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LY-REGULARITY FOR SYSTEMS OF PDE’S,
WITH COEFFICIENTS IN VMO

FiLipPO CHIARENZA

1. INTRODUCTION

The purpose of these lectures is to review some recent work on the L7
regularity of the maximum order derivatives of the solutions to a certain
class of linear elliptic systems both in divergence and non divergence form
with discontinuous coefficients.

First we point out that the L? regularity we discuss here is not of the
kind of Meyers’ result (i.e. valid only for p close to 2, see [41], and [31]).
On the contrary our results hold for any value of p in the range (1, +00).
Obviously, such a result requires additional “smoothness” of the coefficients,
see [41] again. Here we shall see that the relevant assumption is that the
coefficients belong to what is generally known as the space VMO. Recall
that VMO consists of BMO functions whose integral oscillation over balls
shrinking to a point converge uniformly to zero, see Section 3 for precise
definitions and references.

LP? estimates of the kind we will discuss are well known in the case of
continuous coefficients. In order to introduce the topic we will pause in
the next section to discuss the classical methods for obtaining L? estimates
when the coefficients are continuous. This will show what are the natural
limits of those methods. Also it will be clear on what slight modification
of some of those methods our work is based. We will only sketch the idea
in the simple but rather representative case of one elliptic equation of the
second order in divergence form. To begin with we assume the coefficients
to be continuous and later we move to the VMO case.

In Section 3 we will give the precise definitions and the statements, with
some detailed proof, of the real analysis tools we need in order to deduce
the LP regularity result.

Later we will discuss the LP regularity for elliptic systems in non diver-
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gence form also touching the parabolic case. Finally we will mention some
work still in progress.

We wish to conclude this introduction thanking the organizers for the
kind invitation to take part in this meeting. Also we want to take this op-
portunity to thank many friends who gave various (both in size and nature)
contributions to the research reviewed here. Especially we like to mention
Carlos Kenig for pointing out to us the existence of the BMO commutator
theorem at the very early stage of our research making it possible all the
subsequent work. Also we are indebted to Eugene Fabes whose suggestions
and incouragement have been, as usual, extremely valuable. We want to ex-
press our friendship and gratitude to Michele Frasca and Giuseppe Di Fazio
who helped in the preparation of this note. Finally we thank Mario Marino
and Tadeusz Iwaniec for pointing out many inaccuracies present in the first
version of this paper.

2. A SIMPLE CASE

In this section we will analyze the simple case of one elliptic second order
equation in divergence form. To be more specific let us consider in 2,
a bounded open subset of R” (n > 3), the equation

(2.1) Lu=— (aijuzi)mj = —(fl)z‘ = —divf

where we assume

E|I/>Oll/_1|£|2 Saijfifj Sl/|€|2 VgERn, ae. €
(22) Ai5 = Qg4 i,j:l,...,n
Idpe(l,+x) : f=(f1,...,[fn) € LP.

We also add, in this first part of the section, the following smoothness
assumption

(2.3) ai; €C°(Q) Vi, j=1,...,n.

Suppose we wish to study the well posedness of the Dirichlet problem
for equation (2.1) in Wy*(€). For what is known to the author this kind
of result is obtained establishing first the same result for constant coeffi-
cients operators and then extending it to the variable coefficients case via
a perturbation argument (freezing, Korn’s trick) which can be summarized
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as follows. Assume that u(z) is a solution of equation (2.1) supported in
a small ball B = B(xq,r) CC Q. We then transform equation (2.1) as follows

— (aij(wo)u,),, = —[(aij(w0) — aij(¥)) ua],, = (£i)g, -
If we suppose at this level to be able to estimate the LP norm of the gradient

of solutions to the constant coefficients equation in terms of the L? norm of
the right hand side we are done because we can write

[l < | D2 [[(a(xo) — aij(@)) ue,

4 gl
ij=1
(2.4) -
<c _Zl max|a;;(zo) — aij(2)] [Vl ||+ lEl,
,]=
Now if max laij(zo) — aij(z)], 4,j = 1,...,n, is small enough we can move

the first term in the right hand side to the left obtaining (under all the
supplementary assumptions we did!) the following a priori estimate:

119al]], < clifll, -

As it is well known this is the basic step in obtaining the L? estimates
for solutions of the Dirichlet problem in all 2. Some more, very well known,
technicalities will clearly be needed (localization, flattening of the boundary,
etc.). We do not dwell here on these details. What we want to stress now
is the very elementary heart of this procedure.

Once we know that

i) max |ai;(x0) — aij(z)] is small

(e.g. in the continuous coefficients case if the radius r of the ball B is small)
we are done if we also know

ii) the result for the constant coefficients case.

Before spending some more lines in a brief outline of the ways for obtain-
ing ii) we express the hope that by now it will be even too much obvious to
the reader why we call this procedure a pointwise perturbation about the
constant coefficient case.

Also we wish to call the attention of the reader on requirement i).
It is clear that if we want the oscillation in condition i) arbitrarily small
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this is equivalent to require the continuity of the coefficients. This is what
happens if we want the L? estimates with this method for all p’s in (1, +00)
because the blowing up of the constant ¢ in (2.4) when p diverges or ap-
proaches 1. We could ask for the L? result only for some p’s and this is
exactly what one obtains with Korn’s trick under assumptions of the type
of Cordes (see e.g. [14]).

To prove ii), which is in any case a difficult step, there are essentially
two methods at author’s knowledge. The first, at least chronologically, is
associated to the names of A. Calderén and A. Zygmund. This method uses
explicit representation formulas for the derivatives of the solutions by means
of singular integrals applied to the known term f. While these formulas
were well known and had been used by many authors (let us quote at least
G. Giraud and C. Miranda) to study the regularity problem in the Holder
spaces it was the achievement of A. Calderén and A. Zygmund [9] as well
as one of the main motivations in developing their theory (see e.g. [8]) to
establish the boundedness in L? of the relevant singular integrals.

The other method we wish to mention here is related to the work of
C.B. Morrey and to the research of S. Campanato.

This method has been applied by a number of authors to a great variety
of problems in PDE’s. Excellent and comprehensive accounts of the method
and its applications are given in Campanato [15], Giaquinta [31]. The basic
tools in this method are the fact that solutions to constant coefficients equa-
tions are endowed with derivatives of any order (which can be estimated by
the difference quotients method) and the exploitation in a very precise way
of local energy estimates (Caccioppoli estimates). By these means growth
estimates in various norms over balls for the derivatives of solutions are
obtained.

In particular what is crucial here (see [17] for the case of Holder continu-
ous coefficients and, for the case of continuous coefficients, [16]) is to show
the belonging of the highest order derivatives to the Z® Campanato space
(which is BMO) whenever the known term is in the same space. The final
result is obtained interpolating between some known LP result (for equation
(2.1) L? which is obtained for free in the divergence case) and the £ re-
sult, by means of a well known theorem of Stampacchia ([53], [53']; see also
Campanato [16], Fefferman and Stein [30]).

Indeed the original technique in [17] was not to derive the LP estimates
for the constant coefficients equation and then, by freezing, deducing them
for the variable coefficients case. On the contrary the authors, exploited the
L1 estimate obtained by Campanato in [13] where it is deduced in the
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case of Holder continuous coefficients by means of some simple but delicate
perturbation argument. We mention this because the Z>" estimate is false
for general continuous coefficients and especially because this approach was
used in a very interesting recent paper by Acquistapace [1] in which for
a second order linear elliptic divergence form system the LP estimates are
obtained using an approximation of the coefficients with Holder continuous
coefficients. A careful analysis of the dependence of the constant in Cam-
panato’s method allows the author to obtain the result for a class of systems
with discontinuous coefficients.

Precisely the coefficients belong to .%; with ¢(r) = 1/|logr|. (See the
next section for a definition of £ and some comments).

%, is contained in VMO properly and Acquistapace shows that the £
estimate doesn’t hold if one takes as coefficients functions in VMO which
are not in % with the above mentioned ¢ (see [1], sect. 5).

Before giving the essential of the procedure to deal with general VMO
coefficients it is better to recall that applications of the Calderén-Zygmund
and Korn method to second order elliptic equations with continuous coef-
ficients can be found in [40], [33] for non divergence form equations (see
also [32], [21]) and an extremely farreaching extension has been given in
the papers [2], [3], [27] where are considered non divergence form systems
of a very general kind (see also [44]).

For the divergence form it is difficult to give very precise references. Let
us quote at least the books [44] and [50] where higher order divergence form
equations are studied.

Let us now outline the method of proving the L? result for equation
(2.1) with VMO coefficients. Our starting point, as in what we called the
Calderén-Zygmund procedure, is to establish representation formulas for
the solution directly for the case of variable coefficients. This is done by
means of a parametrix leading to the expression of the derivatives of the
solution in terms of a singular integral acting on the known term f plus
an error term expressed by another singular integral acting on the very
same derivatives one wants to estimate. Luckily these derivatives appear
in a singular commutator whose norm can be made small if the coefficients
have a small integral oscillation (i.e. if they belong to VMO).

Then we can consider the essence of “our” method as an integral pertur-
bation about the constant coefficient case. We stress that the technique we
used is not “ours”! It goes back at least to Eugenio Elia Levi and has been
extensively used by the authors working with spaces of Hélder continuous
functions (see Miranda [43] once more). This is an interesting point because
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we feel that in order to obtain the LP estimates the only tool the “classi-
cal” authors needed (not considering their possible lack of interest in LP)
was some piece of real analysis machinery that was developed and became
familiar in the middle 70’s (of this century!).

We will now give an outline of the proof of the L? result for the simple
equation (2.1). The following is taken from Di Fazio [24] which in turn
depends much on the papers [18], [19] by M. Frasca, P. Longo and the
author.

We want to prove the following theorem

Theorem 2.1 ([24]). Suppose condition (2.2) holds and 9 is smooth (say
C1). If, moreover, a;; € VMO fori,j = 1,...,n then the Dirichlet problem

Lu=divf, ueW, ")
has a unique solution. In addition, we have

” [Vl “L”(Q) < clifllprie) -

We notice first that such an estimate can be proved with a constant c
independent of the smoothness of the coefficients, assuming the coefficients
and the solution to be smooth. This is possible because our coefficients are
in VMO (see Theorem 3.7 and the following remarks). Also it is clearly
enough to consider p > 2 (duality). Localization and flattening then reduce
the result to proving the following two theorems.

Theorem 2.2 (interior estimate). Assume that (2.2) holds and a;; are
smooth fori,j = 1,...,n. Then there exists o > 0 such that for every ball
B, CC Q with radius o and every smooth solution of

Lu= fy—div f
with fo, f and uw compactly supported in B,, we have the estimate
11921 |05, < ¢ (Il 5, + I folloe i)

with p, =np/(n +p) .
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Theorem 2.3 (boundary estimate). Assume that (2.2) holds and a;;
are smooth for i,57 = 1,...,n. Given a ball B, with center at the origin
we call Bf = {x € B, : x, > 0}. Then there exists ¢ > 0 such that, for
every smooth solution of (2.1) in B} which vanishes on {x, = 0} N B, and
is compactly supported in B,, we have

| Vul ||Lp(B;r) < clifllpr sty -

Proof of Theorem 2.2. We start proving the representation formula we men-
tioned above for u € C§°(B,). Fix any point zg in B, (¢ > 0 to be fixed
later). We have

= (aij(20)ua, (2)),, = = ((ai;(x0) — aij(2)) ua, () + f5(2)),, + fo(2)
_ ()\fo(x))zj + fo(x).

If we consider the “fundamental solution” I' for the constant coefficients
operator

— (ai;(wo)us, (x)),,

we obtain the representation

(2.5)  wu(z) = —/B

To be more explicit we set

T (0, — ) X2 (y) dy — /B D(zo,2 — y)fo(y) dy -

o

1 n (2—n)/2
Ho. ) = (n — 2)w,, (det az‘j(xo))l/2 <Z Aij(xO)titj)

3,5=1
for a.e. o in Q, t € R", t # 0, where A;;(x) is the cofactor of a;;(xo) in

the matrix (a;;(2o)), ; and w, is the surface area of the unit ball. Then we
denote by

and
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(compare e.g. [43] or [35]). Differentiating (2.5), which is a delicate though
standard business because of the bad singularity appearing in I';;, one has

g, (1) = —P.V. /B D (@0 — ) {lan; (o) — any (0)] uen (4) — £50)} dy

(2.6)
- /B Li(wo, — ) foly) dy + ci(20) X2 ()

o

where P.V. in front of the first integral means that the integral is taken as
a principal value integral, and

Cij(ZL‘o) = / Fi(l‘o, t)tj do.
[¢|=1
We now take in (2.6) x = g obtaining

U, (z) = —P~V~/ Uij(z,x — y) {lan; () — an;(y)] ue, (y) = fi(y)} dy

Bo

- /B Tie,e — 9)foly)dy +cy@)f;(@) Ve € By.

Once we have an explicit representation formula for u,, in order to obtain
the desired estimates we have only to evaluate the LP(B,) norm of the
right hand side. The last term on the right side is good because c;;(z) are
bounded functions whose L> norm can be estimated in terms of v in (2.2).
The middle term is pointwise majorized by a Riesz type fractional integral

/ fo(?/)i dy
B, | —y|* !

which obviously is a bounded operator from LP*(B,) in LP(B,). The first
term is more conveniently written as the sum of terms of the form

(2.7) Kf;=P.V. / Fii(e @ — ) 3 () dy

o

and of the form

(2.8) Clanj, K]ug, = P~V~/B Lij(@, 2 —y) {{an; (x) — an;(y)] ue, (v)} dy.
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Both the (variable kernel) singular integrals are bounded operators in
LP(R™) (1 < p < 00), as it will be shown in the next section. Moreover the

commutator Clan;, K] u,, has a bound of the form

1Clans, Kuq,|

L?(B.,) <c(n,p) ||ahj||* || |Vul “LP(B,,)

where ||ap; ||« is the BMO “norm” (= the integral oscillation) of the relevant
coefficient a; appearing inside (for the definition of ||as;||. see Definition
3.1). The nice feature of this operator, which is the fundamental point of
our estimate, is that, taking as; in VMO, the ||ap;||. can be made small as
we like taking the radius o of B, small enough. In other words we can fix
o so small to have the estimate

1
11Vl | 2o s,y <511Vl |05, +
+ (. ,v) (€l o, + 1 follpoe 5, ) -

This proves Theorem 2.2.

Proof of Theorem 2.3. We now argue similarly to prove Theorem 2.3. In
order to obtain a boundary representation formula it is better to recall
the definition of the half space Green function for the constant coefficients
operator

— (aij (zo)ua, (2)),, -

Such a Green function is easily obtained subtracting to the fundamental
solution with pole at x in the upper half space the fundamental solution
with pole at an appropriate point T'(x) in the lower half space (T'(z) would
be a reflection when dealing with the Laplacian).

To be more precise let I'(x, t) have the same meaning as above. Set

2%,
nn(Y)

a(z) = {am(x)}i:L___,n , T(z;y) =x— a(y), T(z) = T(x;z).

Finally set A(y) = T'(e,;y) where e,, = (0,...,0,1) and denote A;(y) the
i-th component of A(y). Consider now any zo € B and, as in the previous
proof, write the equation as

= (aij (o) ug, (2)),, = = ((aij(z0) = aij(2)) uz, (x) + fi (@),
- (A @)

zj
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Then using the fact that the Green function for the constant coefficients
operator

(aij(20)uz, (1)),

in the half space is
D(xo,z —y) — (o, T(x;20) — y)

we see that a solution in B can be written as
210) () == [ [eors =)~ a0, Tlawian) — )] X () do
Bs

Taking the derivatives, keeping in due regard the singularities of the first
term inside (the second being never singular in B}), and finally setting
ro = £ we obtain

g, (x) = —P.V. / , D@, @ —y) {lan; (@) — anj ()] we, (y) = f5(y)} dy

B?
(2.11)
+ cij (@) fi (@) + Li(z)

where

Cij(l‘) :/ 1Fi(1',t)tj dO’t,
t|=

as before, and
Ii(x) = /B+ Lij(2, T(x) — y) {lan;(x) = an; ()] ve, () = f5(0)} dy

fori=1,...,n —1 while
In(x) = /B+ An(@)Cn; (2, T(x) = y) {lan;(x) = an; ()] ue, (y) — f5(y)} dy.

(2.11) is very similar to (2.6) except for the term I;. The I; integral can be
written as a sum of integrals of the form

(21 f= [ Do T@=nf 0

o

and of the form

(2:13) Clonys Kl sy = [ Do Tw) = o) {fany ) = any ()], ()} dy

o
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(the Ay (x) terms are not relevant because they are bounded functions whose
L norm is estimated in terms of the ellipticity constant v). Then, as in the
interior case, we are reduced to study the LP boundedness of the integral
operators defined by (2.12) and (2.13). This will be done in Section 3 giving
a result similar to what we obtained in the interior case. Precisely a positive
o can be fixed in such a way to obtain

1
|| |VU| ||LP(B:') < 5” |VU| ||LP(B:') + C(n7p7 l/) ||f||Lp(B;') :
This concludes the proof of Theorem 2.3.
As mentioned after the statement of Theorem 2.1 by localization and

flattening one can prove (by means of Theorems 2.2 and 2.3) an estimate
like

(2.14) [Vl || o) < (“ IVl || 20y + ||f||LP(Q)) < cllfllr(q)

for the solution of the Dirichlet problem. In the last majorization we used
the fact that p > 2 and the L? bound for such a solution in terms of
1l .2(q) is known (Lax-Milgram). (2.14) gives the conclusion at least for
smooth solutions. The general result is obtained by approximation.

3. REAL ANALYSIS TooOLS

In this section we collect the definitions and theorems concerning VMO
and the action on LP of the singular integral operators which are used in
the proof of the L? estimates.

Definition 3.1 (John-Nirenberg [39]). We say that a function
f e LL_(R") is in the space BMO if

loc

1 —
S‘épﬁ/g'f(x) ~ foldw = |If ]l < +o

where B ranges in the class of the balls of R", and

= L
fo=g [ @)

is the average of f in B.

|| 1]+ is a norm in BMO modulo constant functions under which BMO is
a Banach space (see Neri [47]).
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Definition 3.2 (Sarason [49]). For f € BMO and r > 0, we set

supﬁ /B (@) — foldz = n(r)

o<r

where B ranges in the class of the balls of R™ with radius ¢ less than or
equal to r.

According to [49], f € BMO is in VMO if

lim n(r) =0.

r—0

We will call » the VMO modulus of f.

Bounded uniformly continuous (BUC) functions belong to VMO. Func-
tions in W™ belong to VMO. Indeed by Poincaré’s inequality,

ﬁ /B |F(2) — fol dz < c(n) (/B |Vf(x)|”dx)l/n.

To give another example of the same kind we recall the definition of the
Morrey space LP.

Definition 3.3. Let p € [1,+0), A € (0,n). We say that a function
feLl (R isin LPA(R™) if

loc

1/p
s (5 [ 1@Pds) = 1l < 4.

”

We also define VLP*(R™), p, \ as above, as the subspace of L?*(R") of the
functions f such that

<)
sup | —
o<r \ 0" JB

vanishes as r approaches zero.

1/p
|f(x)|de) =9J(r)

e

Then it is immediately seen that functions whose gradient is in L'"~!
are in BMO and functions whose gradient is in VL""~! are in VMO. This
shows easily that there are VMO functions which are discontinuous. E.g.
one can take f(z) = |log|z||* 0 < a < 1.
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Similarly one can see that W™/ ?(R") (0 < # < 1) is contained in VMO.
Indeed

9/n
5 [ @) = falo < (ﬁ/Bmx)—fBW" dx)
) n/o 0/n
— <E/B dx)
0/11
< (ﬁ / T [ 1@ - s dxdy)

2) — " 0/n

Because f € W%"/?(R") implies that

|7§| /B (f(2) - F(u)) dy

0/n

</ / %dwdy) < 400,

we get the conclusion by the absolute continuity of the integral.

Definition 3.4 (e.g. Campanato [13]). Let p € [1,+00), A € [0,n + p].
We say that a function f € LI _(R") is in the space £P*(R") if

loc

sup (i /B F@) — fp,

This family of spaces contains BMO (which is the same as .Z1"(R"))
and also C%® as can be seen by the following theorem.

1/p
pdx) = || fllpa < +o00.

Theorem 3.5 (Campanato [12], Meyers [42]). Let p € [1,+0),
A € (n,n 4+ p). Then £P* coincides with the space of the Hélder con-
tinuous functions C%® (o= (A —n)/p).

One immediately realizes that functions in VMO are Holder continuous
if n(r) <er®.
The following question may then be posed naturally:

when (depending on n(r) ) functions in VMO are continuous?

The answer has been given by S. Spanne, who perhaps really “invented”
VMO about ten years before Sarason. Indeed while studying some gen-
eralizations of the .#1* spaces Spanne introduced in [52] the .%; spaces.
Precisely:



14 F. CHIARENZA

Definition 3.6 ([52]). Let ¢ : [0,400) — [0,+00) non-decreasing. Let
f € LL.(R"). We say that f is in the space .} if

loc

1 1
wp&ﬁﬁﬁﬁﬂﬁJﬂ@—Jbezﬂmg@<+“-

Clearly for ¢(t) = t*=™ (A > n) this gives back the Campanato spaces
ZLVA(R™). Also, considering f € %, B, C B,, we have

IlTll/B £ (@) = fo,|dx < ||fll.z, - d(cn0) < |1l - dlcnr).-

This shows that .Z, C VMO if ¢(r) vanishes as r approaches zero and that
as VMO modulus for f € £, we can take

n(r) = £l - dlcar) .-
Spanne proved (see [52] p. 601) that, if ¢(t) is Dini continuous i.e.,

5
36 >0: /@dt<+oo,
0

then .5 C C°. This is “almost” sharp as can be seen by Corollary 2 in [52].

Another slightly different definition of VMO (called there c.m.o.) was
given by U. Neri (see [46], [47]) where some interesting examples can be
found. Let us also mention the paper [36], mainly concerning the problem of
the characterization of pointwise multipliers for BMO, where others remarks
about VMO and c.m.o. can be found (pp. 195-196).

After this introduction of the spaces we now quote two results on which
it rests the real analysis tools we shall develop later. The first is part of the
Sarason’s characterization of VMO.

Theorem 3.7 ([49]). For f € BMO the following conditions are equivalent
i) fisin VMO;
ii) f is in the BMO closure of BUC;
it) Jim [1(- —h) — £)]l. = 0.

We wish to observe explicitely that iii) implies the good behaviour (in
the sense of the BMO convergence) of the mollifiers of VMO functions (see
[19], p. 843).

To state the most important result for the following development we need
to give one more definition.
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Definition 3.8. Let £ : R™ \ {0} — R. We say that k is a Calderén-
Zygmund kernel (CZ) if:

i) ke C=(R"\{0});
ii) k(z) is homogeneous of degree —n;
iii) [y, k(z)do, =0 where X ={x:|z|=1}.

It is well known that to a CZ kernel it is possible to associate a bounded
operator in LP. Precisely:

Theorem 3.9 ([9]). Let k(z) be a CZ kernel and ¢ a positive number. For
feLr(R™), pe(1,+0), set

Kefw=[ ke

Then, for any f € LP(R"), there exists K f € LP(R™) such that

lim |K.f — Kf
e—0

|, = 0.

Also there exists ¢ = ¢(n,p) such that
1/2
K < ([ #dr) Al vie @D,
b

We shall call K a Calderén-Zygmund singular integral operator and we
shall use the notation

n

Kf(zx) =PV f(z) = P.V./ k(x —y) f(y) dy.

We are now in a position to state the second result (and most important
for our future development) we need to recall.

Definition 3.10 (Coifman, Rochberg and Weiss [22]). Let ¢ € BMO,
k be a CZ kernel and K the associated singular integral operator. We
define the commutator T'f = C[p, K] f as the principal value

P V.Ekxf—PV.kx(pf).

Then we have
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Theorem 3.11 (Coifman, Rochberg and Weiss [22]). Let o, k be as above.
Then Clp, K] f is well defined for f € LP(R™) p € (1,+00). Moreover
Cle, K] f is a bounded operator in LP(R™), i.e. there exists a constant
¢ =c(n,p, |kll 2(x)) such that

1CTe, K] fllp < cllellll £l -

For the sake of completeness let us quote one more theorem from the
literature which is an important complement to Theorem 3.11.

Theorem 3.12 (Uchiyama [55]). The commutator in Definition 3.10 is
a compact operator from LP(R™) in itself if and only if ¢ is in the BMO
closure of C§°(R™).

Finally concerning the relevance of Theorem 3.11 we wish to mention the
recent and deep paper [23].

A note of warning: the commutator in Definition 3.10 above is very
different from the famous A. Calderén commutator. Theorems 3.9 and 3.11
are what is needed to study the slightly more involved operators which
appears in our representation formulas for solutions. We have the following
theorem which is crucial in the proof of the interior estimates.

Theorem 3.13 ([18]). Let k: R™ x (R™\ {0}) — R be such that:
i) k(z,-) is a Calderon-Zygmund kernel for a.a. x € R";

o7

L>(R" xX)

il) max k(z,y)

l71<2n

If f e LP(R™), 1 < p < 400, p € L>(R™), set
K.f(z) = / Ko,z — ) f(y) dy
|z—y|>e

and

Clo. K] f = oK. f — K.(of) = / k(e z — 9)lo(e) — o(u)]f () dy

|e—y|>e

Then, for any f € LP(R") there exist K f, C[p, K] f € LP(R") such that

K.f-Kf

lim | lp=0 , lim||Clp, K] f = Cle, K] fll, =0.
e—0 e—0
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Moreover there exists a constant ¢ = ¢(n, p, M) such that
1K fllp <cllfll,  and  |IC[p, K] fllp < cllell|lfllp -

The proof of the previous theorem seems to be at this time classical using
techniques which go back to the work of A. Calderén and A. Zygmund in
the late 50’s. We essentially took it from [6]. The interested reader can also
see [10], [11], [45]. An outstanding reference for the further development of
this topic is Stein [54].

From the commutator bound given in Theorem 3.13 one easily deduces
the following localized estimate.

Corollary 3.14 ([18]). Let k be as in Theorem 3.13 and ¢ € VMO N
L>(R™) and denote by n the VMO modulus of ¢. Then for any ¢ > 0 there
exists 0o = go(e,n) such that for r € (0,09) we have

1CLe, K] fll e (m,y < cellfll s, VfeL"(B;).

Proof. We start approximating ¢ with a BUC ¢ such that ||p — @ < /2.
Then we fix go so small that the modulus of continuity of @, wg(r), is less
than /2 when evaluated at go. Finally we extend the restriction of ¢ to
B, (r < 19) to all R™ preserving the modulus of continuity in B,.

Using Theorem 3.13 one can deal with the interior estimates as we have
already shown when considering the simple case above and as we will see
below when considering elliptic systems. The reason for this is that when
deducing a representation formula for the maximum order derivatives we
always find a CZ variable kernel operator and commutator like in Theorem
3.13.

The study of the boundary estimates is different and it leads to the ap-
pearing of singular integral operators and commutators which are singular
in a less severe way than those in Theorem 3.13 and can be sometimes
treated much more simply. The kind of singularity appearing is much as
in the Hardy operator (see [34] p. 226 and ff.). We shall study now in de-
tail both the operators (singular integral and commutator) in the following
theorems.

Let T'(x) be the map introduced during the construction of the boundary
representation formula in Section 2. We first observe the following simple
inequality.
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Lemma 3.15 ([19], [4]). Let R} = {z = («/,z,) € R* : 2’ € R*7!,
T, > 0}, Z = (2',—x,). Then there exist positive constants ci,cs such
that, for any y € R} and all v € R} for which T'(x) is defined, we have

alt -yl <|T(x) —y| <c2 |-yl -

This lemma clearly reduces the study of operator K fin (2.12) to that of
another operator of the same kind with T'(z) replaced by & which we still

call Kf We have

Theorem 3.16 ([19]). Let R} = {z = (2/,z,) € R* : 2/ € R*!,
z, >0}, & = (2, —x,). Set

f{f(x):/R ~f(?!)

v T -yl

Then there exists a constant ¢ = ¢(n,p) such that

1K f

lzr@n) < cllfllr@n) -

Proof. For z € R let

_ )] "
= </ (77— VP + (wn + 50772 dy) ’

n
+

I £ ()| r
= dy’dyn> dx'.
/R"_l (»/0 »/R"_l (|l‘/ - y’|2 + (xn + yn)2)n/2

Using the Minkowski integral inequality we have

I(z,)

[ AT—

The inner integral is a convolution in the ' variables. Then using the Young
inequality for convolutions we obtain

P

<
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I(xn)

< V;m (/R If(y)lpdy’>1/p (/R (ly'? + (:riy; yn)2)"/2> dy”] -

Now

/ =
po-1 ([Y' 7 + (25 4 yn)?)"/?

_ 1 / dy’
C Tn At Yn Jen- B o /2
" n R (xn + yn)" 1 ((zn‘,l-li-gn)z + 1)
/
or, setting ' = vy ,
Ty + Yn

/ dy' 1 / dt’
ot (1Y 4 @+ 4))™2 T Tt yn S (P22

Substituting in the majorization we found above we get

RN A [ R [
I(x,) < I — dy,, .
(= )—</ <|t'|2+1>n/2> </ P y)

Now we integrate I(x,) over (0, +00) obtaining

~ Foo Foo A p(Rn—1 P
&g <con [ ( 176, Azl ee L) ds,
0 0

14+ A

and, by Minkowski again

/p
Hoo oo “f(v A'/L‘n)”ip(Rnfl) '
p< dr, | dX
> < ¢(n,p) /0 (/0 ESYE T

+oo 1 P .
= c(n,p) (/0 RESYE d)\> (hal

P

IKf

Our final theorems concern the boundary commutator C[a, K] defined
in (2.13). Its study seems at this moment more delicate and it is worth to
be done in some detail. In the paper [19] the study of C is done in a dif-
ferent (and simpler) way from what we shall see below. Unfortunately the
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approach of [19] is wrong as it was kindly pointed to us by M. Bramanti
and M.C. Cerutti. The proof given below is essentially the same as in [4].
We collect here the definition and some properties of spherical harmonics
which are needed for the proof of the following theorem (as well as in the
proof of Theorem 3.13). Indeed in all these theorems the idea is to reduce
the “variable kernel” case to the “constant kernel” case. This is done by
expanding the kernel in a series of spherical harmonics each term then defin-
ing a constant kernel operator that one knows how to treat. Then, having
the proper control on the decay of each term, one can see that the series
of operators absolutely converges in LP. The technique seems to have been
employed for the first time by Calderén and Zygmund in [10].

Definition 3.17. A homogeneous polynomial p(x) of degree m, which
solves the equation Au = 0, will be called a solid spherical harmonic of
degree m. Its restriction to the unit sphere ¥ will be called a spherical
harmonic of degree m.

Then we have

Lemma 3.18 ([10], [11], [45]). The space of n-dimensional spherical har-
monics of degree m has dimension

G = m+n+1\ (m+n+3 < c(n)m™2.
n—1 n—1

IfY,,(x) is any n-dimensional spherical harmonic of degree m, then

< emlolt(n=2)/2 forx e X.

T

dae

Let {Yim(x)} 1o, ,,. be a complete (in L*(X)) orthonormal system of

m=0,1,...

spherical harmonics.

Let k: R™ x (R™\ {0}) — R be such that

i) k(z,-) is a CZ kernel for a.a. x € R";
J

L>(R" xX)

k(x,y)

il) max
l71<2n
Setting, form e Nand k=1,...,gm,

g () :/Ek(x,z)Ykm(z) do,
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by the completeness of {Yj,(z)} in L*(X) we have

400 gm

=3 akm(@)Yim(z), z€R' z€X

m=1 k=1

and
llakm oo < c(n) M m™2",

We need one more result concerning the “constant kernel” boundary
commutator before we prove the main theorem.

Theorem 3.19. Let k(z) be a CZ kernel. Let T'(x) have the same meaning
as in Lemma 3.15, and suppose ¢ € L*(R"). Then

Cle. K1 f(@) = | k(T(z)—y) (elz) = o(y)) fy) dy

RY
is bounded in LP(R’}) (1 < p < 00) and we have

ICe, K] Fllpreny < cllell 11 L g

Proof. Because of lack of regularity of the function T'(x) our operator is no
longer the commutator of ¢ with a CZ kernel. Hence we cannot apply the
Coifman, Rochberg and Weiss Theorem 3.11 but have to give a new proof
of the boundedness. The proof which we give below (which is taken from
[37] where it is quoted by Janson as J.O. Strémberg’s) cannot be applied
directly to our operator again for lack of regularity in the x variable. This
obstacle is easily removed taking into consideration the adjoint operator
which we study below (we are indebted for this suggestion to E. Fabes).

Let
C'f(x)= | k(z—-T(y)) (v(x) —9y)) fly)dy.

RY

To show that 5*f satisfies a bound of the same kind of the one we want for
Clp, K] f we estimate its sharp function. Precisely, keeping in mind where
we are working, we define, for f € LP(R?),

@) sup|Q|/|f ~ foldy,
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where @ is a cube contained in R’} and

M d
+ 2“92|Q|/'f ldy.

It is easily seen that these operators satisfy
||M+f||LP(R1) <c ”f“LP(Ri) ’ ”f”LP(Rp <c ”ff“LP(Riy

Then we have, for any @ as above,

C'fl@)= [ k(x=T(y) (p(x) —vq) fly)dy

n
RY

+ / k(z —T(y)) (vq — ¢(y)) f(y) dy

T

= | k(z-T(y) (v(z) —¢q) f(y)dy

R"

/ k(z — T(y)) (v — o)) f(y) dy

/ Ko — TW)) (ve — o) F) dy
\2Q

=I+J+1L.

I and J are easily estimated as in [19] p. 845.
We have indeed

1
o L 1wy < clgl. (a1

where K* f is the adjoint operator of K in Theorem 3.16 which clearly
majorizes the adjoint of our operator because of Lemma 3.15. Also

~ 1/7‘
K*fr(x)) . l<r<p

i r 1/r
|Q|/Q|J<y>|dySc||¢||*<M+|f| @), 1<r<p.

We come to L. We call zg the center of the cube () and observe that

e = T() = Kag ~TW)| < e 238 forae Q. yg20.
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This because of the regularity the adjoint kernel has in the x variable and
again Lemma 3.15. Then we have

|z — zq]

IL(x) - L{zg)| < ¢ / F@llew) — voldy.

rr [r@ — 9"

n
+

Calculations identical to those in [19] p. 846 then imply
1 - ,
01 . 100~ Laldy < cligl Gl @), 1< <.

This gives the conclusion because what we obtained is the pointwise estimate
A # % T 1r r 1/r
C @ < eligl | (MR fI7 @) + ALyl f7 @)

which raised to the p-th power owing to the boundedness properties of the
relevant operators in the right hand side gives the conclusion.

Coming back to the variable kernel boundary commutator we have

Theorem 3.20. Let k: R" x (R™\ {0}) — R satisfy the assumption i) and
ii) of Theorem 3.13 and let p € L>°(R™). Define

Clo K1 £() = [ K@ T(w) = ) (0(o) = o(0) £5) dy
for f € LP(RY}), 1 < p < o0.

Then, we have the bound

1€, K1 £l gy < el 1 llpoen -

Proof. Using Lemma 3.18 we can expand the variable kernel k(z, T'(z) — y)
as

g Yim (T(2) = y)
2 2w ey Ty

Then we are led to study the series

+0o0  gm

S5 Nkl ey 1€T0 K] Fll e

m=1 k=1
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where

=~ Ykm(T(x) B y)

Cle, Kim] f = o @) =g (p(@) —¢(y)) f(y) dy .

Because of Theorem 3.19 and Lemma 3.18 we see that the last series can
be estimated by

400 gm

c Z Zm_2” -m(n=2)/2 ||99||*||f||LP(R1)

m=1 k=1

+oo
<ec Z L m(n72)/2 .mn2 “(p“*“f”LP(R1)
m=1
which gives the desired estimate.

4. ELLIPTIC SYSTEMS AND RELATED RESULTS

In this last section we briefly review all the results obtained up to now
using the technique we outlined in Section 2. First of all we mention the
already quoted papers [18], [19] by the author, M. Frasca and P. Longo
with a proof of the existence and uniqueness of a strong solution to the
Dirichlet problem for an elliptic nondivergence form second order equation
with coefficients in VMO.

The technique of the proof is mainly along the lines we hinted at in the
divergence form case with the extra problems arising because of lack of
a priori estimates except for the Alexandrov-Pucci L*° bound. A general-
ization of this result has been given by C. Vitanza who considered the same
equation with lower order terms under various sets of assumptions on these
lower order coefficients ([56], [57]).

Also the same equation as in [18], [19] have been studied in the Mor-
rey spaces by Di Fazio and Ragusa [26]. Precisely those authors show that
interior estimates hold true in Morrey spaces by means of the same repre-
sentation formula of [18]. This is enough because they were able to extend
Theorem 3.13 to the framework of the Morrey spaces. This extension, which
is of some interest in itself, is achieved using some LP weighted estimates
(with A, weights).

The parabolic case of the same non divergence equation, obtaining similar
estimates and results for the Cauchy-Dirichlet problem, has been considered
by M. Bramanti and C. Cerutti in the interesting work ([4]) which has been
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already mentioned.The idea of the proof is essentially the same. They find
explicit interior and boundary representation formulas for the solution in
terms of parabolic singular integrals and commutators. Then they study
these operators with techniques which are now very much close to the elliptic
ones. This because everything is seen in the framework of the homogeneous
spaces. Fabes and Riviére (see [28], [29]) and some other authors who
were able in the middle sixties to extend to the parabolic case the work of
Calderén and Zygmund, had a much harder life.

Elliptic systems of arbitrary order in non divergence form have been
studied in the paper [20] proving local L? estimates for the highest order
derivatives of solutions. We want to give a brief outline of paper [20] to
show the great closeness of the basic treatment with the simple case we
discussed in Section 2.

Consider the differential operators in 2 C R™

(4.1) mi(z, D)= > o (@)D*,  ij=1,..,N.

2]
|a|=2r

Given f; € LY _(Q),1 < g< +00,i=1,...,N, consider the system

loc

N
(4.2) > mij(z,Dyuj(x) = fi(x), i=1,...,N.
j=1
Assume
43) oY e VMONL®R"), i,j=1,...,N, |a|=2r

and suppose system (4.2) to be elliptic in the following sense
(4.4) N> 0: L(z,€) = det (mij(x,€)) > NEP*Y,

a.e. in 2, for any ¢ € R*. We will now show how to obtain local interior
representation formulas for strong solutions of system (4.2).

Fix any ball B C Q and call B the subset of B where all the al(-]D-‘) are
defined and (4.4) holds. Also fix (for a moment) any zo € B. Consider the

constant coefficient operator

(45) L(CL'()) = det (mi]—(xo,D))

obtained from L(z,¢) letting x = xp and substituting ¢ with the corre-
spondent derivative. L(zg) is clearly a linear elliptic differential operator of
order 2rN.
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Let ['(xo,t) be F. John’s fundamental solution of (4.5). Suppose n to be
odd, an assumption that one can always make (see [27]). It can be shown
(see John [38]) that

. t
F(wo.1) = {2 ") ( m) ,

where 9 (zg, -) is an analytic function.
This implies that
| DT (20, 1) < c|t]>rN—n=lel,

Also it is possible to prove that D*T'(x,t) for |a| = 2rN is a homogeneous
function of degree —n with zero mean value on the sphere |t| = 1.
For this fundamental solution and for any v € C§°(B)

(4.6) o(z) = /Q [0, — ) L(zo) v(y) dy -

Let (mij (xo,ﬁ)) be the cofactor of the element m;;(zo,&) in the matrix

(mij(x0,8)), ;- The correspondent differential operators m™ (zo, D) has or-
der 2r(N — 1), unless m¥(zq, D) = 0.

Assume u = (uy,...,uy) to be a C§°(B) vector function. Then we can
write
N N
L(zg)u; = L(zo) Zﬁiju] = Zéle(xo)uj
=1 =1
N /N 4
=Y (Z mk’(xo,D)mk](xo,D)> uj
7j=1 \k=1

where 6;; = 0 for ¢ # j and 6;; = 1, 4,5 = 1,...,N. The above simple
trick, of introducing the operator L = det m;; and then coming back from
the scalar equation Lu = 0 to the system as seen in the previous lines, is
due to Bureau [5].

Then, recalling (4.6), we obtain

ui(cc):/BF(xo,x— Z (Zm xo, D mkj(xo,D)> u;i(y) dy

Jj=1 =

N
:Z/ F(l‘o,l‘— l’o, ka] xOv (y)dy
k=1"B
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From this (integrating by parts) we understand that u; is a linear combina-
tion of integrals of the form

N
/ D™ (a0, — ) S i (0, D) (y) dy,
B =

where |o| = 2r(N — 1), which may be rewritten as
N

/BD“F(xO,x —y) [Z (my;(xo, D) — my;(y, D)) u;(y)

=1

N
+ kaa‘(y,D)u]—(y)] dy

/D" To, T — Y Z Z [ak] Zo) —a,E?)( )} D%u;(y) dy

7=1 |a|=2r

+/BD”F(xo,x ) ;mk]—(y,D) u;i(y)dy.

Hence, with the usual care in differentiation, one can see that D%u,;, for
|| = 2r, can be expressed as a linear combination of terms like

P.V. / DT (29,2 — y Z > ol @o) = ol )] Du;(y) dy

7=1 |a|=2r

+P.V./ DT (g, x — y me y, D) u;(y) dy
B
Ferra(z0) ({Z 3 () @) o) @) Daum)]

7=1 |a|=2r
N
+ ka]-(x,D) u](sc)) ,

j=1

with |o| = 2r(N — 1), |a| = 2r, 2 € B, zy € B, where ¢, (z0) is bounded
uniformly in B.

As in Section 2, setting x = xp, we obtain the representation formula for
D%u;(z), || = 2r as a linear combination of terms of the form

Py, [ DTG -y Ty [ @) = a5 @)] D, dy .

7=1 |a|=27
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N
P.V./ DT (2,0 — ka] (y,D)u;(y)dy , kaj(x,D) uj(z) .
B :

This formula then allows us to establish by a simple contraction argument
the following interior regularity result.

Theorem 4.1. Assume (4.3) and (4.4). Let 1 < q < p < 400 and let
€ W21(Q) be a solution of (4.2) with f; € L” , i =1,...,N. Then

loc loc?

uwe W2NP(Q).

loc

Also, given Q' CC Q" CC 9, there is a constant ¢ not depending on u;
and f;; 1 =1,... N such that

N
Z D0 ey < ¢ | 3 (1]

Jj=1

e + 15000

\n¢|727‘

Similar techniques certainly work in the case of elliptic divergence form
systems. Di Fazio announced to have in preparation a paper ([25]) with
a result like the above for divergence form systems (obtained using the
Green function estimates given by Solonnikov in [51]).

Finally the linear estimates obtained in [18], [19] can be applied in the
study of quasilinear equations. Recently D. Palagachev (Sofia University)
announced to me the following result contained in the paper [48].

Consider the Dirichlet problem

(4.7) { a;j(x,u) Diju + b(z,u, Vu) =0 ae. in Q

uw=g¢ on J, p € W2n(Q)

under the following assumptions.

Let © C R" (n > 2), 90 € C"'. Suppose the functions a;;(x,z) and
b(x, z,p) to be Carathéodory’s functions, i.e. they are measurable in x for
all z € R, p € R”, and continuous with respect to the other variables for
almost all x € Q.

aij(z,2)6°€7 > M(|2])[€]°, VEER", ae inQ, ay=a;,
with A(¢) positive and decreasing,

|aij(@,2) — aij(z,2")| < a(@) pu(|z = 2']), ae inQ, Vz, 2’ € [-M, M]



LP-REGULARITY FOR SYSTEMS OF PDE’S 29

where a(x) € L>®(Q), pp(t) is an increasing function vanishing as t ap-
proaches zero and a;;(z,0) € L>(2). Also assume a;;(z, z) are VMO in z,
locally uniformly in z, i.e.

1 1
SUP—/ aij(xvz)_—/ aij(y,z)dy| de =ny(r) Vze[-M, M]
p<r | Byl /B, LAWY

and rhg(l) ny(r) =0.

Concerning the function b(x, z, p) one assumes

bz, 2,p)| < v(|2]) (b1 (2) + |p|?), aa. .z €, Y(z,p) € RxR",
with v(t) positive and increasing and by () € L™(Q); furthermore

b
sign z - % < v () Ip| + va(), aa. z €, V(z,p) e RxR",
vi, v € L™(Q), v1, vz > 0.

Then one has

Theorem 4.2. Suppose that all the above conditions are fulfilled. If
u € W™(Q) and u — o € Wy™(Q) is a strong solution of (4.7), then

lullyan o) < C
where the constant C' is independent of u.

Corollary 4.3 (existence). Under assumptions of Theorem 4.2 there ex-
ists a strong solution u, (u € W2™(Q), u — ¢ € Wy (Q)) of the problem
(4.7).
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