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WEIGHTED NORM INEQUALITIES FORINTEGRAL OPERATORS AND RELATED TOPICSVladimir D. StepanovIntroductionIn the �rst part of the paper we study integral operators of the form(1) Kf(x) = v(x) xZ0 k(x; y)u(y)f(y) dy; x > 0;where the real weight functions v(t) and u(t) are locally integrable and thekernel k(x; y) � 0 satis�es the following condition: there exists a constantD � 1 such thatD�1�k(x; y) + k(y; z)� � k(x; z) � D�k(x; y) + k(y; z)�;(2) x > y > z � 0;where D does not depend on x, y, z. The condition (2) was introduced byR. Oinarov [O1].Standard examples of a kernel k(x; y) � 0 satisfying (2) are(i) k(x; y) = (x� y)�, � � 0(ii) k(x; y) = log�(1 + x� y), k(x; y) = log� �xy�; � � 0and their various combinations.Let 0 < p � 1. We study (1) on R+ = (0;1), but any (a; b) � R canbe taken instead of (0;1) without any loss of generality. Also, the dualThis research was partially supported by NSERC of Canada and SERC of UnitedKingdom. 139



140 V.D. STEPANOVoperator of T can be considered (see Remark 1.1 below). LetLp = Lp(0;1) = nf : kfkp = � 1Z0 jf(x)jpdx�1=p <1o:We consider K as a map from Lp into Lq and shall characterize thefollowing problems:(B) Lp � Lq boundedness,(C) Lp � Lq compactness and measure of non-compactness,(S) L2 � L2 Schatten-von Neumann ideal norms.Several factors a�ect the problem (B). First of these are restrictions im-posed on the kernel k(x; y) � 0. Another such factor is the range of param-eters p and q, because of substantial di�erence between the cases p � q andq < p. Certain part is played also by the fact whether 1 � p, q � 1 or not.The cases when p = 1 or p = 1; q � 1 and q = 1 or q = 1; p � 1 followtrivially from known results ([KA], Chapter XI, Theorem 4). It also followsfrom the general theory of integral operators [AS], [Sc] that if 0 < p < 1and K : Lp ! Lq is bounded, then k(x; y) = 0 almost everywhere. Amongother factors, perhaps, the veri�ability of a criterion is the most relevant.For instance, Muckenhoupt's criterion [M] for the Lp � Lp boundedness of(1) when k(x; y) = 1 penetrated many areas because of its explicit form,and being so easy to verify. On the other hand, the implicit \Schur's test"[Kor], [Sz], given for arbitrary kernel k(x; y) � 0, 1 < q � p < 1, had alsohad e�ective applications [Nik], [Hern].The problem (B) was intensively studied since 1988, when the charac-terization has been found for the Riemann{Liouville operator with ker-nel k(x; y) = (x � y)�, � � 0 and its convolution generalizations [MS](1 < p � q < 1), [St1] (1 < p, q < 1), [St2{St6], [St8], [St10]. Unlike theMuckenhoupt (1 < p � q < 1) or Mazja (1 < q < p < 1) criteria forthe case k(x; y) = 1 (see [B], [Ko], [M], [Ma], [Tal], [Tom], [Saw1], [S1] forthe case 0 < q < 1 < p < 1, and [OK] for the full account), the Lp � Lqboundedness of the Riemann{Liouville operator was characterized by twoconditions, which are independent in general except the case when u(y) = 1or v(x) = 1. Later, in the papers [BK1] and [O2] (1 < p � q < 1), [St12](1 < p, q < 1), the criteria have been proved for the kernels satisfyingmonotonicity or continuity conditions. The classical results with the powerweights can be found in [HLP].The problem (C) has the background in the spectral theory of weighted



WEIGHTED NORM INEQUALITIES 141string [G], [AO], the case k(x; y) = 1 was proved in [Riem], and for theRiemann{Liouville operator see [St2{St3].In Section 1.1 we characterize the problems (B) and (C) for the Volterraintegral operators (1) under the condition (2), which probably is a balancepoint between generality of conditions imposed on a kernel and implicitnessof a criterion. A few extensions to Lorentz and Orlicz spaces are given inSections 1.2 and 1.3 which generalize the results of [AM], [EGP], [Saw1] and[BK2], [HM], [L], respectively.The problem (S) is quite a natural step from the problems (B) and (C).The standard references in this area are the books [GK], [K], [P1], [Sim]and the survey article [BS]. Applying the real interpolation method [BL]we give in the Section 1.4 an analog of the Hilbert{Schmidt formulae forthe Schatten-von Neumann ideal �p-norm, 2 � p <1, for operators of theform (1) with extension to the range 1 � p <1 for the polynomial kernel.In the second part we deal with weighted norm inequalities restricted tomonotone functions. This topic was recently initiated by the papers [ArM]and [Saw2] with further developments in [A], [Br], [CS1], [CS2], [G1{G3],[H], [HSt], [N], [St7], [St9], [St11] and others.Our �rst observation is that such inequalities are helpful in the aboveproblem (B) for the Hardy operator, when 0 < q < p <1, p � 1.Secondly, we characterize the dual space to the classical Lorentz spacegiven by�p(v) = nf : kfkp;v = � 1Z0 �1t tZ0 f�(s) ds�pv(t) dt�1=p <1o;where f�(s) = inf[z � 0: meas fx : jf(x)j > zg � s], and �nd out thecriteria for a number of operators of harmonic analysis to be bounded in�-spaces.Throughout the paper the expressions of the form 0 � 1, 0=0, 1=1 aretaken equal to zero, the inequality A� B means A � cB, where c dependsonly on D and parameters of summation (p, q : : : ), and the relationshipA � B is interpreted as A � B � A or A = cB. Further, �E denotes thecharacteristic function of a set E, Z the set of all integers, � means the endof a proof.Acknowledgement. It is a pleasure of the author to express his deeprespect and gratitude to Professors M. Krbec, A. Kufner, B. Opic and J.



142 V.D. STEPANOVR�akosn��k, the organizers of the School on Nonlinear Analysis, FunctionSpaces and Applications, for their kind invitation and hospitality. He alsowishes to thank the International Soros Foundation for the �nancial supportfor his participation at the School.1. Problems (B) and (C)1.1 Lebesgue spaces. Denote 1p + 1p0 = 1, 1q + 1q0 = 1, 1q � 1p = 1r , andA0 = supt>0 A0(t) = supt>0 � 1Zt kq(x; t)jv(x)jqdx�1=q� tZ0 ju(y)jp0dy�1=p0 ;(3) A1 = supt>0 A1(t) = supt>0 � 1Zt jv(x)jqdx�1=q� tZ0 kp0(t; y)ju(y)jp0dy�1=p0 ;(4)B0 = n 1Z0 � 1Zt kq(x; t)jv(x)jqdx�r=q� tZ0 ju(y)jp0dy�r=q0 ju(t)jp0dto1=r;(5) B1 = n 1Z0 � 1Zt jv(x)jqdx�r=q� tZ0 kp0(t; y)ju(y)jp0dy�r=p0 jv(t)jqdto1=r;(6)The mapping properties of K : Lp ! Lq for 1 � p, q � 1 (with theusual modi�cation if p = 1, 1 or q = 1, 1) are described by the followingstatement.Theorem 1.1. Let the integral operator K be given by (1) with the kernelk(x; y) � 0 satisfying (2).(a1) If 1 < p � q <1 then the inequality(7) kKfkq � Ckfkp for all f 2 Lpis valid if, and only if, A = max(A0; A1) <1 and, moreover, kKk � A.(a2) If 1 < p � q <1 then the operator K : Lp ! Lq is compact if, andonly if, A <1 and(8) limt!0Ai(t) = limt!1Ai(t) = 0; i = 0; 1:(b1) If 1 < q < p < 1 then the inequality (7) holds if, and only if,B = max(B0; B1) <1 and, moreover, kKk � B.



WEIGHTED NORM INEQUALITIES 143(b2) If 1 < q < p <1 then the operator K : Lp ! Lq is compact if, andonly if, B <1.Proof. (a1)We begin with the necessity. Observe that the left hand side of(2) implies(9) k(t; y) � Dk(x; y) and k(x; t) � Dk(x; y) for all y < t < x:Now, suppose that (7) and the inequality(10) tZ0 kp0(t; y)ju(y)jp0dy <1hold for some t > 0 (otherwise we would have R1t jvjq = 0 and the conven-tion 0 � 1 = 0 would imply 0 = A1(t) � C). Settingft(x) = �[0;t](x)�k(t; x)ju(x)j�p0�1 sgnu(x);then substituting ft(x) in (7) and applying (9), we �nd thatC� tZ0 kp0(t; y)ju(y)jp0dy�1=p� � 1Z0 jv(x)jqdx� xZ0 k(x; y)�[0;t](y)�k(t; y)�p0�1ju(y)jp0dy�q dx�1=q� D�1� 1Zt jv(x)jqdx�1=q� tZ0 kp0(t; y)ju(y)jp0dy�and the estimate D�1A1 � C follows.By duality, we haveK : Lp ! Lq , K� : Lq0 ! Lp0 ;where K�g(y) = u(y) 1Zy k(x; y)v(x)g(x) dx:Thus (7) and kK�gkp0 � Ckgkq0 , g 2 Lq0 , hold with the same constant C.Applying the above argument to the operator K� andgt(y) = �[t;1](y)�k(y; t)jv(y)j�q�1 sgn v(y);we see that D�1A0 � C, D�1A � C, and D�1A � inf C = kKk.To prove su�ciency we need the following



144 V.D. STEPANOVLemma 1.1. Let f(y) be such that u(y)f(y) � 0 and k(x; y) � 0 sat-isfy (2). Put G(x) = xZ0 k(x; y)u(y)f(y) dy;and Xk = fx > 0: G(x) � (� + 1)kg; k 2 Z;xk = inf Xk if Xk 6= ;; xk =1 otherwise; N = supfk : Xk 6= ;g;where � > 0 is a �xed number. If � > D3, then the inequality(� + 1)k�1 � xkZxk�1 k(xk; y)u(y)f(y) dy +D xk�1Zxk�2 k(xk�1; y)u(y)f(y) dy+Dk(xk; xk�1) xk�1Z0 u(y)f(y) dy+D2l(xk�1; xk�2) xk�2Z0 u(y)f(y) dyholds.Proof. By the de�nition we have xk�1 � xk and also, G(x) � (� + 1)k �G(xk), if x 2 [xk�1; xk). Using this, we write(� + 1)k+1 = (� + 1)2�(� + 1)k � �(� + 1)k�1�� (� + 1)2�G(xk)� �(� + 1)k�1�= (� + 1)2� xkZ0 k(xk; y)u(y)f(y) dy � �(� + 1)k�1�:



WEIGHTED NORM INEQUALITIES 145Now applying (2) twice we get
(� + 1)k�1 �Dk(xk; xk�1) xk�1Z0 u(y)f(y) dy + xkZxk�1 k(xk; y)u(y)f(y) dy+D xk�1Z0 k(xk�1; y)u(y)f(y) dy � �(� + 1)k�1�Dk(xk; xk�1) xk�1Z0 u(y)f(y) dy + xkZxk�1 k(xk; y)u(y)f(y) dy+D2k(xk�1; xk�2) xk�2Z0 u(y)f(y) dy+D xk�1Zxk�2 k(xk�1; y)u(y)f(y) dy+D2G(xk�2)� �(� + 1)k�1:

Using (9) we �nd that G(xk�2) � DG(x) � D(� + 1)k�1 if xk�2 � x �xk�1. Consequently, D2G(xk�2) < �(� + 1)k�1, if D3 < �, and the resultfollows. �
Now we continue with the proof of the su�ciency part of Theorem 1.1.Without loss of generality we may and shall assume that f has a compact



146 V.D. STEPANOVsupport in R+, f(y)u(y) � 0 and 0 < kfkp <1. By Lemma 1.1 we obtainJ = 1Z0 Gq jvjq = Xk2N xk+1Zxk Gq jvjq � Xk�N(� + 1)q(k+1) xk+1Zxk jvjq(11)
�4q�1(� + 1)2qXk xk�1Zxk jvjqnDqkq(xk; xk�1)� xk�1Z0 uf�q+ � xkZxk�1 k(xk; y)u(y)f(y) dy�q +D2qkq(xk�1; xk�2)� xk�2Z0 uf�q+Dq� xk�1Zxk�2 k(xk�1; y)u(y)f(y) dy�qo= 4q�1(� + 1)2q(J11 + J12 + J21 + J22):Using the H�older and the Jensen inequalities, we �ndJ12 =Xk xk+1Zxk jvjq� xkZxk�1 k(xk; y)u(y)f(y) dy�q�Xk xk+1Zxk jvjq� xkZxk�1 kp0(xk; y)ju(y)jp0dy�q=p0� xkZxk�1 jf(y)jpdy�q=p� Aq1Xk � xkZxk�1 jf(y)jpdy�q=p � Aq1kfkqp:Analogously, we getJ22 =Xk xk+1Zxk jvjq� xk�1Zxk�2 kp0(xk�1; y)ju(y)jp0dy�q � Aq1Dqkfkqp:In case when k(x; y) � 1, the single condition A1 < 1 is necessary andsu�cient for (7), and A0 � A1. To obtain upper bounds for J11 and J21 weneed the following more general assertion.



WEIGHTED NORM INEQUALITIES 147Lemma 1.2 ([BK2]). Let 1 < p � q < 1 and let y = �(x) be a di�eren-tiable increasing function on R+ such that �(0) = 0, �(1) =1 and, thus,the inverse function x = ��1(y) exists. Thenv(x) �(x)Z0 fuq � Ckfkp for all f 2 Lp;if, and only if, A� = supt>0 k�[��1(t);1]vkqk�[0;t]ukp0 <1;and, moreover, C � A�.Proof follows from the case k(x; y) � 1 by a change of variables. �We can now estimate J11 and J21 as follows. We haveJ11 = DqXk � xk+1Zxk jvjq�kq(xk; xk�1)� xk�1Z0 u(y)f(y) dy�q :Put �(x) = Pk xk�2�[xk;xk+1](x) and let y = �(x) be such a function that�(xk) = xk�2, �(x) � �(x) � x, and �(x) satis�es the hypothesis of Lemma1.2, that is, � is an increasing C1 function on (0;1). Then we obtainJ11 � DqXk � xk+1Zxk jvjq�kq(xk; xk�1)h� xk�1Zxk�2 uf�q + � xk�2Z0 uf�qi= Dq(J (1)11 + J (2)11 ):The estimate of J (1)11 is similar to J12, but now we apply H�older's inequalityand (9) to getJ (1)11 � DqXk � xk+1Zxk kq(x; xk�1)jv(x)jqdx�� xk�1Zxk�2 uf�q� DqXk � 1Zxk kq(x; xk�1)jv(x)jqdx�� xk�1Zxk�2 jujp0�q=p0� xk�1Zxk�2 jf jq�q=p� Aq1DqXk � xk�1Zxk�2 jf jp�q=p � Aq1Dqkfkqp:



148 V.D. STEPANOVFor the second term we obtain from Lemma 1.2J (2)11 =Xk � xk+1Zxk jv(x)jqdx�kq(xk; xk�1)� xk�2Z0 uf�q� 1Z0 � �(x)Z0 uf�q�Xk kq(xk; xk�1)�[xk;xk�1](x)�jv(x)jqdx� 1Z0 � �(x)Z0 uf�qV (x) dx� (A(1)� )qkfkqp;where V (x) = �Xk kq(xk; xk�1)�[xk;xk�1](x)�jv(x)jqand A(1)� = supt>0 A(1)� (t); A(1)� (t) = � 1Z��1(t) V (x) dx�1=q� tZ0 jujp0�1=p0 :Now by the de�nition of �(x) we have that if ��1(t) 2 [xk0 ; xk0+1), thent 2 [xk0�2; xk0�1) and, in particular, t � ��1(t). Applying (9) twice we �ndthat 1Z��1(t) V (x) dx = kq(xk0 ; xk0�1) xk0+1Z��1(t) jv(x)jqdx(12)
+ Xk>k0 kq(xk0 ; xk0�1) xk+1Zxk jv(x)jqdx�D2q� xk0+1Zt kq(x; t)jv(x)jqdx+ Xk>k0 xk+1Zxk kq(x; t)jv(x)jqdx�=D2q 1Zt kq(x; t)jv(x)jqdx:Hence, A(1)� � D2A0, and we obtain J11 � Aqkfkqp. A similar argumentshows that J21 � Aqkfkqp, and the estimate J � Aqkfkqp is proved.



WEIGHTED NORM INEQUALITIES 149Remark 1.1. Observe that the part (a1) has two natural versions:(i) restricted to any interval of real line and (ii) with respect to the dualoperator K�. In the case (i), which we call a \restricted" version, we dealwith the integral operator K given byKf(x) = v(x) xZa k(x; y)u(y)f(y) dy; �1 � a < x < b � 1;with the kernel k(x; y) � 0 satisfyingD�1�k(x; y) + k(y; z)� � k(x; z) � D�k(x; y) + k(y; z)�;(2') b � x < y < z � a:Then kKkLp(a;b)!Lq(a;b) � Aa;b for 1 < p � q < 1, where Aa;b =max(A0;a;b; A1;a;b), andA0;a;b = supa<t<bA0;a;b(t) = supt>0 � bZt kq(x; t)jv(x)jqdx�1=q� tZa ju(y)jp0dy�1=p0 ;A1;a;b = supa<t<bA1;a;b(t) = supt>0 � bZt jv(x)jqdx�1=q� tZa kp0(t; y)ju(y)jp0dy�1=p0 :Analogously, in the \dual" version (ii) we have kK�kLp(a;b)!Lq(a;b) � A�(a;b),where A�a;b = max(A0;a;b; A1;a;b), andA�0;a;b = supa<t<bA�0;a;b(t) = supt>0 � tZa kq(t; x)jv(x)jqdx�1=q� bZt ju(y)jp0dy�1=p0 ;A�1;a;b = supa<t<bA�1;a;b(t) = supt>0 � tZa jv(x)jqdx�1=q� bZt kp0(t; y)ju(y)jp0dy�1=p0 :(a2) To prove necessity of (8) we use the well-known fact that a compactoperator maps a weakly convergent sequence into a strongly convergent one.As before we may and shall assume (10) for some t > 0 and, consequently,for all s < t. Putfs(x) = �[0;s](x)�k(s; x)ju(x)�p0�1 sgnu(x)� sR0 kp0(s; y)ju(y)jp0dy�1=p ; 0 < s < t:



150 V.D. STEPANOVThen for any �xed g 2 Lp0 we have by H�older's inequality that��� 1Z0 fs(x)g(x) dx��� � � sZ0 jg(x)jp0dx�1=p0 ! 0; s! 0:Hence, fs ! 0 is a weakly convergent sequence, and, by the hypotheses, wehave lims!0 kKfskq = 0:However, (9) yieldskKfskq = � 1Z0 jv(x)jq� xZ0 k(x; y)fs(y)u(y) dy�qdx�1=q� D�1� 1Zt jv(x)jqdx�1=q� sZ0 kp0(s; y)ju(y)jp0dy�1=p0 :Consequently, lims!0A1(t) = 0. Using the same argument with the se-quence fs(x) = �[0;s](x)ju(x)jp0�1 sgnu(x)� sR0 ju(y)jp0dy�1=p ; 0 < s < t:we obtain lims!0A0(t) = 0. The second part of (8) follows on applyingsimilar observations with respect to the dual operator which is compact,too.For the proof of su�ciency observe that if A <1 and there exists t > 0such that tZ0 kp0(t; y)ju(y)jp0dy =1;then 1Zt jv(x)jqdx = 0and we have to restrict our considerations to the interval [0; t]. Togetherwith the similar observation at the other end of the real semiaxis this showsthat without loss of generality we may and shall assume that all the factorsin Ai(t), i = 0, 1 are �nite when 0 < t <1.



WEIGHTED NORM INEQUALITIES 151Let 0 < a < b <1 andPaf = �[0;a]f; Qbf = �[x;1]f; Pabf = �[a;b]f:Then we haveKf = (Pa + Pab +Qb)K(Pa + Pab +Qb)f= PaKPaf +QbKQbf + PabKPabf +QbKPabf +QaKPaf:By (a1) restricted to the intervals [0; a] or [b;1], and (8), we havekPaKPak � maxf sup0<t<aA0(t); sup0<t<aA1(t)g ! 0; a! 0;kQbKQbk � maxfsupt>b A0(t); supt>b A1(t)g ! 0; b!1:To �nish the proof of (a2) we need the followingLemma 1.3 ([ES1], Lemma 1). Let 1 < p � q < 1 and 0 < a < b < 1,let K be an operator of the form (1) with a kernel k(x; y) � 0 satisfying (2).Then if A <1, the maps PabKPab, QbKPab and QaKPa are compact.Thus, K is compact as a limit of compact operators.(b1) We begin with the necessity part. Let 1 < q < p < 1, 1=r =1=q � 1=p, and let (7) hold. PutV0(t) = 1Zt jv(x)jqdx; Vk(t) = 1Zt kq(x; t)jv(x)jqdx;U0(t) = tZ0 ju(y)jp0dy; Uk(t) = tZ0 kp0(t; y)ju(y)jp0dy;and assume that B0 <1. To get this inequality we can proceed by changingthe weight functions u and v without changing C.We set fk = (V 1=qk U1=q00 )r=pjujp0=p sgnu:



152 V.D. STEPANOVThen B0 = kfkkp=rp , and replacing in (7) f by fk, we getCkfkkp = CBr=p0 � kKfkkq= � 1Z0 jv(t)jqdt tZ0 k(t; y)u(y)fk(y) dy� tZ0 k(t; x)u(x)fk(x) dx�q�1�1=q= � 1Z0 fk(y)u(y) dy 1Zy k(t; y)jv(t)jqdt� tZ0 k(t; x)u(x)fk(x) dx�q�1�1=q(by (9))� D�1=q0� 1Z0 fk(y)u(y) dy 1Zy kq(t; y)jv(t)jqdt� yZ0 u(x)fk(x) dx�q�1�1=q(applying (9) again we �nd that Vk(x) � D�qVk(y) if 0 < x < y)� D�1� 1Z0 fk(y)u(y)�Vk(y)�(p�1)=(p�q)dy� yZ0 ju(x)jp0U0(x) dx�q�1�1=q� Br=q0 :The above estimate givesC � �p� qp� 1�1=q0D�1B0;and the temporary assumption B0 <1 can be removed thanks to the Fatoulemma. A similar argument applied to the dual operator givesC � �p� qp� 1�1=pD�1B1;and the required lower bound follows.The proof of the su�ciency part begins exactly in the same way as theproof of (a1). Preserving the notation (11) we writeJ � kKfkqq � (J11 + J12 + J21 + J22):Applying twice H�older's inequality and then Jensen's inequality we �nd



WEIGHTED NORM INEQUALITIES 153thatJ12 =Xk xk+1Zxk jvjq� xkZxk�1 k(xk; y)u(y)f(y) dy�q�Xk xk+1Zxk jvjq� xkZxk�1 kp0(xk; y)ju(y)jp0dy�q=p0� xkZxk�1 jf(y)jpdy�q=p� �Xk � xk+1Zxk jvjq�r=q� xkZxk�1 kp0(xk; y)ju(y)jp0dy�r=p0�q=r�Xk xkZxk�1 jf(y)jpdy�q=p� rq�Xk xk+1Zxk � 1Zx jvjq�r=pjv(x)jqdx� xkZxk�1 kp0(xk; y)ju(y)jp0dy�r=p0�q=rkfkqp� rqDq�Xk xk+1Zxk � xZ0 kp0(x; y)ju(y)jp0dy�r=p0� 1Zx jvjq�r=q jv(x)jqdx�q=rkfkqp� rqBq1Dqkfkqp:Similarly we get J22 � rqBq1Dqkfkqp:As in the proof of (a1) it is clear at the moment that in the casek(x; y) = 1, the single condition B1 < 1 is necessary and su�cient for(7), and B0 � kKk � B1. Let us show that B1 � B0 in this case. This isobvious if B0 =1, therefore suppose B0 <1. Then� 1Zt jvjq�r=q� tZ0 jujp0�r=p0 = � 1Zt jvjq�r=q tZ0 d� sZ0 jujp0�r=p0� tZ0 � 1Zt jvjq�r=qd� sZ0 jujp0�r=p0= rp0 tZ0 � 1Zs jvjq�r=q� sZ0 jujp0�r=q0 ju(s)jp0ds� rp0B0 <1;



154 V.D. STEPANOVand, consequently,� 1Zt jvjq�r=q� tZ0 jujp0�r=p0 ! 0 for t! 0by the Lebesgue Dominated Convergence Theorem. Hence, integrating byparts, we see thatBr0 = 1Z0 � 1Zt jvjq�r=q� tZ0 jujp0�r=p0 ju(t)jp0dt= p0r 1Z0 � 1Zt jvjq�r=qd� tZ0 jujp0�r=p0� p0r 1Z0 � 1Zt jvjq�r=p� tZ0 jujp0�r=p0 jv(t)jqdt = p0r Br1 :Also, as in the proof of (a1), we need the slightly extended version of thiscase which can be proved easily by the change of variables.Lemma 1.4. Let 1 < q < p < 1 and let y = �(x) be a di�erentiableincreasing function on R+, such that �(0) = 0, �(1) = 1, and thus theinverse function x = ��1(y) exists. Thenv(x) �(x)Z0 fuq � Ckfkp for all f 2 Lp;if, and only if,B� = � 1Z0 � 1Z��1(t) jvjq�r=p� tZ0 jujp0�r=p0 ju(t)jp0dt�1=r <1;and, moreover, C � B�.Now we continue with the proof of su�ciency in (b1) by applying theconstruction from (a1), involving the functions �(x) and �(x) which havebeen used for the upper bound of J11 and J21. As before we haveJ11 � Dq(J (1)11 + J (2)11 ):



WEIGHTED NORM INEQUALITIES 155The estimate of J (1)11 is similar to that of J12, so we have J (1)11 � Bq1Dqkfkqp.Applying Lemma 1.4 for the upper bound of J (2)11 we �nd J (2)11 � (B(1)� )qkfkqp,where B(1)� (t) = � 1Z0 � 1Z��1(t) V (x) dx�r=q� tZ0 jujp0�r=q0 ju(t)jp0dt�1=r;and using (12) we obtain J (2)11 � Bq0kfkqp. The upper bound of J21 followsby a similar argument. Thus, combining the above estimates, we get J �Bqkfkqp and the part (b1) is established.(b2) Necessity follows immediately from (b1), and the Ando theorem[An] implies su�ciency.Theorem 1.1 is proved. �Remark 1.2. The measure of non-compactness of K : Lp ! Lq is given by�(K) = inf kK � Pk;where the in�mum is taken over all bounded linear maps P : Lp ! Lq of�nite rank. Using the restricted version of Theorem 1.1 we can show thatin the case 1 < p � q <1 we have�(K) � max(AL; AR);where AL = lima!0 kPaKPak; AR = limb!1 kPbKPbk. (See [ES1] fordetails.)1.2. Lorentz spaces. For 0 < r < 1, 0 < s � 1, and a locally inte-grable function �(x) on R+, the Lorentz space Lrs� � Lrs� (R+) consists ofall measurable functions f such that kfkrs;� <1, wherekfkrs;� = � 1Z0 �t1=rf��(t)�s dtt �1=s for 0 < s <1;kfkr1;� = supt>0 t1=rf��(t) for s =1;and f��(t) = tZ0 f�(s) ds;f�(t) = inf nx > 0: �f (x) = Zfy2R+ : jf(y)j>xg �(z) dz � to:



156 V.D. STEPANOVIf r = s, then kfkrr;� = � 1Z0 jf(x)jr�(x) dx�1=r:There is a natural extension of Theorem 1.1, (a), to Lorentz spaces. We setA0 = supt>0 A0(t) = supt>0 �[0;t](:)k(t; :)�u(:)=�(:)�r0s0;�k�[t;1]vkpq; ;A1 = supt>0 A1(t) = supt>0 k�[0;t](u=�)kr0s0;�k�[t;1](:)k(:; t)v(:)kpq; ;Theorem 1.2 ([LS]). Let K be the integral operator (1) with a kernelk(x; y) � 0 satisfying (2), and let 1 < r, p <1, 1 � s, q � 1 be such that(13) max(r; s) � min(p; q):(a1) Then(14) kKfkpq; � Ckfkrs;�; f 2 Lrs�if, and only if, A = max(A0; A1) <1and, moreover, kKk � A, where kKk is the norm of K, i.e., the leastpossible constant C in (14).(a2) If 1 < r, p < 1, 1 � s, q < 1 and (13) holds, then K : Lrs� ! Lpq is compact if, and only if, A <1 andlimt!0Ai(t) = limt!1Ai(t) = 0; i = 0; 1 : : : :Proof of Theorem 1.2 can be obtained by applying the scheme of the proofof Theorem 1.1 and Lemma 3 from [EGP], which is a substitute for Jensen'sinequality in the Lorentz spaces. �Remark 1.3. (a) The case k(x; y) = 1 of Theorem 1.2 has recently beenproved in [EGP], Theorem 3.(b) The results on the measure of non-compactness, analogous to thosementioned in Remark 1.2, are valid for Lorentz spaces. Moreover, using the\restricted" version of Theorem 1.2 and schemes from [EEH] and [ES1] it ispossible to obtain upper and lower bounds of the approximation numbersof K (see [LS] for details).(c) In Section 2.1 below a criterion is given for the boundedness of theHardy operator in Lorentz spaces in the case when (13) is not satis�ed.



WEIGHTED NORM INEQUALITIES 1571.3. Orlicz spaces. Let �: R+ ! R+ be a nonnegative, convex functionsuch that limx!0 �(x)x = 0; limx!1 �(x)x =1:Following [KR] we call � an N -function. Several authors ([BK2], [HM], [L])have recently established criteria for the validity of the inequality��12 � 1Z0 �2�jKf(x)j�j!(x)j dx�(15) ���11 � 1Z0 �1�C jf(x)j�j�(x)j dx�;where !(x) and �(x) are locally integrable, �1, �2 are two N -functionssatisfying appropriate conditions, and K is an integral operator of type (1)with a kernel monotone with respect to x and y. Using the arguments from[BK2], [L] and Lemma 1.1 we obtain the followingTheorem 1.3. Let K be the integral operator (1) with a kernel k(x; y) � 0satisfying (2), let �1, �2 be two N -functions with complementaryN -functions 	1, 	2, respectively, and such that �2 � ��11 is convex. Then(15) holds if, and only if, A <1, where A = A 0 + A 1 andA 0 = inf n� > 0: supt>0 sup�>0 tZ0 	1��(�; t)k(t; x)ju(x)j��j�(x)j � j�(x)j�(�; t) dx � 1o;A 1 = inf n� > 0: supt>0 sup�>0 tZ0 	1��(�; t)ju(x)j��j�(x)j � j�(x)j�(�; t) dx � 1owith �(�; t) = �1 ���12 � 1Zt �2��jv(x)j�j!(x)j dx�;and �(�; t) = �1 ���12 � 1Zt �2��k(x; t)jv(x)�j!(x)j dx�:Moreover, the best possible constant from (15) satis�es C � A .Remark 1.4. The statement of Theorem 1.3 is essentially taken from [BK2],Theorem 1.7. An alternative version is given in [L], Theorem 1, which



158 V.D. STEPANOValso has an extension for the kernels satisfying (2) without monotonicityconditions (we omit the details). Both papers as well as [O2] and the presentone make use of the Mart��n{Reyes and Sawyer method ([MS]), which isapplicable to the non-monotone kernels in view of the technical Lemma 1.1,which, in particular, allows to resist the temptation to reduce the problemto a continuous kernel.1.4 Schatten-von Neumann ideal norms. Let H be a separable Hilbertspace. Then the set of all linear bounded operators T : H ! H forms thenormed algebra B, where �1 is the ideal of all compact operators. Thetheory of symmetrically normed (s.n.) ideals �� � �1was developed byusing the s.n. functions � de�ned on the space of sequences with a �nitenumber of non-zero terms ([GK], Chapter 3). If T 2 �1, then T � 2 �1and (T �T )1=2 2 �1. To construct �1 the sequences of singular numberssj(T ) = �j [(T �T )1=2] were used with eigenvalues �j � 0 taken with respectto their multiplicity and in a decreasing ordering. The formula kTk�� =��sj(T )� de�nes the norm (quasinorm) in the s.n. ideal ��. The most well-known s.n. ideals are those, related to the space of sequences lp, 0 < p �1,and called �p. The norm (quasinorm) kTk = �Pj spj (T )�1=p is usuallycalled the Schatten-von Neumann norm (quasinorm). Thus, kTk�1 = kTkand kTk�2 is the Hilbert-Schmidt norm de�ned for an integral operatorTf(x) = R T (x; y)f(y) dy by the formula kTk�2 = � RR jT (x; y)j2dx dy�1=2.It is known [BS], that in general the norm kTk�p of an integral operatoressentially depends on the smoothness of its kernel when p < 2. The aim ofthis section is to present a brief account of some results from [ES2] aboutthe Schatten-von Neumann ideal norms for the integral operator (1) underthe condition (2) for its kernel.Let H = L2(0;1) and
A20 = supt>0 1Zt k2(x; t)jv(x)j2dx tZ0 ju(y)j2dy;A21 = supt>0 1Zt jv(x)2dx tZ0 k2(t; y)ju(y)j2dy:



WEIGHTED NORM INEQUALITIES 159Theorem 1.1 and the Hilbert-Schmidt formula yieldkKk�1 � A0 +A1;kKk�2 = � 1Z0 jv(x)j2dx xZ0 k2(t; y)ju(y)j2dy�1=2= � 1Z0 ju(y)j2dy 1Zy k2(x; y)jv(x)j2dx�1=2:Using these formulas and applying the real interpolation method we obtainthe followingTheorem 1.4. LetK be an operator of the form (1) with a kernel satisfying(2) and K 2 �1. ThenkKk�p �� 1Z0 h� xZ0 k2(x; y)ju(y)j2dy�p=2� 1Zx jv(y)j2dy�p=2�1jv(x)j2(16)
+ � 1Zx k2(y; x)jv(y)j2dy�p=2� xZ0 ju(y)j2dy�p=2�1ju(x)j2i dx�1=p;2 � p <1:Remark 1.5. In the case k(x; y) � 1 the formula (16) can be simpli�ed asfollows. If Hf(x) = v(x) xZ0 f(y)u(y) dy;then 12kHk�p � � 1Z0 � xZ0 ju(y)j2dy�p=2� 1Zx jv(y)j2dy� p2�1jv(x)j2dx�1=p(17) � kHk�p ; 2 � p <1:For the values 1 � p < 2 we obtain the following necessary conditions,using the approach of the recent paper by K. Nowak [Now].



160 V.D. STEPANOVTheorem 1.5. Let 1 � p < 1 and let the integral operator K 2 �p begiven by (1) with a kernel k(x; y) � 0 satisfying (2). ThenkKk�p� (2D)�1 supfamgnXm h� amZam�1 k2(amk; y)ju(y)j2dy�p=2� am+1Zam jv(x)j2dx�p=2+ � amZam�1 ju(y)j2dy�p=2� am+1Zam k2(x; am)jv(x)j2dx�p=2io1=p;where the supremum is taken over all sequences 0 < � � � < am�1 < am <am+1 < : : : .Corollary 1.1. In addition to (17) we havekHk�p � p2�p�1� 1Z0 � xZ0 ju(y)j2dy�p=2� 1Zx jv(y)j2dy� p2�1jv(x)j2dx�1=p;1 � p < 2:Now we restrict our consideration to the convolution operators with poly-nomial kernels of the formTf(x) = v(x) xZ0 Pn(x� y)u(y)f(y) dy;where Pn(x) = �nxn + � � �+ �1x+ �0; �n 6= 0is a polynomial with real coe�cients. Using the scheme developed in [ES1],we get an upper bound for kTk�p . Denote jPnj(x) = j�njxn + � � �+ j�1jx+j�0j.Theorem 1.6. Let 0 < p <1. ThenkTk�p� supfamgnXm h� amZam�1 jPnj2(am � y)ju(y)j2dy�p=2� am+1Zam jv(x)j2dx�p=2+ � amZam�1 ju(y)j2dy�p=2� am+1Zam jPnj2(x� am)jv(x)j2dx�p=2io1=p:



WEIGHTED NORM INEQUALITIES 161When �n = 1, �n�1 = 0, : : : , �0 = 0, so thatTnf(x) = v(x) xZ0 (x� y)nu(y)f(y) dy; n � 0;we obtain the following supplement to the results of Theorems 1:4 and 1:5.Corollary 1.2. Let 1 � p <1 and let n � 0 be an integer. ThenkTnk�p � supfamgnXm h� amZam�1 (am � y)2nju(y)j2dy�p=2� am+1Zam jv(x)j2dx�p=2+� amZam�1 ju(y)j2dy�p=2� am+1Zam (x� am)2njv(x)j2dx�p=2io1=p:Remark 1.6. An alternative method to obtain the estimates of the Schatten-von Neumann norms for Tn, n > 12 , in the case when u(y) = 1, is given in[NS].2. Weighted inequalities on the cones of monotone functions2.1. Let 0 < p, q < 1, and let v(x) � 0 and u(x) � 0 be locally inte-grable weight functions on R+, let f # denote a non-negative non-increasingfunction on R+, and let the similar notation f " stand for a non-decreasingfunction. Put V (t) = tZ0 v; W (t) = tZ0 w:Our �rst result is the followingTheorem 2.1. (a) Let 0 < p � q <1. Then(18) supf# � 1R0 fqw�1=q� 1R0 fpv�1=p � supt>0 W 1=q(t)V 1=p(t) � A:



162 V.D. STEPANOV(b) Let 0 < q < p <1, 1=r = 1=q � 1=p. Then(19) supf# � 1R0 fqw�1=q� 1R0 fpv�1=p � B � B+ W 1=q(1)V 1=p(1) ;where B = � 1Z0 W r=pV �r=pw�1=r; B = � 1Z0 W r=qV �r=qv�1=r:(c) The same results hold for non-decreasing functions.Of special interest is the particular case q = 1, which provides the prin-ciple of duality, that is, reverse H�older inequality for monotone functions.Corollary 2.1. (a) Let 1 < p < 1, 1=p + 1=p0 = 1, and let g(x) � 0 belocally integrable. Thensupf# 1R0 fg� 1R0 fpv�1=p � � 1Z0 � sZ0 g�p0�1V 1�p0(s)g(s) ds�(20)
� � 1Z0 � sZ0 g�p0V �p0(s)v(s) ds�1=p0 + 1R0 g� 1R0 v�1=p :(b) If 0 < p � 1, then(21) supf# 1R0 fg� 1R0 fpv�1=p � supt>0 V �1=p(t) tZ0 g:Remark 2.1. The original proof of (20) is due to E. Sawyer ([Saw2], Theorem1), as well as Theorem 2.1 for the range 1 < p, q <1, which was established



WEIGHTED NORM INEQUALITIES 163in [Saw2] in terms of embeddings of classical Lorentz spaces. In full scopeone can �nd the proof of Theorem 2.1 in [St9], Proposition 1. Also, (21)was independently proved in [CS1].Corollary 2.1 is useful in many ways. In particular, it allows to reducethe weighted inequalities for monotone functions to those for arbitrary func-tions. Another, rather curious application is that, conversely, ordinary in-equalities can be proved by using (20), too. The following theorem demon-strates this fact. Recall that the Lorentz space Lrs� � Lrs� (R+) (see Section1.2) is equipped with an equivalent quasinorm [SW]kfk�rs;� = � 1Z0 �t1=rf�(t)�s dtt �1=s; 0 < r; s <1:Theorem 2.2. Let 0 < q < r < 1, r � 1, 0 < p < 1, 1= = 1=q � 1=r,and let the operator H be given by Hf(x) = xR0 f(y)u(y) dy. Thensupf 6=0 kHfk�pq; kfk�rr;� � � 1Z0 (k�[t;1]k�pq; �d�k�[0;t](u=�)k�r0r0;���1= � B0:Proof. We begin with the su�ciency part. Suppose that f(x) � 0 is afunction with a compact support and such that 0 < kfk�rr;� <1. We havekHfk�pq; = �1q 1Z0 � 1Zt  �q=pd�Hf(t)�q�1=q :Applying (20) in the form1Z0 Gd�� � 1Z0 Gsd��1=s� 1Z0 � tZ0 d��s0�1� tZ0 d��1�s0d�(t)�1=s0 ; G #;where s = q > 1; G = � 1Zt  �q=p; d� = d(Hf)q ;d�(t) = d�k�[0;t](u=�)k�r0r0;�� ;



164 V.D. STEPANOVand using Muckenhoupt's criterion [M], we getkHfk�pq; �� 1Z0 (k�[t;1]k�pq; )d�k�[0;t](u=�)k�r0r0;���1=� � 1Z0 �k�[0;t](u=�)k�r0r0;��(1�s0)d(Hf)qs0�1=qs0=B0� 1Z0 (Hf)rd�k�[0;t](u=�)k�r0r0;��1�r�1=r�B0� 1Z0 fr��1=r = B0kfk�rr;�:Let r > 1 and kHfk�pq; � Ckfk�rr;� be held for all f 2 Lrr� . SupposeB0 <1 and let f0 be de�ned by the formulaf0(t) = (k�[t;1]k�pq; )=r�k�[0;t](u=�)k�r0r0;��r0=q0r�u(t)=�(t)�r0=r;then kf0krr;� = B=r0 < 1. We may and shall assume for the time beingwithout changing the constant C that supp � R+. Integrating by partswe �nd Ckf0k�rr;� = CB=r0 � kHf0k�pq; = � 1Z0 �Hf0(t)�q�1� 1Zt  �q=pf0(t)u(t) dt�1=q= �1q 1Z0 �Hf0(t)�qdh� � 1Zt  �q=pi�1=q :Employing�Hf0(t)�q = � tZ0 � 1Z0  �=rp� sZ0 ur0�1�r0�=rq0ur0(s)�1�r0(s) ds�q� � q0rq( + q0r)�q� 1Zt  �q=rp� tZ0 ur0�1�r0�=r0 ;



WEIGHTED NORM INEQUALITIES 165we continueCB=r0� � q0rq( + q0r)��1q 1Z0 � 1Zt  �q=rp� tZ0 ur0�1�r0�=r0dh� � 1Zt  �q=pi�1=q= � q0rq( + q0r)�� 1 1Z0 � tZ0 ur0�1�r0�=r0dh� � 1Zt  �=pi�1=q= � q0rq( + q0r)�� 1r0 1Z0 � 1Zt  �=pd� tZ0 ur0�1�r0�=r0�1=q= � q0rq( + q0r)�(r0)�1=qB=q0 ;and C � � q0rq(+q0r)�(r0)�1=qB0 follows.The limiting case r = 1 is proved in [SS]. �Remark 1.7. (i) Theorem 2.2 has been proved in a di�erent form in [Saw1],Theorem 3 and an alternative proof of it in the case 0 < q < r <1, r > 1,p = q, was given in [S1].(ii) The same theorem for the dual operator follows from the inequalitiesfor nondecreasing functions.2.2. If p > 0 and �(t) � 0 is a locally integrable function on R+ andthe nonincreasing rearrangement on R+ of a measurable function f(x) isde�ned byf�(t) = inf �s : meas �x 2 Rn; jf(x)j > s� � t	; t > 0;then the classical Lorentz spaces �p(�) and �p(�) are de�ned bykfk�p;� = � 1Z0 �f�(t)�p�(t) dt�1=p <1;and kfkp;� = � 1Z0 �1t tZ0 f��p�(t) dt�1=p <1;



166 V.D. STEPANOVrespectively. These spaces were introduced by G. G. Lorentz [L1], [L2].E. Sawyer [Saw2] found that (20) gives a powerful tool for the study of anumber of problems in �p(�)-spaces. In particular, it follows from (20) and(21) that �p(�) has the dual space of the form��p(�) = �p0��s�1V (s)��p0�(s)�; 1 < p <1;provided V (1) =1 [Saw2], and��p(�) = �1��s�pV (s)�1=p�; 0 < p � 1:The same and some other problems for �p(�)-spaces were recently solved in[GHS] by using suitable criteria like (20), (21) for the functions representableas f(x) = 1x R x0 g, 0 � g #. To this end the discretization method from [G1],G2], [G3] was used for the class of functions 
01 of the form
01 = nf(x) � 0; f(x) "; 1xf(x) # o;and a Borel measure d� on R+ with the following nondegeneracy properties1Z0 � ss+ 1�pd�(x) <1;(22) 1Z0 d�(s) = 1Z1 spd�(s) =1:(23)Under these conditions the fundamental function of the measure d� of theform ��;p(t) = � 1Z0 � ss+ 1�pd�(s)�1=pfor any �xed number a > 1 has a discretising sequence f�kg such that�0 = 1;�k+1 = t : minn��;p(�k)��;p(t) ; t��;p(t)�k��;p(�k)o = a; k � 0;�k�1 = t : minn ��;p(t)��;p(�k) ; �k��;p(�k)t��;p(t) o = a; k � 0:Such a sequence was �rst used by K. I. Oskolkov and then by a number ofauthors (see [G2] and the references given there).Applying the methods developed in [G1], [G2], [G3], we obtain the fol-lowing



WEIGHTED NORM INEQUALITIES 167Theorem 2.3. Let d� and d be Borel measures such that for d� thenondegeneracy conditions (22) and (23) are valid. Then for any p > 0 thereexists a > 1 and a discretizing sequence f�kg of the fundamental function��;p such that for 0 < q < p <1 the following formula is satis�ed(24) J � supf2
01 � 1R0 fqd�1=q� 1R0 fpd��1=p � nXk h �;q(�k)��;p(�k)iro1=r;where 1=r = 1=q � 1=p. If 0 < p � q <1, then J � supt>0 �;q(t)=��;p(t).Now, to obtain analogues of (20) and (21) for functions represented byf(x) = 1x R x0 g, 0 � g # we consider the particular case of Theorem 2.3, whenq = 1 < p < 1, d�(s) = s�p�(s) ds, and f�kg is the discretizing sequenceof the function(25) ��;p(t) = � 1Z0 �(s) ds(s+ t)p�1=p � 1t V 1=p(t):Theorem 2.4. (a) Let 1 < p <1, 0 � g(x) #, and let the nondegeneracyconditions (23) and (24) be valid for the measure d�(s) = s�p�(s) ds, where�(s) � 0 is a locally integrable function on R+. Thensup0�f# 1R0 fg� 1R0 � 1x xR0 f��(x) dx�1=p � � 1Z0 � xZ0 g�p0V(x) dx�1=p0where(26) V(x) =X ��k (x)V �p0+1(x)and ��k(x) is the Dirac �-function at the point �k.(b) Let 0 < p � 1, g(x) � 0. Thensup0�f# 1R0 fg� 1R0 � 1x xR0 f�p�(x) dx�1=p � supt>0 � tZ0 g�V �1=p(t):



168 V.D. STEPANOV2.3. This section is devoted to some applications of Theorem 2.4 to thetheory of operators in the �p(�)-Lorentz spaces and, in particular, we obtainanalogs of some results from [Saw2] proven for �p(�)-spaces. Throughoutthis section we assume that the nondegeneracy conditions for a weight func-tion �(s) � 0 of the form(27) 1Z0 �(s) ds(s+ 1)p <1; 1Z0 s�p�(s) ds = 1Z1 �(s) ds =1are satis�ed and the measure dV(x) is given by (26).Theorem 2.5. Let the nondegeneracy conditions (27) be valid for a locallyintegrable function �(s) � 0. Then��p(�) = �p0�tp0V(t)�; 1 < p <1;��p(�) = �1�tV 1=p(t)�; 0 < p � 1:Now we consider the problem of the boundedness of the Hardy{Little-wood maximal operatorMf(x) = supx2Q 1jQj ZQ jf(y)j dy; x 2 Rn;where the supremum is taken over all the cubes Q � Rn, containing thepoint x and having sides parallel to the coordinate axes. Using the resultsfrom [St8], [St10], we obtain the followingTheorem 2.6. Let 1 < p, q <1 and let �(x) � 0, w(x) � 0 be locally in-tegrable functions such that the nondegeneracy conditions (27) are satis�edfor �(x).(a) If 1 < p � q <1, then the inequality(28) kMfkq;w � Ckfkp;� ; f 2 �p;�is valid if, and only if, M = max(A0; A1; B0; B1) <1. Moreover, C �M,



WEIGHTED NORM INEQUALITIES 169where A0 = supt>0 � tZ0 w�1=q� 1Zt V�1=p0 ;A1 = supt>0 � 1Zt s�qw(s) ds�1=q� 1Zt sp0V(s) ds�1=p0 ;B0 = supt>0 � 1Zt s�q logq �st�w(s) ds�1=q� 1Zt sp0V(s) ds�1=p0 ;B1 = supt>0 � 1Zt s�qw(s) ds�1=q� 1Zt sp0 logp0 � ts�V(s) ds�1=p0 :(b) If 1 < q < p < 1, 1=r = 1=q � 1=p, then the inequality (28) is trueif, and only if, L = max(A0;A1;B0;B1) <1. Moreover, C � L, whereA0 = � 1Z0 � tZ0 w�r=p� 1Zt V�r=p0w(t) dt�1=r;A1 = � 1Z0 � 1Zt s�qw(s) ds�r=p� tZ0 sp0V(s) ds�r=p0t�qw(t) dt�1=r;B0 = � 1Z0 � 1Zt s�qw(s) ds�r=p� tZ0 sp0 logp0 � ts�V(s) ds�r=p0t�qw(t) dt�1=r;B1 = � 1Z0 � 1Zt s�qw(s) ds�r=p� tZ0 sp0 logp0 � ts�V(s) ds�r=q0tp0V(t) dt�1=r:(c) If 0 < p � 1 < q < 1, then the inequality (28) is valid if, and only



170 V.D. STEPANOVif, N = max(G0;G1:G2) <1. Moreover, C � N , whereG0 = supt>0 � tZ0 w�1=qV �1=p(t);G1 = supt>0 � 1Zt s�qw(s) ds�1=qtV �1=p(t);G2 = supt>0 � 1Zt s�q logq �st�w(s) ds�1=qtV �1=p(t):An analogous assertion holds for the Hilbert transformHf(x) = p.v. 1Z�1 f(y) dyx� y :Theorem 2.7. Let the hypotheses and the notation of Theorem 2:6 bepreserved.(a) If 1 < p � q <1, then the inequality(29) kHfkq;w � Ckfkp;� ; f 2 �p;�is valid if, and only if,MH = max(A0; A1; B0; B1; D0; D1) <1:Moreover, C �MH, whereD0 = supt>0 � tZ0 w�1=q� 1Zt logp0 �st�V(s) ds�1=p0 ;D1 = supt>0 � tZ0 logq � ts�w(s) ds�1=q� 1Zt V�1=p0 :(b) If 1 < q < p <1, 1=r = 1=q � 1=p, then (29) is true if, and only if,LH = max(A0;A1;B0;B1;D0;D1) <1. Moreover, C � LH, whereD0 = � 1Z0 � tZ0 w�r=p� 1Zt logp0 �st�V(s) ds�r=p0w(t) dt�1=r;D1 = � 1Z0 � tZ0 logq � ts�w(s) ds�r=q� 1Zt V�r=q0V(s) dt�1=r:



WEIGHTED NORM INEQUALITIES 171(c) If 0 < p � 1 < q < 1, then (29) is ful�lled if, and only if, NH =max(G0; G1; G3; G4) <1. Moreover, C � NH, whereG3 = supt>0 � tZ0 logq �st�w(s) ds�1=qV �1=p(t):References[A] K. Andersen, Weighted generalized Hardy inequalities for nonincreasing func-tions, Canad. J. Math. 43 (1991), 1121{1135.[AM] K. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities withapplications to Hilbert transform and maximal functions, Studia Math. 72(1982), 9{26.[An] T. Ando, On compactness of integral operators, Indag. Math. (N.S.) 24 (1962),235{239.[AO] O.D. Apyshev and M. Otelbaev, On the spectrum of a class of di�erentialoperators and embedding theorems, Math. USSR-Izv. 15 (1980), 1{24.[ArM] M. Arino and B. Muckenhoupt, Maximal function on classical Lorentz spacesand Hardy's inequality with weights for nonincreasing functions, Trans. Amer.Math. Soc. 320 (1990), 727{735.[AS] N. Aronszajn and P. Szeptycki, On general integral transformations, Math.Ann. 163 (1966), 127{154.[BL] J. Bergh and J. L�ofstr�om, Interpolation spaces: an introduction., SpringerVerlag, 1976.[BS] M.Sh. Birman and M.Z. Solomjak, Estimates for the singular numbers of inte-gral operators, Russian Math. Surveys 32 (1977).[BK1] S. Bloom and R. Kerman, Weighted norm inequalities for operators of Hardytype, Proc. Amer. Math. Soc. 113 (1991), 135{141.[BK2] S. Bloom and R. Kerman, Weighted L�-integral inequalities for operators ofHardy type, Preprint.[B] J.S. Bradley, Hardy's inequalities with mixed normes, Canad. Math. Bull. 21(1978), 405{408.[Br] M.Sh. Braverman, On a class of operators, J. London Math. Soc. (2) 47 (1993),119{128.[BrS] M.Sh. Braverman and V.D. Stepanov, On the discrete Hardy inequality, Bull.London Math. Soc. (1994), to appear.[CS1] M.J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator,J. Funct. Anal. 112 (1993), 480{494.[CS2] M.J. Carro and J. Soria, Boundedness of some integral operators, Canad.J. Math. 45 (1993), 1155{1166.
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