||u||x a n d 

II—II < C 1-1 • T (= T ||v |L = C2||v|L ' 6 J ' 
If X is reflexive, the condition is also necessary. Moreover, we have: 

1/2 ^ C][/C2 £ 2 . 

Proof. The sufficiency is proved as in theorem 3.4 and gives C <, 2C? . If X 

is reflexive, we have x' = X* , and we may consider the class T* formed by 

the adjoint operators T* : X' —* X' . If (3.10) holds, we claim that 

(3.11) 1 I |T*y || < C J I |yj| . 
II j J J «x' i|! j J »x' 

Indeed, the left hand side equals 

} I |т*Уjl x
 - } I (Tjyj) a.(ш) x(ш) doз 

for some x 6 X with ||x| << 1 and sup |a.(a))| <= 1 . But the last integral can 

j 3 

be written as 

\\Wŕìs\W-™ 
ў J y J J 

sup T . ( a . x ) da й 

^ I l y J sup T (a x) < C sup |a | |x| £ |y | < 
II j J I I x > II j J J i l x HI j J llx II j J l lx / 

iij J n x ' 

Once we know (3.11), we can apply theorem 3.6. Note that X' has absolutely 

continuous norm because X is reflexive, and also (Xf) • X" » X . Thus, given 

u €.X , we have v €. X such that u <= v, |v|| <. 2Ju|L and 

}|T*y(a)| v(a) da <= 2Cj_ }|y(a)| v(a) da . 

E 2 

But, since (L (V))* - v L this is equivalent to 

lTxl < or lxl — S 2C. fl — 

iv IL MvIL 
which is what we wanted to prove with C <, 2C. . -*'"""j-. 

Duality can also be used to obtain a variant of theorem 3.3 for a family of 

linear operators. For the necessity we require that X has absolutely continuous 

norm and also that Y is reflexive. These conditions are slightly different from 

those in theorem 3.3. 
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We shall end this section by writing versions of the previous theorems for 

Lebesgue spaces. 

Lemma 3.12. a) For q > p , (Lq)~ - La where - - 1 - £ . 

b) For q < p , ( L V - L 3 where A * -- - l . 
p (5 q 

Proof. a) Lq is q-convex and, consequently, p-convex. Now (Lq) = (L )' = 

- L ( q / P )' But — i 1 - £ - I 
(q/p)' q a 

b) Lq is q-concave and, consequently, p-concave (Lq) -= L q P . 

But (q'/P')'(P'/P) ~ t l ~ ^ t^ ~ (F" - - .r )p" tj - J)p - f - x - i • D 

It is interesting that in both cases the reciprocal of the exponent turns 

out to be [l - -~4 . This allows us to combine in a single statement the versions 

of theorems 3.1" and 3.3 for Lebesgue spaces. 

: L«( 

We are interested in knowing when the following vector-valued inequality holds: 

^/PII ii r ^ I / P I 

(з.iз) KJІV/)
 P ! rHI(p/) V T j Є Г ' fj 

€ Lч 

The answer is as follows: 

Theorem 3.14. Let 1 £ p»q»r < <» , and define a and $ by - =- |l - --| , 

i - U - f l -Then 

a) If p < q,r ,, (3.13) holds if and only if for every u € L̂ (dw) , there 
8 

exists v £ L (da) such that [v|L <. |u[ and 

||Tf(a))|p u(a>) da) <. Cp J|f(a)|p v(a) da , T e (T . 

ft 2 

Q 

b) •!/ p > q,r , r > 1 , (3.13) holds if and only if for every v € L^(da), 

there exists u £ L (da)) suoh that ||u|| <* ||v|L and 

||Tf(u>)|p(u(a)))~1 da) <, Cp J |f (a) |p (v(a))"*1 da , T £ T . 

ft I 

Actually, theorem 3.14 is true even for 0 < p,q,r < » . The same proofs 

work with some minor changes. 

The version of theorem 3.6 for X =- Lq will be this: 

Theorem 3.15. Let 1 <, p < q < <» and let J be a family of sublinear operators 
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T : Lq(E,da) -+• Lq(Z,da) . define a by - - 1 - l- . Then the following oon 

ditions are equivalent: 

a) l ( } i v 3 i p ] 1 / P l q > - . c i | ( } i ' j i p ) l / P l q » - T J e ^ f ^ L q -

b) For every u € L (da) , there exists v c ~-+(da) such that u <, v 

M a * 2|«la
 and 

||Tf(a)|p v(a) da S Cp J|f(a)|p v(a) da , T 6 f , 

I 
Moreover, 2"1/p ;ž C1jC2 á 2

1 / p 

And here is the version of theorem 3.8: 

Theorem 3.16. Let 1 < q < p < » and Zet .?* be a family of linear operators 

T : Lq(Z,da) -~* Lq(Z,da) . Define a bz/ - - £ - 1 . Then the following con­

ditions are equivalent: 

a> Kp^FI/'JIp/FV v r- <*«*• 
b) For every u e L (da) , there exists v e L

+(da) such t h a t u <, v , 

||v||a< 2
p/p'||u|a and-

||Tf(a)|p(v(a))~1 da £ Cp ||f (a) ̂ (vCa))"1 da , T € T . 

z z 
Moreover, 2~1/p' S C1/C2 £ 2

1 / p . 

§ 4. Extrapolation theorems 

We are going to reformulate the theorems in section 3 tor linear operators, 

replacing the conditions given there by seemingly weaker ones which do not 

assume any size relation between the weights. These conditions will suffice 

because we can apply the general principles of Linear Analysis. 

We start by recalling the relation between the lattices and the weighted 

Lebesgue spaces. 

Lemma 4.1. Let X be a Banaoh lattice. 

a) If X is y~convex3 then X - C\ Lp(u) , u € (X ) and 
(( ^/P 

|x|x - max {y |x(a)|
p u(a) daj , |u||~ < 1 , u > 0} . 
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b) If X is p-eoncavej then X » UL p (v" ) , v £ (X ) and 

| |x |x - min {[ | |x(a) | p (v(a))"" 1 da] , | v | * < 1 , v > o} 

P 

Proof, a) |x|Pu € L1 V u € (X ) + f» |x|P 6 (Xp)" - Xp & x € X . The 

expression for the norm follows from |x|L - ||x|p| p . 

b) The identity for the norm has been proved already. It is a reformulation 

of (2.11). The expression of X as a union of Lp spaces is an immediate 

consequence. .-, 

Here is the new formulation of theorem 3.1. 

Theorem 4.2. Let T he a famity of linear operators T : X —*• Y , where X 

and Y are p-oonvex Banaoh lattices. Then a sufficient condition for the in­

equality (3.2) to hold is that for every positive u € Y there exists a positive 

v € X suoh that all T £ f are uniformly bounded from Lp(v) to Lp(u) . 

Proof. It follows from lemma 4.1 that X(Jtp) - H Lp(v)Up) , v € (X ) and 

YU P ) « O Lp(u)(«,p) , u € Y ) . What we have to prove is that all the 

operators f : (x.) I—*- (T.x.) obtained by choosing T. € (T are (uniformly) 

bounded from X(£p) to Y(Jtp) . What we assume implies that for every u €; (Y ) , 

there exists v £ (X ) such that f maps Lp(v)UP) to Lp(u)(£p) . Thus, 

X(£p) is carried into all the Lp(u)Up)'s and, consequently, into Y(Jtp) . 

Once we know that f carries X(£p) to Y(£p) , the fac,t that it is continuous 

follows from the closed graph theorem. Indeed, the graph of T is closed in 

X(AP) x Y U P ) because it is closed in LP(v)(£P) x LP(u)(£P) and 

X(£P) x ү(ÄP) C& LP(v)(£P) x LP(u)(£P) 
D 

Observation 4.3. Theorem 4.2 continues to hold for a family , J of linearizable 

operators. 

There are two ways to prove this : 

1) If T. : X —• Y is given by 

TjX(u>) = |S..x(u>)|B with S : X -* Y(Bj) 

linear, we consider the operator S : (x.) —*• (S.x.)' and we have to prove 

that S is continuous from 

X(£P) to Y f ® B.l . 

\ p y 
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Y( Ф B) = ПL
P
(u)( Є B) , uЄ(Y

n
). 

„P J „P J P 

What we are assuming implies that for every u € (Y ) , there exists 

v € (X ) such that S maps 

Lp(v)Up) to LP(u)( 0 B.) . 

'• £ p J 

Now we just have to use the fact that 

LP( 

£P J «.P 

to conclude that S takes 

X(£P) to Y( e B.) . 

£p J 

Since S is linear, the theorem follows. 

2) The other approach consists in associating to the operator T given by 

Tx(co) • |Sx(o))|L , the family of linear operators {T, } where h ranges 
CO 

over all functions in L (B*) having ||h|| S 1 , and T,x(o)) • <Sx(w) ,h(w)> . 

Now we consider the family 7"' which is the union of all the families {"£•,} 

when T 6 f . Since |T.X(W)| £ || Sx(cu) || = |Tx(a>) | , the new family Tr , 

whose elements are linear operators, satisfies the same condition that (T in 

terms of weights. Thus, the family J" satisfies (3.2) and, consequently, 

the family T also satisfies (3.2). 

There is also a version for p-concave lattices : 

Theorem 4.4. Let J be a family of linear operators3 uniformly bounded from X 

to Y 3 both ^-concave lattices with absolutely continuous norm. Then3 a sufficient 
A 

condition for (3.2) to hold is that for every positive v e x , there exists a 
A P r) -1 

positive u £ Y such that all T are uniformly bounded from L̂ (v ) to 

L^u-1) . P 

Proof. It is clear that f sends X(£P) to Y(£P). To prove that it is con­

tinuous, we can apply theorem 4.2 to the family of adjoint operators. n 

Observation 4.5. Theorem 4.4 is also valid for a family T" of linearizable 

operators. The second approach adopted in observation 4.3 works equally well in 

the p-concave case. 

When we have one single lattice X , we get results with one single weight, 

which correspond to theorems 3.6 and 3.8. We write them together as follows: 

Theorem 4.6. Let X be a ^-convex (resp. ^-concave lattice)3 1 < p < °° , with 

absolutely continuous norm (resp. reflexive) and let T be a family of lineariz­

able operators. Then (3.7) holds if and only if for every u € X (resp. x ).» 



u > 0 , there exists v € Xp (resp. X ) s such that u <, v and all T 6 J 

are uniformly bounded in Lp(v) (resp. Lp(v ) ) . 

Proof. That (3.7) implies our condition follows from theorems 3.6 and 3.8. Note 

that even though theorem 3.8 is stated for linear operators, it can be applied to 

linearizable ones just as in observation 4.3 2). Conversely, let us see that our 

condition implies 3.7. For X p-convex, we just need to apply theorem 4.2, ex­

tended to linearizable operators. Indeed, u <= v implies LP(v) Q>. Lp(u) so 

that all T S <F are uniformly bounded from Lp(v) to Lp(u) , and this is 

precisely the condition needed in theorem 4.2. For X p-concave, we apply 

theorem 4.4, extended to linearizable operators. This requires that for each 

u 6(Xp) , we find v £f (X ) such that all T €• T are uniformly bounded from 

Lp(u ) to L (v ) . What we have now is v >= u and T uniformly bounded in 

LP(v ) . But Lp(u ) G> Lp(v ) and we actually have what we wanted. n 

The case p • » requires a special formulation, but it is proved with the 

same method: 

Theorem 4.7. Let U be a family of linearizable operators uniformly bounded 

in the reflexive Banach lattice X . Then (3.10) holds if and only if for every 

u £? X there exists v € X such that u _. v and all T € J" are uniformly 

bounded in vL . 

The key to the extrapolation theorems is going to be a boundedness criterion 

for linear operators obtained from theorems 4.2, 4.4 and 4.6 by means of the 

following fundamental result due to Grothendieck and Krivine (see [133 and [14]). 

Theorem 4.8. Let T : X —> Y be a linear operator, bounded from X to Y , 

both Banach lattices. Then 

a/2,, n ( -/.1/2|| 

KZI^I2) L-vH(?v) , x 6 X , 
j j > "X j 

where K„ is Grothendieck1 s universal constant whose value is still unknown 

although 1 < K < 2 . 

The corresponding theorem for Lebesgue spaces is due to Marcinkiewicz and 

Zygmund and it is much simpler (see [8], chapter V). 

Here are the boundedness criteria we get, where for simplicity we write X 
A A 

instead of X„ and X instead of X? . 

Theorem 4.9. Let X and Y be reflexive Banach lattices of measurable functions 
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on (E,do) and (fi,dw), respectively and suppose we have a linear operator T 

sending measurable functions on (£,do) to measurable functions on (ft,dw) . 

Then: 

a) If X and Y are 2-oonvex, T is bounded from X to Y if and only if 

for every u G. Y there exists v e- X, such that T is bounded from 
2 2 

L'(v) to LZ(u) . 

b) If X and Y are 2-oonoaVe3 T is bounded from X to Y if and only if 
A A 

for every v 6 X ," there exists u £ Y sftefc that T ia bounded from 
9 -1 ? -1 

L^(v X) to L^(u X) . 

Theorem 4.10. Let X be a reflexive3 2-oonvex (resp. 2-concave) Banach lattice 

of measurable functions on (I,da) and suppose T is a linear operator sending 

measurable functions on (E,da) to measurable functions on (E,da) . Then T 

is bounded in X if and only if for every u € X (resp. X ) there exists 

v e X+ .(resp. X ) such that u <• v and T is bounded in L (v) (resp. 

VV1)). 

In theorems 4.9 and 4.10 the exponent 2 was crucial because of the 

Grothendieck-Krivine inequality which is false in general for p ?- 2 . However, 

if T is linear and positive, the boundedness T : X —> Y implies the bounded-

ness f : XU P) —»• Y(£p) for any 1 S p <. » , as we see next. 

Proposition 4.11. Let T : X —+• Y be bounded, linear and positive, where X 

and Y are Banach lattices. Then 

l^Pl! Iř „ . .n^/P 

ZIT-/) Vl-l|(jl--

I sup |Tx,|| S ||T| I sup |x J I . 
II J. J II v II -i J IIY 

1 š p < «°, 

and 

I • -. . 
j J nY i j 

Proof. Assume 1 & p < °° . The proof for p = °° is analogous, only the notation 

is different. 

\1/P 

l - | x /) ^ \ a.x, whenever \ l a . l -* !• 
•i=i J J I •._-! J 

«j.l J Ji j-i 

Since T is positive 

k l/p-

т 
n 1/pï I n I 

Ъhw HДaлl 



Hence 
i l / p i n I n . r n l lp^ r n 1 -LP I n I n / r n l'V\ 

\ l |Tx | p - s u p { J a l J : I |a | P * l} S T ( J |x |P ) 

uently, 

I 1 'VA'H&^ ,VH( ]LI^] ,Y „ 
We can make the following 

Observation 4.12. If T is linear and positive,theorems 4.9 and 4.10 continue 

to hold for p ?- 2 , 1 <, p < «> . Naturally we have to replace X by X and 

X by X . Even p « «> is admissible"in the concave case. We just have to use 
P A. co n - 1 

X instead of X and v«L instead of Lr(v ) . 
P 

When the lattices are Lebesgue spaces, proposition 4.11 has the following 

version valid for linearizable operators. 

Proposition 4.13. Let T : X —• Y be bounded linearizable and positive where 

X - Lq(Udo) and Y - Lq(Vdw) , U > 0 , V > 0 . Then, for every q <= p < °° , 

we have T bounded from X(AP) to Y(Jlp) with ||T|| - ||T|| . 

Proof. When p - q the result is obvious, so that we have f : X(£q) —• Y(Aq) 

bounded. By the positivity we also have T : X(Jl ) —• Y(£ ) bounded since 

sup |TxJ < T(sup |x.|) . Now the result follows by interpolation, which is 

perfectly legitimate since we are really interpolating a linear operator 

fQ : XU
q) —• Y U q ) , TQ : X(l°) —• YU*) associated to TQ such that 

|Tx| « ||T0x|B . Q 

We are finally ready to obtain the extrapolation theorems. We shall use the 

following notations: 

For an operator T sending measurable functions on (£,dcr) to measurable 

functions on (Q,du>) and 1 £ p < <» , 

V (T) *• {(u,v) : u > 0 a.e. on ti , v > 0 a.e. on E 

and T is bounded from Lp(v) to Lp(u)} . 

In particular for p « 2 we shall simply write V(T) for V«(T) . Also 

V<x>(T) - {(u,v) : u > 0 a.e. on ft , v > 0 a.e. on Z 

and T is bounded from v*L to u»L } . 

Observation 4.14. If T is sublinear and positive, (u,v) 6" V (T) if and only 

if |TV| <, Cu a.e. for some constant C . 
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Indeed, T : vL°° —• u«L°° bounded implies |Tv/u| <, ||T| (v/vf^ - |T| . Conversely, 

if |Tv| <. Cu , we have 

f = — v £ — V . 
V V °° ' 

Since T i s positive and sublinear, 

|Tf | % PI |-Tv| <= C p i u . 

Thus T : v L —* u-L°° is bounded with ||T| <, C . 

When Z - ft , we shall consider *' 

W (T) = {w > 0. a.e. on E -ft : T is bounded in LP(w)}, 

1 <= p < °° . Also in this case when p = 2 we shall write W(T) for W„(T) . 

Finally, 

Woo(T) - (w > 0 a.e. on £ • ft : T is bounded in wL°°} . 

When T is positive sublinear we have, as before: w ^ W (T) 4r^ |TW| £ Cw a.e. 

2 
Here is, first of all, the extrapolation theorem from L 

Theorem 4.15. Let S and T be operators sending functions on (£,da) to 

functions on (ft,dw) , such that: 

a) S is linear 

b) T is linearizable 

c) V(S) C V(T) . 

If X and Y are reflexive Banaoh lattices of functions on (E,da) and 

(ft,dw), respectively, both 2-oonvex or both 2-conoave and if S is bounded 

from X to Y , then T is also bounded from X to Y . 

In case X = Y , c) oan be replaced by the weaker assumption 

c') W(S)C W(T) . 

Proof. Suppose that X and Y are 2-convex. Let u £• Y . Since S : X —*• Y 

is bounded, theorem 4.9 implies that there exists v E X such that 

(u,v) €E V(S) C V(T) . Now we can proceed as in theorem 4.2 and observation 4.3, 

obtaining in particular that T is bounded from X to Y . The argument is 

similar in the case of 2-concave lattices or in the case X = Y . -, 

If S is linear and positive, extrapolation works from any 1 < p < « . 

Theorem 4.16. Let 1 < p < °° and suppose that S and T are operators sending 

functions on (E,da) to functions on (ft,dw) , such that: 

a) S is linear and positive 



b) T is linearizable 

c) V (S) C V (T) . 
P P 

If X and Y are reflexive Banach lattices of functions on (I,do) and 

(fi,dw)j respectivelyj both ^-convex or both ^-concave3 and if S is bounded 

from X to Y > then T is also bounded from X to Y . 

Jn ease X - Y condition c) can be replaced by the weaker assumption 

c') W p(S)C W (T) . 

Proof. Suppose that X and Y are p-convex. Let u £ (Y ) . Proposition 4.11 

implies that S is bounded from X(£P) to Y(£P) . Then theorem 3,1 implies 

that there exists v € (X ), such that (u,v) € V (S) C V (T) . Then observation 
P + P P 

4.3 gives the boundedness of T . 
Similar arguments work for p-concave lattices or for X « Y with c f). .-, 

From theorem 4.7 we can obtain an extrapolation theorem from p * °° . How­

ever, when X H the result is trivial because Vw(S) C Voo(T) —£ | Tf | £ CS(|f |). 

Indeed, 

(Sv,v) e Vw(S) C Voo(T) -~>T : vL°° -> (Sv)-L°° i.e. ||~| </C Ul . 

Putting v - |f| we get |Tf| <, CS(|f|) . However for X = Y we get an inte­

resting result. 

Theorem 4.17. Suppose that X is a reflexive Banach lattice and 

a) S is linear and positive 

b) T is linearizable 

c) Woo(S) C Woo(T) . 

Then if S is bounded in X , T is also bounded in X . 

For every fixed pn ana p , and weights u, v > 0 , the lattices X = Lp(v) 

and Y *- LP(u) are either p-.-convex if p~ <, p or p^-concave if pn £ p . 

Besides, they are reflexive provided 1 < p < °° . If we apply theorems 4.15, 4.16 

and 4.17 to this case, we obtain 

Theorem 4.18. Let S be #, linear operator and T a linearizable operator. 

a) If V(S) C V(T) , then V (S) C V (T) for every 1 < p < <» . 

b) If we have a single measure space and W(S) C W(T) , then W (S) C W (T) 

for every 1 < p < «> . 

c) If S is positive and V (S) C V (T) for some 1 < p n <, <» , then 

V (S) C V (T) for every 1 < p < «> . 
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d) If we have a single measure space3 S is positive and W (S) C W (T) 

for some 1 < pQ <. «* , then W (S) C W (T) for every 1 < p < «» . 

If the operator S is not linear, but still linearizable and positive, we 

can get an extrapolation theorem from above, by making use of proposition 4.13. 

Theorem 4.19. Let S and T be linearizable operators. Assume also that S 

is positive. 

a) If Vp (S) C Vp (T) for some I < pQ <= *> , then V (S) C VQ(T) for every 

1 < P ̂  P0 . 

b) If we have a single measure space and W (S) C W (T) for some 1 < p 0 _. » , 

then W (S) C W (T) for every 1 < p < pQ . 

Proof. Let us see, for example, how to prove b). w £ W (S) implies that S is 

bounded in X »- Lp(w) . Since p < pft , propbsition 4.13 applies to S , which is 
~ Pn 

linearizable and positive. Thus, S is bounded in X(Jl ) . Now theorems 4.6 or 

4.7 can be used. Note that X is p0~concave and reflexive. From the boundedness 

of S , we get that for every U 6-X if PQ < °° (or U € x if P0 * °° ) with 

U > 0 , there exists V 6 L if P0 < °° (or V € X if pQ « ~ ) such that 
U <. V a.e. and V"1 e Wp (s) if PQ < °° (or V € W00(S) if PQ - °° ). But 
W„ (S) C W_ (T) and we can apply again theorems 4.6 or 4.7, this time to T and 
Pfj p 0 
in the opposite direction. We conclude that, in particular, T is bounded in X , 
that is: w ^ W (T) . Q 

Sometimes the classes V (S) or W (S) behave well under duality, and this 
P P 

can be used to extrapolate from a given p0 to any other p . Here is a result 

in this direction : 

Theorem 4.20. Let S be an operator linearizable and positive such that for 

every 1 < p < °° , 

(4.2i) w ewp(s) f->w"
pVpe wp/(s) . 

Let T be a linearizable operator such that W„ (S) C W„ (T) for some 
P0 P0 

1 < p S °° . Then W (S) C W (T) for every 1 < p < » . 

Proof. We just need to consider p 0 < p < « , since the remaining cases are 

covered by the previous theorem. Assume T is linear, 

w 6 W (S) *->w""P'/peW ,(S) . But p' < p^ and 
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VS) = ^Po ( S )^ P° / P O C («p0(T))-
P0/P° - Wp, (T*) . 

Theorem 4.19 yields W ,(S)CV , (T*) . Thus w~p'/p £ W ,(T*) and this is 

equivalent to w g W (T) . 

For T non-linear, we just need to consider the linearizations {T, } as 

in observation 4.3 2) and apply theorem 4.19 to the collection of the adjoints 

<tf- D 

The last six theorems are variants of an abstract extrapolation theorem. By 

making specific choices of the operator S , we get concrete extrapolation 

theorems. Here are some candidates for S . 

1) Let M be the Hardy-Littlewood maximal operator, sending a function 

feLioc(*n) to 

Mf(x) - sup ----- f|f(y)| dy , 
Q^x IQI £ 

where the supremum is taken over all the cubes Q with sides parallel to the 

coordinate axes and containing the point x . It was proved by Muckenhoupt [16] 

(see also [4]) that for 1 < p < » W (M) «• A , the class of weights defined by 

« • » - - %••--• • [* I -) ,/PUr / 
y Q Q 

where the sup is taken over all the cubes with sides parallel to the coordinate 

axes. Also 

WTO(M) - A. - {w £ 0 : Mw <= Cw a.e.} . 

2) Let M* be the strong maximal operator, sending a function f £ L (R ) 

M*f(x) = sup -т- ' [|f(y)| dy , 
RЭx l

R
l i 

R 

where the supremum is now taken over all the intervals (i.e.: Cartesian products 

of intervals) containing x . 

It can be seen (for example in [8] IV.6) that for 1 < p < » W (M*) •» A* , 

the class of weights defined by 

(•.to « ^ ; ^ S U R p ( ] i [ J w ) 1 / p ( ] i T J w - p ' / p ) 1 / p ' < . ) 

R R 

where the sup is taken over all intervals. Also 

W
oo
(M*) -- A* » {w £ 0 : M*w s'Cw a.e.} . 

Alternatively, for 1, <,?<?>, w€r A* if and only if it is A in each variable, 

with uniform constant, for a.e. determination of the other variables. 

3 Krbec, Analysis 4 engl. 



3) The operator M is linearizable and positive but it is very interesting 

to know that there is a linear operator giving rise to the same classes of 

weights. 

If n «- 1 , we can take the Hilbert transform H given by: 

/ °° 
Hf (x) -« p.v. ~ [ -----£--- dy 

—00 

and we have ([8]): W (H) «• A , 1 < p < * . 
P P 

If n > 1 , we can take the Riesz transforms R.,R2,...,R given by: 

R f(x) -- p.v. c f *3 ~y- f(y) dy • c - TlW*) 
J W P «- J |x _ yl-i+1

 W y ' ti w(n+l)/2 

If we consider R - R. + R2 + *.. + R , we have (see [4] and [8]) 

W (R) - A , 1 < p < • . 
P * P * 

4) Also for M* we can find a linear substitute which turns out to be the 

multiple Hilbert transform H* given by: 

H*f(x) - lim f T w- ffr> *{ 7 r . 
e e £ <->0 , J , ( x l " y J ( x 2 - y 2 ) . . . ( x -- y ) e l ' e 2 " - - , e n ° |ac -y |i>c l l 2 2 n tt 

We have (see [83 IV.6.) W (H*) -» A* , 1 < p < « 
P P 

For these particular examples we get the following extrapolation theorem: 

Theorem 4.24. Let T be a linearizable operator whose domain and range consist 

of measurable functions on H . Suppose that either 

Pn (i) for some 1 < p. < « , T id bounded in L u(w) for every \t €. k^ 

(resp. A* ) or 

(ii) T is bounded in wL for every w & A. (resp. A* ) . 

Then 

a) for every 1 < p < * and every w G A (resp. A* )3 T is bounded in 

LP(w) . " P 

Not only that* but in general 

b) / X is a reflexive Banach lattice 2-convex or 1-concave and R 

(resp. H* ) is bounded in X , then T also is bounded in X . 

Proof. Note that the classes A and A* satisfy condition (4.21), so that 
— P P 
theorem 4.20 can be applied with S * M or M , obtaining a). In particular, a) 
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holds with p » 2 and we can apply theorem 4.15 with S -- R or H to obtain b) 

D 

Observation 4.25. Condition (ii) can be replaced by this weaker onfcS 

T maps w»L into B.M.O.(w) for every w € A . , where 

g €B.M.O.(w) «*sup -jij-y ||g(x) - gQ| dx < «o 

f Q Q 

with SQ - |J| J * • 

If we define g#(x) « sup — |g(y) - gn| dy , 
Qax IQl * M 

we observe that for w £ A. , 

ge-B.M.O.(w) - » g ' ( x ) = sup f f ^ ^ f|g(y) - gQ |dy <. 
Q9x IQl A 

<< C.Mw(x) <. Cw(x) —> g# e wL* 

If we define T#f - (Tf)# we see that T# satisfies (ii). Then if w £ A , 
P 

1 < p < *>* we have 

í |Tf|P w S C í |(Tf)#|P w É C í |f| 

R n R n E n 

For the first inequality see [8], chapter IV, theorem 2.20. The weaker condition 

is sometimes easy to check whereas (ii) fails for many natural operators satisfy­

ing a). 

We shall finish this section by recalling briefly the history of the extra­

polation theqrem. It was first discovered by Rubio de Francis [193 with a non-con­

structive proof of the type we have given, but only for the A classes. Then 

Carcia-Cuerva [6] gave a constructive proof that used the particular definition 

of the A classes plus the Rubio de Francia algorithm. Jawerth [12] proved a 

general theorem for Lp spaces by using the Rubio de Francia algorithm plus 

interpolation. Then it came the general formulation of Rubio de Francia [20], [21] 

in lattices, which is the one we have presented. The case pn * °° was treated 

in [103 and [73. 

§ 5. Applications 

We shall give a characterization of U.M.D. Banach lattices in terms of A 

weights due to Jose Luis Rubio de Francia [223. U.M.D. stands for unconditional 

martingale differences. Here is the original definition of this condition: 



Definition 5.1. We shall say that a Banach space B is U.M.D. if and only if the 

following inéquality holds: 

I1 n !! 
1 Є

k
d
k 

L
P
(B) " 

C
P,B| 

1
 n
 il 

I ú 
!k=ì ki!LP(B) 

fur all n , all є. - ± 1 ; , and all B-valu -valued martingale differences (that is: 

d. -* f,. - f, , for a B-valued martingale {f,} ), p is some fixed exponent 

with 1 < p < *> . 

Even though this definition seems to depend on p , it does not. Actually 

Burkholder [3] gave a geometrical characterization called p-convexity, which 

is obviously independent of p . 

We shall not use any of these characterizations. Instead, we Shall base our 

discussion upon the following 

Theorem 5.2. The Banach space B is U.M.D. if and only if the ^-valued ex­

tension H of .the Hilbert transform H (say* on the torus I ) is bounded in 

L
P
(B) for some I < p < °°. This means, that the operator H defined on 

D 

LP ©B - { I •jCOb : •j € LP, bj ^ B } by lLfl( £ f.b ) - I (H* )b 

satisfies: ||HR(f)|| S c||f|| 
B LP(B) LP(B) 

so that it extends continuously to LP(B) . 

That the boundedness of H„ is necessary was proved by Burkholder [3D and 
a 

that it is sufficient by Bourgain [23. When X is a Banach lattice of functions 

on (I,da) we can view LP(X) -- LP(T)(X) as a lattice of functions of two 

variables f(t,a) , t £ I , a e E . If we have an operator A bounded in Lp , 

we can define A at least in Lp © X by 

Af(t.o) - A(f(-,o))(t) . 

Note that H -- H on LP @ X . 

Here is the characterization of U.M.D. Banach lattices in terms of A 
P 

weights : 

Theorem 5.3. Let X be a Banach lattice* reflexive and p--convex for some 

p > 1 . Fix p such that 1 < p < pn . Then X is U.M.D. if and only if for 
2 ~ 2 ~ 

every u £ ? L ( X ) , u £ 0 , there exists w € L (X ) such that u <= w , 
|w|| << 2||u|| and w(«,a) 6 A uniformly in a for a.e. a £ E . 

Proof. Let X be U.M.D. and take q - 2p . Then H * is bounded in Lq(X) . 



Not only that. It is easy to see that X(£p) is also U.M.D., so t̂ hat, H has 

an ilP extension. We can apply theorem 3.6 with Y « Lq(X) in place of the 

lattice X appearing there. Observe that 

Y -. (Lq/p(Xp))"-L2(X ) . 
P v ; P 

Thus, given u £ L (X ) , u 2 0 , we have w € L (Xp) such that u <. w , 

|w|| <, 2||u|| and 

(5.4) j J|Hxf(t,a)|
p w(t,a) dt da < C J [|f(t,a)|P w(t,a) dt da . 

Z T 11 

Let us apply this inequality to f(t,a) •* <}>(t) XE(c) where § is a trigono­

metric polynomial with rational coefficients and E is a subset of £ with 

|E| < » . Since H f(t,a) * H<|>(t) »xE(a) » we have 

| | | H ф ( t ) | P w( *(t ,o) dt da 5 C |4>(t)V w(t,a) dt do 

E I E I 

and, consequently, 

(5.5) f|H<J)(t)|p w(t,a) dt 5 C j | < K t ) | p w(t,a) dt 

for every a £ E_ , a set independent of $ and having jEA « 0 . 

This implies that w(»,a) is an A -weight with uniform constant for every 
P 2 -

a <£ EQ . The converse is even easier. If given u g L (X ) , u $ 0 , we have 

w e L2(X ) such that u £ w , ]|w| £ 2|u| and (5.5) holds, we can obtain (5.4) 

mi 

Lq(X) so that X is U.M.D, 

by a limiting process. Then, by the easy part of theorem 3.6, H is bounded in 

2 ~ 
The condition in theorem 5.3 will be abreviated by saying that "L (X ) has 

enough A weights". 

Incidentally, note that in theorem 5.3 the exponent 2 does not play any role and 

we can use L (X ) for any 1 < s < «» . Theorem 5.3 can be used to prove the 

following 

Theorem 5.6. Let -X be a U.M.D. lattice. Then there exists e > 0 such that 

Xa is U.M.D. for every 0 < a < 1 + e . 

Proof. There are two different parts in this result. The deepest one is for 

1 < a < .1 + e . It is proved in the following way. If X is U.M.D., it is known 

that X is superreflexive, and consequently p 0 ~ convex for some p„ > I . Fix 

1 < p < p. . By theorem 5.3, L (X ) has enough A weights. It is a well known 

fact in A theory that A weights satisfy a so called reverse Holder's in­

equality (see [8]) and, consequently,every A weight is an A „ weight for 
P p—t 
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2 -
some e > 0 depending only on the A constant. Thus L (X ) has enough A 

weights for some e depending only on p and the U.M.D. constant of X . Let 

Y * x
p/^p""e) , so that Yp~e - XP . Then Y satisfies the condition in theorem 

5,3 with p - e instead of p . It follows that Y - X for some a > 1 is a 

U.M.D. lattice. 

The second part of the result, the one for 0 < a < 1, is based upon the so 

called "magical identity". This identity works for the conjugate function 

operator which sends the trigonometric polynomial £a e to the trigonometric 

polynomial £-i(sgn n)a e . The difference between this operator and the 

Hilbert transform H is dominated by the Hardy-Littlewood maximal operator so 

that its associated weights are again the A weights, and it is also good to 

characterize U.M.D. This justifies that we call H to the conjugate function 

also. With this notation we have the magic formula 

(Hf)2 - f2 m 2H(fHf) 

2 
simply because (f + iHf) is analytic. Now the magic formula works equally well 

for H , so that we have 

Hf(t,a)2 - f(t,a)2 + 2H(fHf)(t,a) 

and this implies 

II H f l L V / 2 ) - f l 5 f I x l / 2 - | H S f | 2 l x S 

S | ( | f ( t , a ) 2 | x + 2|H(fHf)|x) S 

S 2 j | f ( t , 0 ) 2 | 2 + 8 |||H(fHf)|2 i 

S 2 » f ! L V / 2 ) + 8cjlfHf|2 * 

s 2 , f i i v / 2 ) + c J ' i £ , - i / 2 i a f , x i / 2 < 

sc*,fi:vVEKv'2) 
This implies that X l / 2 is U.M.D. By iteration we get that Xa is U.M.D. if 

-k 

a * 2 , k «- 1,2,... .We obtain the result for every 0 <, a < I by inter­

polation, r-

In order to present the next result, we shall use the notation [ t ] , 

0 < 6 < 1 , for Calderon's complex interpolation method, and we shall also recall 

Calderon's identity for Banach lattices. This holds provided at least one of the 
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iattices XQ , X. is reflexive: 

[X0,X1]@ » xJ"
6X® - {x s |x| - xj""9x® , xQ e X() , xx € X,} 

Corollary 5.7. Let X be a U.M.D. lattioe in (J),da) , Then theve exist Q 

with 0 < 0 < 1 and anothev U.M.D. lattioe XQ such that X - [L2(da),X_}0 . 

Proof. Take a > 1 such that Xa and (X*)a are U.M.D. Call Y «• ((X*)a)* , 

also U.M.D. The key observation is that X • [L »Y], . . In order to verify this, 

we just need to check that the duals coincide. But 

([-1.*../.)*" fr".«*)a]1/a - aV /8'((x*)a)1/a - X* 
Than . 

X - X 1 / 2X 1 / 2 - I 1 / 2(CL X.T] i / a)
1 / 2 - X1/?

ltt
1)1/a'Y1/a) -

- x l / 2 a y / 2 a y / 2 a . ^ , 1 / . ' ( ( ^ 1^1/2) 1 / a . 

• [L 2.Cx a.y] 1 / 2] 1 / a. [L2,x0]1/a 

which is what we wanted because XQ » D-*»T)i/2 *8 U*M«D* n 

Corollary 5.7 extends a previous result of Pisier [17] in which XQ was 

just a Banach lattice, not necessarily U.M.D. 

The next theorem will allow us to obtain the boundedness of the vector-

valued extension to a U.M.D. Banach lattice of a huge class of operators. 

Theorem 5.8, Let X be a U.M.J). Banaoh lattioe and let T be a lineavizable 

opevatov whiah is bounded in Lp(w) * Lp(r,w(t)dt) fov evevy w €A and evevy 

1 < p < » . Then ff(t,a), - T(f(«,a))(t) is bounded in LP(X) - LP(.C)(X) fov 

evevy 1 < p < • . 

Proof. If LP(X) is 2-convex or 2-concave, we just need to apply theorem 4.15 

to the lattice LP(X) , the linear operator H and the linearizable operator f• 

We need to see that W(H)C W(T) . In order to do that we proceed as in the proof 

of theorem 5.3, We realize that if a weight w(t,a) belongs to W(H) , then 

w(»,a) is an A« weight with uniform constant for a.e. a € £'. Now by the 

hypothesis we have assumed about T , we get an inequality like (5.5) with T 

in place of H . Integrating on Z and completing gives w % W(T) . In the 

general case, since X is U.M.D., we know that LP(X) is pQ-convex for some 

1 < pQ < » , We use the fact that M is bounded in LP(X) (see [22]) and apply 

theorem 4.16 exactly as we did before. r-
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Corollary 5.9. Let us denote by 

Snf(t) - I f(k)e 1 K t , 
-n 

the n-th partial sum of the Fourier series of f . Then if X is a U.M.D. Banaoh 

lattice^ we have the following oonvergenae a.e. of the ^-valued Fourier series 

||Snf(t) - f(t)|x — 0 a.e.3 f e LP(X) , 1 < p < co . 

Proof. Let Tf(t) * sup |s f(t)| be Carlesonfs maximal partial sum operator. 
n 

Theorem 5.8 can be applied to it (see 111]), and concludes that f is bounded in 

LP(X) , 1 < p < °° . 

But then 

f sup ||S f(t)|P đt S f (sup |S f(t,-)||£ dt 

I П
 I

 П 

í | ï f ( t . . ) | J d t - ||ïf||pD sc|fp 

r 

which is enough for our purposes. 

IP 

LF(X) LP(X) 
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