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LP -REGULARITY FOR SYSTEMS OF PDE'S,WITH COEFFICIENTS IN VMOFilippo Chiarenza1. IntroductionThe purpose of these lectures is to review some recent work on the Lpregularity of the maximum order derivatives of the solutions to a certainclass of linear elliptic systems both in divergence and non divergence formwith discontinuous coe�cients.First we point out that the Lp regularity we discuss here is not of thekind of Meyers' result (i.e. valid only for p close to 2, see [41], and [31]).On the contrary our results hold for any value of p in the range (1;+1).Obviously, such a result requires additional \smoothness" of the coe�cients,see [41] again. Here we shall see that the relevant assumption is that thecoe�cients belong to what is generally known as the space VMO. Recallthat VMO consists of BMO functions whose integral oscillation over ballsshrinking to a point converge uniformly to zero, see Section 3 for precisede�nitions and references.Lp estimates of the kind we will discuss are well known in the case ofcontinuous coe�cients. In order to introduce the topic we will pause inthe next section to discuss the classical methods for obtaining Lp estimateswhen the coe�cients are continuous. This will show what are the naturallimits of those methods. Also it will be clear on what slight modi�cationof some of those methods our work is based. We will only sketch the ideain the simple but rather representative case of one elliptic equation of thesecond order in divergence form. To begin with we assume the coe�cientsto be continuous and later we move to the VMO case.In Section 3 we will give the precise de�nitions and the statements, withsome detailed proof, of the real analysis tools we need in order to deducethe Lp regularity result.Later we will discuss the Lp regularity for elliptic systems in non diver-1



2 F. CHIARENZAgence form also touching the parabolic case. Finally we will mention somework still in progress.We wish to conclude this introduction thanking the organizers for thekind invitation to take part in this meeting. Also we want to take this op-portunity to thank many friends who gave various (both in size and nature)contributions to the research reviewed here. Especially we like to mentionCarlos Kenig for pointing out to us the existence of the BMO commutatortheorem at the very early stage of our research making it possible all thesubsequent work. Also we are indebted to Eugene Fabes whose suggestionsand incouragement have been, as usual, extremely valuable. We want to ex-press our friendship and gratitude to Michele Frasca and Giuseppe Di Faziowho helped in the preparation of this note. Finally we thank Mario Marinoand Tadeusz Iwaniec for pointing out many inaccuracies present in the �rstversion of this paper. 2. A Simple CaseIn this section we will analyze the simple case of one elliptic second orderequation in divergence form. To be more speci�c let us consider in 
,a bounded open subset of Rn (n � 3), the equation(2:1) Lu � � (aijuxi)xj = �(fi)xi � �div fwhere we assume(2:2) 9� > 0 : ��1j�j2 � aij�i�j � �j�j2 8� 2 Rn; a.e. x 2 
aij = aji; i; j = 1; : : : ; n9p 2 (1;+1) : f � (f1; : : : ; fn) 2 Lp:We also add, in this �rst part of the section, the following smoothnessassumption(2:3) aij 2 C0(
) 8i; j = 1; : : : ; n:Suppose we wish to study the well posedness of the Dirichlet problemfor equation (2.1) in W 1;p0 (
). For what is known to the author this kindof result is obtained establishing �rst the same result for constant coe�-cients operators and then extending it to the variable coe�cients case viaa perturbation argument (freezing, Korn's trick) which can be summarized



Lp-REGULARITY FOR SYSTEMS OF PDE'S 3as follows. Assume that u(x) is a solution of equation (2.1) supported ina small ball B = B(x0; r) �� 
:We then transform equation (2.1) as follows� (aij(x0)uxi)xj = � [(aij(x0)� aij(x))uxi ]xj � (fi)xi :If we suppose at this level to be able to estimate the Lp norm of the gradientof solutions to the constant coe�cients equation in terms of the Lp norm ofthe right hand side we are done because we can write(2.4) 

 jruj 

p � c24 nXi;j=1 

�aij(x0)� aij(x)�uxi

p + kfkp35� c24 nXi;j=1maxB jaij(x0)� aij(x)j 

 jruj 

p + kfkp35 :Now if maxB jaij(x0) � aij(x)j, i; j = 1; : : : ; n, is small enough we can movethe �rst term in the right hand side to the left obtaining (under all thesupplementary assumptions we did!) the following a priori estimate:

 jruj 

p � c kfkp :As it is well known this is the basic step in obtaining the Lp estimatesfor solutions of the Dirichlet problem in all 
. Some more, very well known,technicalities will clearly be needed (localization, 
attening of the boundary,etc.). We do not dwell here on these details. What we want to stress nowis the very elementary heart of this procedure.Once we know thati) maxB jaij(x0)� aij(x)j is small(e.g. in the continuous coe�cients case if the radius r of the ball B is small)we are done if we also knowii) the result for the constant coe�cients case.Before spending some more lines in a brief outline of the ways for obtain-ing ii) we express the hope that by now it will be even too much obvious tothe reader why we call this procedure a pointwise perturbation about theconstant coe�cient case.Also we wish to call the attention of the reader on requirement i).It is clear that if we want the oscillation in condition i) arbitrarily small



4 F. CHIARENZAthis is equivalent to require the continuity of the coe�cients. This is whathappens if we want the Lp estimates with this method for all p's in (1;+1)because the blowing up of the constant c in (2.4) when p diverges or ap-proaches 1. We could ask for the Lp result only for some p's and this isexactly what one obtains with Korn's trick under assumptions of the typeof Cordes (see e.g. [14]).To prove ii), which is in any case a di�cult step, there are essentiallytwo methods at author's knowledge. The �rst, at least chronologically, isassociated to the names of A. Calder�on and A. Zygmund. This method usesexplicit representation formulas for the derivatives of the solutions by meansof singular integrals applied to the known term f . While these formulaswere well known and had been used by many authors (let us quote at leastG. Giraud and C. Miranda) to study the regularity problem in the H�olderspaces it was the achievement of A. Calder�on and A. Zygmund [9] as wellas one of the main motivations in developing their theory (see e.g. [8]) toestablish the boundedness in Lp of the relevant singular integrals.The other method we wish to mention here is related to the work ofC.B. Morrey and to the research of S. Campanato.This method has been applied by a number of authors to a great varietyof problems in PDE's. Excellent and comprehensive accounts of the methodand its applications are given in Campanato [15], Giaquinta [31]. The basictools in this method are the fact that solutions to constant coe�cients equa-tions are endowed with derivatives of any order (which can be estimated bythe di�erence quotients method) and the exploitation in a very precise wayof local energy estimates (Caccioppoli estimates). By these means growthestimates in various norms over balls for the derivatives of solutions areobtained.In particular what is crucial here (see [17] for the case of H�older continu-ous coe�cients and, for the case of continuous coe�cients, [16]) is to showthe belonging of the highest order derivatives to the L 1;n Campanato space(which is BMO) whenever the known term is in the same space. The �nalresult is obtained interpolating between some known Lp result (for equation(2.1) L2 which is obtained for free in the divergence case) and the L 1;n re-sult, by means of a well known theorem of Stampacchia ([53], [530]; see alsoCampanato [160], Fe�erman and Stein [30]).Indeed the original technique in [17] was not to derive the Lp estimatesfor the constant coe�cients equation and then, by freezing, deducing themfor the variable coe�cients case. On the contrary the authors, exploited theL 1;n estimate obtained by Campanato in [13] where it is deduced in the



Lp-REGULARITY FOR SYSTEMS OF PDE'S 5case of H�older continuous coe�cients by means of some simple but delicateperturbation argument. We mention this because the L 1;n estimate is falsefor general continuous coe�cients and especially because this approach wasused in a very interesting recent paper by Acquistapace [1] in which fora second order linear elliptic divergence form system the Lp estimates areobtained using an approximation of the coe�cients with H�older continuouscoe�cients. A careful analysis of the dependence of the constant in Cam-panato's method allows the author to obtain the result for a class of systemswith discontinuous coe�cients.Precisely the coe�cients belong to L� with �(r) = 1=j log rj. (See thenext section for a de�nition of L� and some comments).L� is contained in VMO properly and Acquistapace shows that theL 1;nestimate doesn't hold if one takes as coe�cients functions in VMO whichare not in L� with the above mentioned � (see [1], sect. 5).Before giving the essential of the procedure to deal with general VMOcoe�cients it is better to recall that applications of the Calder�on-Zygmundand Korn method to second order elliptic equations with continuous coef-�cients can be found in [40], [33] for non divergence form equations (seealso [32], [21]) and an extremely farreaching extension has been given inthe papers [2], [3], [27] where are considered non divergence form systemsof a very general kind (see also [44]).For the divergence form it is di�cult to give very precise references. Letus quote at least the books [44] and [50] where higher order divergence formequations are studied.Let us now outline the method of proving the Lp result for equation(2.1) with VMO coe�cients. Our starting point, as in what we called theCalder�on-Zygmund procedure, is to establish representation formulas forthe solution directly for the case of variable coe�cients. This is done bymeans of a parametrix leading to the expression of the derivatives of thesolution in terms of a singular integral acting on the known term f plusan error term expressed by another singular integral acting on the verysame derivatives one wants to estimate. Luckily these derivatives appearin a singular commutator whose norm can be made small if the coe�cientshave a small integral oscillation (i.e. if they belong to VMO).Then we can consider the essence of \our" method as an integral pertur-bation about the constant coe�cient case. We stress that the technique weused is not \ours"! It goes back at least to Eugenio Elia Levi and has beenextensively used by the authors working with spaces of H�older continuousfunctions (see Miranda [43] once more). This is an interesting point because



6 F. CHIARENZAwe feel that in order to obtain the Lp estimates the only tool the \classi-cal" authors needed (not considering their possible lack of interest in Lp)was some piece of real analysis machinery that was developed and becamefamiliar in the middle 70's (of this century!).We will now give an outline of the proof of the Lp result for the simpleequation (2.1). The following is taken from Di Fazio [24] which in turndepends much on the papers [18], [19] by M. Frasca, P. Longo and theauthor.We want to prove the following theoremTheorem 2.1 ([24]). Suppose condition (2:2) holds and @
 is smooth (sayC1;1). If, moreover, aij 2 VMO for i; j = 1; : : : ; n then the Dirichlet problemLu = div f ; u 2 W 1;p0 (
)has a unique solution. In addition, we have

 jruj 

Lp(
) � c kfkLp(
) :We notice �rst that such an estimate can be proved with a constant cindependent of the smoothness of the coe�cients, assuming the coe�cientsand the solution to be smooth. This is possible because our coe�cients arein VMO (see Theorem 3.7 and the following remarks). Also it is clearlyenough to consider p > 2 (duality). Localization and 
attening then reducethe result to proving the following two theorems.Theorem 2.2 (interior estimate). Assume that (2:2) holds and aij aresmooth for i; j = 1; : : : ; n. Then there exists � > 0 such that for every ballB� �� 
 with radius � and every smooth solution ofLu = f0 � div fwith f0, f and u compactly supported in B� , we have the estimate

 jruj 

Lp(B�) � c �kfkLp(B�)+ kf0kLp� (B�)�with p� = np=(n+ p) .



Lp-REGULARITY FOR SYSTEMS OF PDE'S 7Theorem 2.3 (boundary estimate). Assume that (2:2) holds and aijare smooth for i; j = 1; : : : ; n. Given a ball B� with center at the originwe call B+� = fx 2 B� : xn > 0g. Then there exists � > 0 such that, forevery smooth solution of (2:1) in B+� which vanishes on fxn = 0g \B� andis compactly supported in B�, we have

 jruj 

Lp(B+� ) � c kfkLp(B+� ) :Proof of Theorem 2.2. We start proving the representation formula we men-tioned above for u 2 C10 (B�). Fix any point x0 in B� (� > 0 to be �xedlater). We have� (aij(x0)uxi(x))xj = � ((aij(x0)� aij(x))uxi(x) + fj(x))xj + f0(x)� � ��x0j (x)�xj + f0(x):If we consider the \fundamental solution" � for the constant coe�cientsoperator � (aij(x0)uxi(x))xjwe obtain the representation(2:5) u(x) = � ZB� �j(x0; x� y)�x0j (y) dy � ZB� �(x0; x� y)f0(y) dy :To be more explicit we set�(x0; t) = 1(n� 2)!n (det aij(x0))1=2 � nXi;j=1Aij(x0)titj�(2�n)=2for a.e. x0 in 
, t 2 Rn, t 6= 0, where Aij(x0) is the cofactor of aij(x0) inthe matrix �aij(x0)�i;j and !n is the surface area of the unit ball. Then wedenote by �i(x0; t) = @@ti�(x0; t)and �ij(x0; t) = @2@ti@tj �(x0; t)



8 F. CHIARENZA(compare e.g. [43] or [35]). Di�erentiating (2.5), which is a delicate thoughstandard business because of the bad singularity appearing in �ij , one hasuxi(x) = �P:V: ZB� �ij(x0; x� y) f[ahj(x0)� ahj(y)]uxh(y)� fj(y)g dy� ZB� �i(x0; x� y)f0(y) dy + cij(x0)�x0j (x)(2.6)where P:V: in front of the �rst integral means that the integral is taken asa principal value integral, andcij(x0) = Zjtj=1 �i(x0; t)tj d�:We now take in (2.6) x = x0 obtaininguxi(x) = �P:V: ZB� �ij(x; x� y) f[ahj(x)� ahj(y)]uxh(y)� fj(y)g dy� ZB� �i(x; x� y)f0(y) dy + cij(x)fj(x) 8x 2 B� :Once we have an explicit representation formula for uxi in order to obtainthe desired estimates we have only to evaluate the Lp(B�) norm of theright hand side. The last term on the right side is good because cij(x) arebounded functions whose L1 norm can be estimated in terms of � in (2.2).The middle term is pointwise majorized by a Riesz type fractional integralZB� f0(y)jx� yjn�1 dywhich obviously is a bounded operator from Lp�(B�) in Lp(B�). The �rstterm is more conveniently written as the sum of terms of the form(2:7) Kfj � P:V:ZB� �ij(x; x� y)fj(y) dyand of the form(2:8) C[ahj ;K]uxh � P:V: ZB� �ij(x; x� y) f[ahj(x)� ahj(y)]uxh(y)g dy:



Lp-REGULARITY FOR SYSTEMS OF PDE'S 9Both the (variable kernel) singular integrals are bounded operators inLp(Rn) (1 < p <1), as it will be shown in the next section. Moreover thecommutator C [ahj ;K]uxh has a bound of the formkC[ahj ;K]uxhkLp(B�) � c(n; p) kahjk� 

 jruj 

Lp(B�)where kahjk� is the BMO \norm" (= the integral oscillation) of the relevantcoe�cient ahj appearing inside (for the de�nition of kahjk� see De�nition3.1). The nice feature of this operator, which is the fundamental point ofour estimate, is that, taking ahj in VMO, the kahjk� can be made small aswe like taking the radius � of B� small enough. In other words we can �x� so small to have the estimate(2.9) 

 jruj 

Lp(B�) �12

 jruj 

Lp(B�)++ c(n; p; �) �kfkLp(B�)+ kf0kLp�(B�)� :This proves Theorem 2.2.Proof of Theorem 2.3. We now argue similarly to prove Theorem 2.3. Inorder to obtain a boundary representation formula it is better to recallthe de�nition of the half space Green function for the constant coe�cientsoperator � (aij(x0)uxi(x))xj :Such a Green function is easily obtained subtracting to the fundamentalsolution with pole at x in the upper half space the fundamental solutionwith pole at an appropriate point T (x) in the lower half space (T (x) wouldbe a re
ection when dealing with the Laplacian).To be more precise let �(x; t) have the same meaning as above. Seta(x) = fain(x)gi=1;:::;n ; T (x; y) = x� 2xnann(y)a(y) ; T (x) = T (x;x):Finally set A(y) = T (en; y) where en = (0; : : : ; 0; 1) and denote Ai(y) thei-th component of A(y). Consider now any x0 2 B+� and, as in the previousproof, write the equation as� (aij(x0)uxi(x))xj = � ((aij(x0)� aij(x)) uxi(x) + fj(x))xj� � ��x0j (x)�xj :



10 F. CHIARENZAThen using the fact that the Green function for the constant coe�cientsoperator (aij(x0)uxi(x))xjin the half space is �(x0; x� y)� �(x0; T (x;x0)� y)we see that a solution in B+� can be written as(2:10) u(x) = �ZB+� [�j(x0; x� y)� �j(x0; T (x;x0)� y)]�x0j (y) dy:Taking the derivatives, keeping in due regard the singularities of the �rstterm inside (the second being never singular in B+� ), and �nally settingx0 = x we obtainuxi(x) = �P:V: ZB+� �ij(x; x� y) f[ahj(x)� ahj(y)]uxh(y)� fj(y)g dy+ cij(x)fj(x) + Ii(x)(2.11)where cij(x) = Zjtj=1 �i(x; t)tj d�t;as before, andIi(x) = ZB+� �ij(x; T (x)� y) f[ahj(x)� ahj(y)]uxh(y)� fj(y)g dyfor i = 1; : : : ; n� 1 whileIn(x) = ZB+� Ah(x)�hj(x; T (x)� y) f[ahj(x)� ahj(y)]uxh(y)� fj(y)g dy:(2.11) is very similar to (2.6) except for the term Ii. The Ii integral can bewritten as a sum of integrals of the form(2:12) eKfj � ZB+� �ij(x; T (x)� y)fj(y) dyand of the form(2:13) eC [ahj ;K]uxh � ZB+� �ij(x; T (x)� y) f[ahj(x)� ahj(y)]uxh(y)g dy



Lp-REGULARITY FOR SYSTEMS OF PDE'S 11(the Ah(x) terms are not relevant because they are bounded functions whoseL1 norm is estimated in terms of the ellipticity constant �). Then, as in theinterior case, we are reduced to study the Lp boundedness of the integraloperators de�ned by (2.12) and (2.13). This will be done in Section 3 givinga result similar to what we obtained in the interior case. Precisely a positive� can be �xed in such a way to obtain

 jruj 

Lp(B+� ) � 12

 jruj 

Lp(B+� )+ c(n; p; �) kfkLp(B+� ) :This concludes the proof of Theorem 2.3.As mentioned after the statement of Theorem 2.1 by localization and
attening one can prove (by means of Theorems 2.2 and 2.3) an estimatelike(2:14) 

 jruj 

Lp(
) � c�

 jruj 

L2(
)+ kfkLp(
)� � c kfkLp(
)for the solution of the Dirichlet problem. In the last majorization we usedthe fact that p > 2 and the L2 bound for such a solution in terms ofkfkL2(
) is known (Lax-Milgram). (2.14) gives the conclusion at least forsmooth solutions. The general result is obtained by approximation.3. Real Analysis ToolsIn this section we collect the de�nitions and theorems concerning VMOand the action on Lp of the singular integral operators which are used inthe proof of the Lp estimates.De�nition 3.1 (John-Nirenberg [39]). We say that a functionf 2 L1loc(Rn) is in the space BMO ifsupB 1jBj ZB jf(x)� fB j dx � kfk� < +1where B ranges in the class of the balls of Rn, andfB � 1jBj ZB f(x) dxis the average of f in B.kfk� is a norm in BMO modulo constant functions under which BMO isa Banach space (see Neri [47]).



12 F. CHIARENZADe�nition 3.2 (Sarason [49]). For f 2 BMO and r > 0, we setsup%�r 1jBj ZB jf(x)� fB j dx = �(r)where B ranges in the class of the balls of Rn with radius % less than orequal to r.According to [49], f 2 BMO is in VMO iflimr!0 �(r) = 0 :We will call � the VMO modulus of f .Bounded uniformly continuous (BUC) functions belong to VMO. Func-tions in W 1;n belong to VMO. Indeed by Poincar�e's inequality,1jBj ZB jf(x)� fB j dx � c(n)�ZB jrf(x)jn dx�1=n :To give another example of the same kind we recall the de�nition of theMorrey space Lp;�.De�nition 3.3. Let p 2 [1;+1), � 2 (0; n). We say that a functionf 2 Lploc(Rn) is in Lp;�(Rn) ifsupr � 1r� ZBr jf(x)jp dx�1=p � kfkp;� < +1:We also de�ne VLp;�(Rn), p; � as above, as the subspace of Lp;�(Rn) of thefunctions f such thatsup%�r 1%� ZB% jf(x)jpdx!1=p � #(r)vanishes as r approaches zero.Then it is immediately seen that functions whose gradient is in L1;n�1are in BMO and functions whose gradient is in VL1;n�1 are in VMO. Thisshows easily that there are VMO functions which are discontinuous. E.g.one can take f(x) = j log jxjj�, 0 < � < 1.



Lp-REGULARITY FOR SYSTEMS OF PDE'S 13Similarly one can see that W �;n=�(Rn) (0 < � < 1) is contained in VMO.Indeed1jBj ZB jf(x)� fB j dx � � 1jBj ZB jf(x)� fB jn=� dx��=n=  1jBj ZB ���� 1jBj ZB(f(x)� f(y)) dy����n=� dx!�=n� � 1jBj ZB 1jBj ZB jf(x)� f(y)jn=� dxdy��=n� cn�ZB ZB jf(x)� f(y)jn=�jx� yj2n dxdy��=n :Because f 2 W �;n=�(Rn) implies that�ZRn ZRn jf(x)� f(y)jn=�jx� yj2n dxdy��=n < +1 ;we get the conclusion by the absolute continuity of the integral.De�nition 3.4 (e.g. Campanato [13]). Let p 2 [1;+1), � 2 [0; n + p].We say that a function f 2 Lploc(Rn) is in the space L p;�(Rn) ifsupr � 1r� ZBr jf(x)� fBr jpdx�1=p � kfkp;� < +1:This family of spaces contains BMO (which is the same as L 1;n(Rn))and also C0;� as can be seen by the following theorem.Theorem 3.5 (Campanato [12], Meyers [42]). Let p 2 [1;+1),� 2 (n; n + p). Then L p;� coincides with the space of the H�older con-tinuous functions C0;� (� = (�� n)=p).One immediately realizes that functions in VMO are H�older continuousif �(r) � cr�.The following question may then be posed naturally:when (depending on �(r) ) functions in VMO are continuous?The answer has been given by S. Spanne, who perhaps really \invented"VMO about ten years before Sarason. Indeed while studying some gen-eralizations of the L 1;� spaces Spanne introduced in [52] the L� spaces.Precisely:



14 F. CHIARENZADe�nition 3.6 ([52]). Let � : [0;+1) ! [0;+1) non-decreasing. Letf 2 L1loc(Rn). We say that f is in the space L� ifsup 1�(jBj 1n ) 1jBj ZB jf(x)� fB j dx = kfkL� < +1:Clearly for �(t) = t��n (� > n) this gives back the Campanato spacesL 1;�(Rn). Also, considering f 2 L�, B% � Br, we have1jB%j ZB% jf(x)� fB% j dx � kfkL� � �(cn%) � kfkL� � �(cnr) :This shows that L� � VMO if �(r) vanishes as r approaches zero and thatas VMO modulus for f 2 L� we can take�(r) = kfkL� � �(cnr) :Spanne proved (see [52] p. 601) that, if �(t) is Dini continuous i.e.,9� > 0 : Z �0 �(t)t dt < +1 ;then L� � C0. This is \almost" sharp as can be seen by Corollary 2 in [52].Another slightly di�erent de�nition of VMO (called there c.m.o.) wasgiven by U. Neri (see [46], [47]) where some interesting examples can befound. Let us also mention the paper [36], mainly concerning the problem ofthe characterization of pointwise multipliers for BMO, where others remarksabout VMO and c.m.o. can be found (pp. 195-196).After this introduction of the spaces we now quote two results on whichit rests the real analysis tools we shall develop later. The �rst is part of theSarason's characterization of VMO.Theorem 3.7 ([49]). For f 2 BMO the following conditions are equivalenti) f is in VMO;ii) f is in the BMO closure of BUC;iii) limh!0 kf(� � h)� f(�)k� = 0.We wish to observe explicitely that iii) implies the good behaviour (inthe sense of the BMO convergence) of the molli�ers of VMO functions (see[19], p. 843).To state the most important result for the following development we needto give one more de�nition.



Lp-REGULARITY FOR SYSTEMS OF PDE'S 15De�nition 3.8. Let k : Rn n f0g ! R. We say that k is a Calder�on-Zygmund kernel (CZ) if:i) k 2 C1(Rn n f0g);ii) k(x) is homogeneous of degree �n;iii) R� k(x) d�x = 0 where � � fx : jxj = 1g.It is well known that to a CZ kernel it is possible to associate a boundedoperator in Lp. Precisely:Theorem 3.9 ([9]). Let k(x) be a CZ kernel and " a positive number. Forf 2 Lp(Rn), p 2 (1;+1), setK"f(x) = Zjx�yj>" k(x� y)f(y) dy:Then, for any f 2 Lp(Rn), there exists Kf 2 Lp(Rn) such thatlim"!0 kK"f �Kfkp = 0:Also there exists c = c(n; p) such thatkKfkp � c�Z� k2d��1=2 kfkp ; 8f 2 Lp(Rn):We shall call K a Calder�on-Zygmund singular integral operator and weshall use the notationKf(x) = P:V:k � f(x) = P:V: ZRn k(x� y)f(y) dy:We are now in a position to state the second result (and most importantfor our future development) we need to recall.De�nition 3.10 (Coifman, Rochberg and Weiss [22]). Let ' 2 BMO,k be a CZ kernel and K the associated singular integral operator. Wede�ne the commutator Tf = C[';K] f as the principal value'P:V:k � f � P:V:k � ('f):Then we have



16 F. CHIARENZATheorem 3.11 (Coifman, Rochberg and Weiss [22]). Let '; k be as above.Then C[';K] f is well de�ned for f 2 Lp(Rn) p 2 (1;+1). MoreoverC[';K] f is a bounded operator in Lp(Rn), i.e. there exists a constantc = c(n; p; kkkL2(�)) such thatkC[';K] fkp � c k'k�kfkp :For the sake of completeness let us quote one more theorem from theliterature which is an important complement to Theorem 3.11.Theorem 3.12 (Uchiyama [55]). The commutator in De�nition 3.10 isa compact operator from Lp(Rn) in itself if and only if ' is in the BMOclosure of C10 (Rn).Finally concerning the relevance of Theorem 3.11 we wish to mention therecent and deep paper [23].A note of warning: the commutator in De�nition 3.10 above is verydi�erent from the famous A. Calder�on commutator. Theorems 3.9 and 3.11are what is needed to study the slightly more involved operators whichappears in our representation formulas for solutions. We have the followingtheorem which is crucial in the proof of the interior estimates.Theorem 3.13 ([18]). Let k : Rn � (Rn n f0g)! R be such that:i) k(x; �) is a Calder�on-Zygmund kernel for a.a. x 2 Rn;ii) maxjjj�2n 



 @j@yj k(x; y)



L1(Rn��) �M < +1.If f 2 Lp(Rn), 1 < p < +1, ' 2 L1(Rn), setK"f(x) = Zjx�yj>" k(x; x� y)f(y) dyandC[';K"] f = 'K"f �K"('f) = Zjx�yj>" k(x; x� y)['(x)� '(y)]f(y) dy :Then, for any f 2 Lp(Rn) there exist Kf , C[';K] f 2 Lp(Rn) such thatlim"!0 kK"f �Kfkp = 0 ; lim"!0 kC[';K"] f � C [';K] fkp = 0 :



Lp-REGULARITY FOR SYSTEMS OF PDE'S 17Moreover there exists a constant c � c(n; p;M) such thatkKfkp � c kfkp and kC [';K] fkp � c k'k�kfkp :The proof of the previous theorem seems to be at this time classical usingtechniques which go back to the work of A. Calder�on and A. Zygmund inthe late 50's. We essentially took it from [6]. The interested reader can alsosee [10], [11], [45]. An outstanding reference for the further development ofthis topic is Stein [54].From the commutator bound given in Theorem 3.13 one easily deducesthe following localized estimate.Corollary 3.14 ([18]). Let k be as in Theorem 3.13 and ' 2 VMO \L1(Rn) and denote by � the VMO modulus of '. Then for any " > 0 thereexists %0 = %0("; �) such that for r 2 (0; %0) we havekC[';K] fkLp(Br) � c "kfkLp(Br) 8f 2 Lp(Br) :Proof. We start approximating ' with a BUC ~' such that k'� ~'k� < "=2.Then we �x %0 so small that the modulus of continuity of ~', ! ~'(r), is lessthan "=2 when evaluated at %0. Finally we extend the restriction of ~' toBr (r < r0) to all Rn preserving the modulus of continuity in Br.Using Theorem 3.13 one can deal with the interior estimates as we havealready shown when considering the simple case above and as we will seebelow when considering elliptic systems. The reason for this is that whendeducing a representation formula for the maximum order derivatives wealways �nd a CZ variable kernel operator and commutator like in Theorem3.13.The study of the boundary estimates is di�erent and it leads to the ap-pearing of singular integral operators and commutators which are singularin a less severe way than those in Theorem 3.13 and can be sometimestreated much more simply. The kind of singularity appearing is much asin the Hardy operator (see [34] p. 226 and �.). We shall study now in de-tail both the operators (singular integral and commutator) in the followingtheorems.Let T (x) be the map introduced during the construction of the boundaryrepresentation formula in Section 2. We �rst observe the following simpleinequality.



18 F. CHIARENZALemma 3.15 ([19], [4]). Let Rn+ = �x = (x0; xn) 2 Rn : x0 2 Rn�1 ;xn > 0	, ~x = (x0;�xn). Then there exist positive constants c1; c2 suchthat, for any y 2 Rn+ and all x 2 Rn+ for which T (x) is de�ned, we havec1 j~x� yj � jT (x)� yj � c2 j~x� yj :This lemma clearly reduces the study of operator eKf in (2.12) to that ofanother operator of the same kind with T (x) replaced by ~x which we stillcall eKf . We haveTheorem 3.16 ([19]). Let Rn+ = �x = (x0; xn) 2 Rn : x0 2 Rn�1 ;xn > 0	, ~x = (x0;�xn). SeteKf(x) = ZRn+ f(y)j~x� yjn dy :Then there exists a constant c = c(n; p) such thatk eKfkLp(Rn+) � c kfkLp(Rn+) :Proof. For x 2 Rn+ letI(xn) = ZRn�1  ZRn+ jf(y)j(jx0 � y0j2 + (xn + yn)2)n=2 dy!p dx0= ZRn�1 �Z +10 ZRn�1 jf(y)j(jx0 � y0j2 + (xn + yn)2)n=2 dy0dyn�p dx0:Using the Minkowski integral inequality we haveI(xn)� "Z +10 �ZRn�1�ZRn�1 jf(y)j(jx0 � y0j2 + (xn + yn)2)n=2 dy0�pdx0�1=pdyn#p :The inner integral is a convolution in the 0 variables. Then using the Younginequality for convolutions we obtain



Lp-REGULARITY FOR SYSTEMS OF PDE'S 19I(xn)� "Z +10 �ZRn�1 jf(y)jp dy0�1=p�ZRn�1 dy0(jy0j2 + (xn + yn)2)n=2� dyn#p :Now ZRn�1 dy0(jy0j2 + (xn + yn)2)n=2= 1xn + yn ZRn�1 dy0(xn + yn)n�1 � jy0j2(xn+yn)2 + 1�n=2or, setting t0 = y0xn + yn ,ZRn�1 dy0(jy0j2 + (xn + yn)2)n=2 = 1xn + yn ZRn�1 dt0(jt0j2 + 1)n=2 :Substituting in the majorization we found above we getI(xn) � �ZRn�1 dt0(jt0j2 + 1)n=2�p�Z +10 kf(�; yn)kLp(Rn�1)xn + yn dyn�p :Now we integrate I(xn) over (0;+1) obtainingk eKfkpp � c(n; p) Z +10 �Z +10 kf(�; �xn)kLp(Rn�1)1 + � d��p dxnand, by Minkowski againk eKfkpp � c(n; p)0@Z +10  Z +10 kf(�; �xn)kpLp(Rn�1)(1 + �)p dxn!1=p d�1Ap= c(n; p)�Z +10 1(1 + �)�1=p d��p kfkpp :Our �nal theorems concern the boundary commutator eC [a;K] de�nedin (2.13). Its study seems at this moment more delicate and it is worth tobe done in some detail. In the paper [19] the study of eC is done in a dif-ferent (and simpler) way from what we shall see below. Unfortunately the



20 F. CHIARENZAapproach of [19] is wrong as it was kindly pointed to us by M. Bramantiand M.C. Cerutti. The proof given below is essentially the same as in [4].We collect here the de�nition and some properties of spherical harmonicswhich are needed for the proof of the following theorem (as well as in theproof of Theorem 3.13). Indeed in all these theorems the idea is to reducethe \variable kernel" case to the \constant kernel" case. This is done byexpanding the kernel in a series of spherical harmonics each term then de�n-ing a constant kernel operator that one knows how to treat. Then, havingthe proper control on the decay of each term, one can see that the seriesof operators absolutely converges in Lp. The technique seems to have beenemployed for the �rst time by Calder�on and Zygmund in [10].De�nition 3.17. A homogeneous polynomial p(x) of degree m, whichsolves the equation �u = 0, will be called a solid spherical harmonic ofdegree m. Its restriction to the unit sphere � will be called a sphericalharmonic of degree m.Then we haveLemma 3.18 ([10], [11], [45]). The space of n-dimensional spherical har-monics of degree m has dimensiongm = �m+ n+ 1n� 1 ���m+ n+ 3n� 1 � � c(n)mn�2 :If Ym(x) is any n-dimensional spherical harmonic of degree m, then���� @�@x�Ym(x)���� � cmj�j+(n�2)=2 for x 2 � :Let fYkm(x)g k=1;:::;gmm=0;1;::: be a complete (in L2(�)) orthonormal system ofspherical harmonics.Let k : Rn � (Rn n f0g)! R be such thati) k(x; �) is a CZ kernel for a.a. x 2 Rn;ii) maxjjj�2n 



 @j@yj k(x; y)



L1(Rn��) �M < +1.Setting, for m 2 N and k = 1; : : : ; gm,akm(x) = Z� k(x; z)Ykm(z) d�z



Lp-REGULARITY FOR SYSTEMS OF PDE'S 21by the completeness of fYkm(x)g in L2(�) we havek(x; z) = +1Xm=1 gmXk=1 akm(x)Ykm(z); x 2 Rn; z 2 �and kakmk1 � c(n)Mm�2n:We need one more result concerning the \constant kernel" boundarycommutator before we prove the main theorem.Theorem 3.19. Let k(x) be a CZ kernel. Let T (x) have the same meaningas in Lemma 3.15, and suppose ' 2 L1(Rn). TheneC[';K] f(x) = ZRn+ k(T (x)� y) ('(x)� '(y)) f(y) dyis bounded in Lp(Rn+) (1 < p <1) and we havek eC [';K] fkLp(Rn+) � c k'k� kfkLp(Rn+) :Proof. Because of lack of regularity of the function T (x) our operator is nolonger the commutator of ' with a CZ kernel. Hence we cannot apply theCoifman, Rochberg and Weiss Theorem 3.11 but have to give a new proofof the boundedness. The proof which we give below (which is taken from[37] where it is quoted by Janson as J.O. Str�omberg's) cannot be applieddirectly to our operator again for lack of regularity in the x variable. Thisobstacle is easily removed taking into consideration the adjoint operatorwhich we study below (we are indebted for this suggestion to E. Fabes).Let eC�f(x) = ZRn+ k(x� T (y)) ('(x)� '(y)) f(y) dy :To show that eC�f satis�es a bound of the same kind of the one we want foreC[';K] f we estimate its sharp function. Precisely, keeping in mind wherewe are working, we de�ne, for f 2 Lp(Rn+),f#+ (x) = supQ3x 1jQj ZQ jf(y)� fQj dy ;



22 F. CHIARENZAwhere Q is a cube contained in Rn+ andM+f(x) = supQ3x 1jQj ZQ jf(y)j dy :It is easily seen that these operators satisfykM+fkLp(Rn+) � c kfkLp(Rn+) ; kfkLp(Rn+) � c kf#+ kLp(Rn+):Then we have, for any Q as above,eC�f(x) = ZRn+ k(x� T (y)) ('(x)� 'Q) f(y) dy+ ZRn+ k(x� T (y)) ('Q � '(y)) f(y) dy= ZRn+ k(x� T (y)) ('(x)� 'Q) f(y) dy+ Z2Q k(x� T (y)) ('Q � '(y)) f(y) dy+ ZRn+n2Q k(x� T (y)) ('Q � '(y)) f(y) dy� I + J + L :I and J are easily estimated as in [19] p. 845.We have indeed1jQj ZQ jI(y)j dy � c k'k� �M+j eK�f jr(x)�1=r ; 1 < r < pwhere eK�f is the adjoint operator of eK in Theorem 3.16 which clearlymajorizes the adjoint of our operator because of Lemma 3.15. Also1jQj ZQ jJ(y)j dy � c k'k� (M+jf jr(x))1=r ; 1 < r < p :We come to L. We call xQ the center of the cube Q and observe that��k(x� T (y))� k(xQ � T (y))�� � c jx� xQjjxQ � ~yjn+1 for x 2 Q; y =2 2Q :



Lp-REGULARITY FOR SYSTEMS OF PDE'S 23This because of the regularity the adjoint kernel has in the x variable andagain Lemma 3.15. Then we havejL(x)� L(xQ)j � c ZRn+ jx� xQjjxQ � ~yjn+1 jf(y)jj'(y)� 'Qj dy :Calculations identical to those in [19] p. 846 then imply1jQj ZQ jL(y)� LQj dy � c k'k� (M+jf jr(x))1=r ; 1 < r < p :This gives the conclusion because what we obtained is the pointwise estimatej eC�f(x)j]+ � c k'k� ��M+j eK�f jr(x)�1=r + (M+jf jr(x))1=r� ;which raised to the p-th power owing to the boundedness properties of therelevant operators in the right hand side gives the conclusion.Coming back to the variable kernel boundary commutator we haveTheorem 3.20. Let k : Rn� (Rn nf0g)! R satisfy the assumption i) andii) of Theorem 3.13 and let ' 2 L1(Rn). De�neeC[';K] f(x) = ZRn+ k(x; T (x)� y) ('(x)� '(y)) f(y) dyfor f 2 Lp(Rn+), 1 < p <1.Then, we have the boundk eC [';K] fkLp(Rn+) � c k'k� kfkLp(Rn+) :Proof. Using Lemma 3.18 we can expand the variable kernel k(x; T (x)� y)as +1Xm=1 gmXk=1 akm(x) Ykm(T (x)� y)jT (x)� yjn :Then we are led to study the series+1Xm=1 gmXk=1 kakmkL1(Rn+) k eC[';Kkm] fkLp(Rn+)



24 F. CHIARENZAwhere eC [';Kkm] f = ZRn+ Ykm(T (x)� y)jT (x)� yjn ('(x)� '(y)) f(y) dy :Because of Theorem 3.19 and Lemma 3.18 we see that the last series canbe estimated byc +1Xm=1 gmXk=1m�2n �m(n�2)=2 k'k�kfkLp(Rn+)� c +1Xm=1m�2n �m(n�2)=2 �mn�2 k'k�kfkLp(Rn+)which gives the desired estimate.4. Elliptic Systems and Related ResultsIn this last section we brie
y review all the results obtained up to nowusing the technique we outlined in Section 2. First of all we mention thealready quoted papers [18], [19] by the author, M. Frasca and P. Longowith a proof of the existence and uniqueness of a strong solution to theDirichlet problem for an elliptic nondivergence form second order equationwith coe�cients in VMO.The technique of the proof is mainly along the lines we hinted at in thedivergence form case with the extra problems arising because of lack ofa priori estimates except for the Alexandrov-Pucci L1 bound. A general-ization of this result has been given by C. Vitanza who considered the sameequation with lower order terms under various sets of assumptions on theselower order coe�cients ([56], [57]).Also the same equation as in [18], [19] have been studied in the Mor-rey spaces by Di Fazio and Ragusa [26]. Precisely those authors show thatinterior estimates hold true in Morrey spaces by means of the same repre-sentation formula of [18]. This is enough because they were able to extendTheorem 3.13 to the framework of the Morrey spaces. This extension, whichis of some interest in itself, is achieved using some Lp weighted estimates(with Ap weights).The parabolic case of the same non divergence equation, obtaining similarestimates and results for the Cauchy-Dirichlet problem, has been consideredby M. Bramanti and C. Cerutti in the interesting work ([4]) which has been



Lp-REGULARITY FOR SYSTEMS OF PDE'S 25already mentioned.The idea of the proof is essentially the same. They �ndexplicit interior and boundary representation formulas for the solution interms of parabolic singular integrals and commutators. Then they studythese operators with techniques which are now very much close to the ellipticones. This because everything is seen in the framework of the homogeneousspaces. Fabes and Rivi�ere (see [28], [29]) and some other authors whowere able in the middle sixties to extend to the parabolic case the work ofCalder�on and Zygmund, had a much harder life.Elliptic systems of arbitrary order in non divergence form have beenstudied in the paper [20] proving local Lp estimates for the highest orderderivatives of solutions. We want to give a brief outline of paper [20] toshow the great closeness of the basic treatment with the simple case wediscussed in Section 2.Consider the di�erential operators in 
 � Rn(4:1) mij(x;D) = Xj�j=2r a(�)ij (x)D� ; i; j = 1; : : : ; N :Given fi 2 Lqloc(
), 1 < q < +1, i = 1; : : : ; N , consider the system(4:2) NXj=1mij(x;D)uj(x) = fi(x) ; i = 1; : : : ; N :Assume(4:3) a(�)ij 2 VMO \ L1(Rn) ; i; j = 1; : : : ; N; j�j = 2rand suppose system (4.2) to be elliptic in the following sense(4:4) 9� > 0 : L(x; �) � det (mij(x; �)) � � j�j2rN ;a.e. in 
, for any � 2 Rn. We will now show how to obtain local interiorrepresentation formulas for strong solutions of system (4.2).Fix any ball B � 
 and call eB the subset of B where all the a(�)ij arede�ned and (4.4) holds. Also �x (for a moment) any x0 2 eB. Consider theconstant coe�cient operator(4:5) L(x0) � det (mij(x0; D))obtained from L(x; �) letting x = x0 and substituting � with the corre-spondent derivative. L(x0) is clearly a linear elliptic di�erential operator oforder 2rN .



26 F. CHIARENZALet �(x0; t) be F. John's fundamental solution of (4.5). Suppose n to beodd, an assumption that one can always make (see [27]). It can be shown(see John [38]) that �(x0; t) = jtj2rN�n �x0; tjtj� ;where  (x0; �) is an analytic function.This implies that jD��(x0; t)j � c jtj2rN�n�j�j:Also it is possible to prove that D��(x0; t) for j�j = 2rN is a homogeneousfunction of degree �n with zero mean value on the sphere jtj = 1.For this fundamental solution and for any v 2 C10 (B)(4:6) v(x) = Z
 �(x0; x� y)L(x0) v(y) dy :Let �mij(x0; �)� be the cofactor of the element mij(x0; �) in the matrix�mij(x0; �)�i;j . The correspondent di�erential operators mij(x0; D) has or-der 2r(N � 1), unless mij(x0; D) � 0.Assume u = (u1; : : : ; uN) to be a C10 (B) vector function. Then we canwrite L(x0)ui = L(x0)0@ NXj=1 �ijuj1A = NXj=1 �ijL(x0)uj= NXj=1 NXk=1mki(x0; D)mkj(x0;D)!uj ;where �ij = 0 for i 6= j and �ii = 1, i; j = 1; : : : ; N . The above simpletrick, of introducing the operator L = detmij and then coming back fromthe scalar equation Lu = 0 to the system as seen in the previous lines, isdue to Bureau [5].Then, recalling (4.6), we obtainui(x) = ZB �(x0; x� y) NXj=1 NXk=1mki(x0; D)mkj(x0; D)! uj(y) dy= NXk=1ZB �(x0; x� y)mki(x0; D) NXj=1mkj(x0;D) uj(y) dy :



Lp-REGULARITY FOR SYSTEMS OF PDE'S 27From this (integrating by parts) we understand that ui is a linear combina-tion of integrals of the formZB D��(x0; x� y) NXj=1mkj(x0; D)uj(y) dy ;where j�j = 2r(N � 1), which may be rewritten asZB D��(x0; x� y) � NXj=1 (mkj(x0; D)�mkj(y;D)) uj(y)+ NXj=1mkj(y;D)uj(y)� dy= ZB D��(x0; x� y) NXj=1 Xj�j=2r ha(�)kj (x0)� a(�)kj (y)i D�uj(y) dy+ ZB D��(x0; x� y) NXj=1mkj(y;D)uj(y) dy :Hence, with the usual care in di�erentiation, one can see that D�ui, forj�j = 2r, can be expressed as a linear combination of terms likeP:V: ZB D�+��(x0; x� y) NXj=1 Xj�j=2r ha(�)kj (x0)� a(�)kj (y)i D�uj(y) dy+P:V: ZB D�+��(x0; x� y) NXj=1mkj(y;D) uj(y) dy+c�+�(x0)�� NXj=1 Xj�j=2r�a(�)kj (x0)� a(�)kj (x)� D�uj(x)�+ NXj=1mkj(x;D)uj(x)� ;with j�j = 2r(N � 1), j�j = 2r, x 2 B, x0 2 eB, where c�+�(x0) is boundeduniformly in B.As in Section 2, setting x = x0, we obtain the representation formula forD�ui(x), j�j = 2r as a linear combination of terms of the formP:V: ZB D�+��(x; x� y) NXj=1 Xj�j=2r ha(�)kj (x)� a(�)kj (y)i D�uj(y) dy ;



28 F. CHIARENZAP:V: ZB D�+��(x; x� y) NXj=1mkj(y;D)uj(y) dy ; NXj=1mkj(x;D)uj(x) :This formula then allows us to establish by a simple contraction argumentthe following interior regularity result.Theorem 4.1. Assume (4:3) and (4:4). Let 1 < q � p < +1 and letu 2 W 2r;qloc (
) be a solution of (4:2) with fi 2 Lploc, i = 1; : : : ; N . Thenu 2W 2r;ploc (
).Also, given 
0 �� 
00 �� 
, there is a constant c not depending on uiand fi, 1 = 1; : : : ; N such thatNXj=1j�j=2r kD�ujkLp(
0) � c 0@ NXj=1�kujkLp(
00) + kfjkLp(
00)�1A :Similar techniques certainly work in the case of elliptic divergence formsystems. Di Fazio announced to have in preparation a paper ([25]) witha result like the above for divergence form systems (obtained using theGreen function estimates given by Solonnikov in [51]).Finally the linear estimates obtained in [18], [19] can be applied in thestudy of quasilinear equations. Recently D. Palagachev (So�a University)announced to me the following result contained in the paper [48].Consider the Dirichlet problem(4:7) � aij(x; u)Diju+ b(x; u;ru) = 0 a.e. in 
u = ' on @
; ' 2W 2;n(
)under the following assumptions.Let 
 � Rn (n � 2), @
 2 C1; 1. Suppose the functions aij(x; z) andb(x; z; p) to be Carath�eodory's functions, i.e. they are measurable in x forall z 2 R, p 2 Rn, and continuous with respect to the other variables foralmost all x 2 
.aij(x; z)�i�j � �(jzj)j�j2; 8� 2 Rn; a.e. in 
; aij = aji ;with �(t) positive and decreasing,��aij(x; z)� aij(x; z0)�� � a(x)�M (jz � z0j); a.e. in 
; 8z; z0 2 [�M; M ]



Lp-REGULARITY FOR SYSTEMS OF PDE'S 29where a(x) 2 L1(
), �M (t) is an increasing function vanishing as t ap-proaches zero and aij(x; 0) 2 L1(
). Also assume aij(x; z) are VMO in x,locally uniformly in z, i.e.sup��r 1jB�j ZB� �����aij(x; z)� 1jB�j ZB� aij(y; z) dy����� dx = �M (r) 8z 2 [�M; M ]and limr!0 �M (r) = 0.Concerning the function b(x; z; p) one assumesjb(x; z; p)j � �(jzj)�b1(x) + jpj2�; a.a. x 2 
; 8(z; p) 2 R � Rn ;with �(t) positive and increasing and b1(x) 2 Ln(
); furthermoresign z � b(x; z; p)�(jzj) � �1(x) jpj+ �2(x); a.a. x 2 
; 8(z; p) 2 R � Rn ;�1; �2 2 Ln(
), �1; �2 � 0.Then one hasTheorem 4.2. Suppose that all the above conditions are ful�lled. Ifu 2W 2;n(
) and u� ' 2W 1;n0 (
) is a strong solution of (4:7), thenkukW 2;n(
) � Cwhere the constant C is independent of u.Corollary 4.3 (existence). Under assumptions of Theorem 4.2 there ex-ists a strong solution u, (u 2 W 2;n(
), u � ' 2 W 1;n0 (
)) of the problem(4:7). References[1] P. Acquistapace, On BMO regularity for linear elliptic system, Ann. Mat. PuraAppl. 161 (1992), 231{269.[2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutionsof elliptic partial di�erential equations satisfying general boundary conditions I,Comm. Pure Appl. Math. 12 (1959), 623{727.[3] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutionsof elliptic partial di�erential equations satisfying general boundary conditions II,Comm. Pure Appl. Math. 17 (1964), 35{72.
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