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Optimal Sobolev embeddingsLubo�s Pick1 IntroductionSobolev inequalities constitute an important part of functional analysiswith wide �eld of applications, mainly to the theory of partial di�erentialequations and to mathematical physics. There are many forms of Sobolevinequalities; their common feature is that certain information on a functionu is derived from known data on its gradient ru (or on a higher-ordergradient). By the \data" we usually mean the membership of the functionto a certain function space or class.One form of the classical Sobolev inequality asserts that, given 1 < p < nand setting p� = np=(n� p), there exists C > 0 such that�Z
 ju(x)jp� dx�1=p� � C�Z
 j(ru)(x)jp dx�1=p; u 2 C10 (
): (1.1)(Here and throughout the paper, 
 is a bounded domain in Rn , n � 2.For our convenience, with no loss of generality, we shall everywhere belowassume that j
j = 1. As usual, c; C will denote various positive constantsindependent of appropriate quantities and not necessarily the same at eachoccurrence.)In case when p > n and 
 is a Lipschitz domain, a function whosegradient belongs to Lp(
) is known to be H�older continuous, namely,supx;y2
 ju(x)� u(y)jjx� yj1�n=p � C�Z
 j(ru)(x)jp dx�1=p; u 2 C10 (
):The limiting case p = n is the most interesting (and the most di�cult)one. It is known that, for every q <1,�Z
 ju(x)jq dx�1=q � C�Z
 j(ru)(x)jn dx�1=n; u 2 C10 (
); (1.2)but standard examples show that, although np=(n� p)!1 when p! n�,one cannot take the L1-norm on the left side of (1.2). In particular, thereAMS Class.: 46E30, 46E35, 47G10, 26D10.



Optimal Sobolev embeddings 157does not exist an optimal (largest) Lq-norm on the left hand side of (1.2).However, a �ner result than (1.2) is available if we are willing to replace theenvironment of Lebesgue spaces by a broader one. Perhaps the most naturalnext step in this direction is to consider the context of Orlicz spaces. Wesay that A is a Young function when A is convex and increasing on [0;1)and limt!0+ t=A(t) = limt!1A(t)=t =1:The quantitykukA = kukLA(
) = inf�� > 0; Z
 A� ju(x)j� � dx � 1�is called the Luxemburg norm of u and the set LA = LA(
) of all functionsu such that kukA <1 is called the Orlicz space generated by A.Now, independently of one another, Pokhozhaev [Po], Trudinger [Tr] andYudovich [Y] have shown that there is a constant C such thatkukexpLn0 � C�Z
 j(ru)(x)jn dx�1=n; u 2 C10 (
); (1.3)where kukexpLn0 is the norm in the Orlicz space expLn0 , generated by anyYoung function A which is equivalent for large t to exp tn0 , n0 = n=(n� 1).This space is essentially smaller than any Lq-space with �nite q, but, natu-rally, it is essentially larger than L1.Hempel, Morris and Trudinger [HMT] showed that the expLn0 -normon the left hand side of (1.3) cannot be replaced by any essentially largerOrlicz norm. It however turns out that a further essential improvement ofthe norm on the left hand side of (1.3) is still possible if we allow a di�erentcontext of function spaces than that of Orlicz spaces. Namely, we can replacethe expLn0-norm in (1.3) by a larger, classical Lorentz norm to get, foru 2 C10 (
),�Z 10 u�(t)n� log(e=t)��n dtt �1=n � C�Z
 j(ru)(x)jn dx�1=n; (1.4)where u�(t) = inff� > 0; jfx 2 
; ju(x)j > �gj � tg, t 2 [0; 1], is thenonincreasing rearrangement of u. This inequality can be easily derivedfrom classical capacitary estimates of Maz'ya (see [M], pages 105, 109); italso appears in [Pe] (cf. [CPu] for more details), and it was stated explicitlyby Hansson ([H]) and by Br�ezis and Wainger ([BW]).



158 Lubo�s PickNow, the norm on the left hand side of (1.4) is essentially larger thanthat of (1.3) and therefore (1.4) is a better estimate than (1.3) but wehave to pay a tax for this improvement: while the de�nition of the norm inan Orlicz space involves solely superposition of functions and integration,the new function norm that appears in (1.4) contains a further nontrivialoperation: the nonincreasing rearrangement of a function.Many of the function norms that have been mentioned so far are par-ticular examples of (quasi-)norms in Lorentz-Zygmund spaces Lp;q;�(
),which were introduced and studied by Bennett and Rudnick in [BR]: for0 < p; q � 1 and � 2 R, de�nekukp;q;� = kukLp;q;�(
) := u�(t)t(1=p)�(1=q)� log(e=t)��Lq(0;1):For � = 0, Lp;q;�(
) coincides with the usual Lorentz space Lp;q(
). Thefollowing particular examples of Lorentz-Zygmund spaces are of interest:expLn0(
) = L1;1;�1=n0(
), Lp(
) = Lp;p;0(
), and the space determinedby the norm on the left hand side of (1.4) is just L1;n;�1(
).Lorentz-Zygmund spaces and Orlicz spaces are two independent classesof function spaces having a nontrivial overlap but also a nontrivial inter-section (for example, Lebesgue spaces belong to both). A more interestingexample is expLn0 , which is an Orlicz space as well as it is a Lorentz-Zygmund space. In (1.3), expLn0(
) is optimal as an Orlicz space, but itis not optimal as a Lorentz-Zygmund space, since it can be replaced byL1;n;�1(
), which is essentially smaller (see Theorem 3.2 below).We shall focus on the question when Sobolev inequalities are optimalwithin various classes of function spaces. We shall derive certain quite gen-eral results and apply them to concrete situations. A special attention willbe paid to limiting cases such as those described by (1.3) and (1.4).We will also consider inequalities involving themth order gradient,rmu,of a function u in Cm0 (
), de�ned in terms of the usual �rst order gradientr = � @@x1 ; : : : ; @@xn� and the Laplacian � = @2@x21 + � � �+ @2@x2n as follows:rmu = (�ku when m = 2k;r(�ku) when m = 2k + 1;where �ju = �(�j�1u), j = 2; : : : ; hm2 i. In order to obtain the analoguesof (1.1), (1.3) and (1.4) for rmu we have to replace n by n=m throughout(for the resulting inequalities see [M], [Pe], [Sob], [Str], [H] and [BW]).



Optimal Sobolev embeddings 159In general, we shall consider two rearrangement-invariant Banach func-tion norms %R and %D, de�ned onM+(0; 1), the set of nonnegative measur-able functions on (0; 1), for which there is a constant C such that%R�u�(t)� � C%D�jrmuj�(t)�; u 2 Cm0 (
): (1.5)We would like to know that %R cannot be e�ectively increased nor %D ef-fectively decreased.For the reader's convenience we denote by %R the range norm and by%D the domain norm of the Sobolev inequality. The function spaces cor-responding to %R and %D will be frequently called the range space or thedomain space, respectively.We will make no di�erence between Sobolev inequalities (between norms)and Sobolev embeddings (between corresponding function spaces).We shall present a survey of recent results on the subject of the optimal-ity of Sobolev embeddings, many of which have been obtained in collabora-tion with other authors, namely A. Cianchi, D.E. Edmunds, W.D. Evans,R. Kerman and B. Opic.We assume throughout that m;n 2 N, n � 2 and 1 � m � n � 1. Fortwo positive quantities A and B we write A � B when c � A=B � C.2 Reduction to Hardy operatorsOur �rst step is the reduction of (1.5) (an inequality involving gradients)to an inequality involving more manageable Hardy-type integral operatorsacting on monotone functions on (0; 1).To illustrate how the Hardy-type operators arise, let us consider thecases m = 1 and m = 2 for smooth radial functions u(x) = u(jxj) supportedin the ball B = �x 2 Rn ; jxj < �n = � ((n=2) + 1)1=n�1=2 �of unit measure centred at the origin. Setting r = jxj, one hasj(r1u)(r)j = j(ru)(r)j = ju0(r)j;with u(r) = R �nr u0(s) ds oru(�nr1=n) = �nn Z 1r f(t)t�1=n0 dt; f(t) = u0(s); s = �nt1=n:



160 Lubo�s PickSimilarly,(r2u)(r) = (�u)(r) = u00(r) + n� 1r u0(r); u(�n) = u0(�n) = 0;so thatu(r) = 12� n�r2�n Z r0 (r2u)(s)sn�1 ds+ Z �nr (r2u)(s)s ds�oru(�nr1=n) = �2nn(2� n)�r(2=n)�1 Z r0 f(t) dt+ Z 1r f(t)t(2=n)�1 dt�;with f(t) = (r2u)(s), s = �nt1=n.For general u, the connection with Hardy operators is made by a versionof the P�olya-Szeg�o inequality whenm = 1 and by a convolution inequality ofO'Neil when m > 1. This connection is sharp when u is radially decreasing.It should be clear from the example above that the case m = 1 is di�erentfrom the others, involving, as it does, one Hardy operator rather than a pairof dual Hardy operators.De�nition 2.1. Let (R; �) be a measure space such that �(R) = 1 and letM+(R; �) be the set of nonnegative �-measurable functions onR. A Banachfunction norm % on M+(R; �) is de�ned by the following six axioms (asusual, � stands for the characteristic function):(A1) %(f) � 0 with %(f) = 0 if and only if f = 0 a.e.;(A2) %(cf) = c%(f); c � 0;(A3) %(f + g) � %(f) + %(g);(A4) 0 � fn % f implies %(fn)% %(f);(A5) %(�R) <1;(A6) there exists C > 0 such thatZR f(x) d� � C%(f); f 2M+(R; �):If moreover(A7) %(f) = %(g) for every f; g such that f� = g�,then % is called a rearrangement-invariant (r.i.) norm.The associate norm of an r.i. norm % on M+(R; �) is the functional%0(g) = sup%(h)=1 ZR gh d�; g; h 2M+(R; �):



Optimal Sobolev embeddings 161In the special case when R = (0; 1) and � is the Lebesgue measure, we have%0(g) = %0d(g�); (2.1)where the \down" associate norm, %0d, is given at g by%0d(g) = sup%(h)=1 Z 10 g(t)h�(t) dt; g; h 2M+(0; 1):Then %0 and %0d are Banach function norms, %0 is moreover rearrangement-invariant, and the duality principle%00 = %holds (see [BS], Chapter 1, Theorem 2.7). Moreover, H�older's inequalityZR fg d� � %(f)%0(g)is true for every f; g 2M+(R; �).In this paper, R will be mostly either 
 or the interval (0; 1), and �will be the corresponding Lebesgue measure. In any case, we shall assumethroughout that � is atom-free.In the sequel we shall denote by P the integral mean operatorPg(t) := 1t Z t0 g(s) ds; g 2M+(0; 1); t 2 (0; 1):Now we can state the general version of the reduction theorem.Theorem 2.2. Let %R be an r.i. norm on M+(0; 1). Then, when m = 1,a necessary and su�cient condition that (1.5) hold with %R and a Banachfunction norm %D (not necessarily rearrangement-invariant) on M+(0; 1)is the existence of K > 0 for which%R�Z 1t f(s)s�1=n0 ds� � K%D(f); f 2M+(0; 1): (2.2)When n � 3 and 2 � m � n � 1, a necessary and su�cient condition that(1.5) hold for %R and another r.i. norm %D on M+(0; 1) is the existence ofK > 0 for which%R�Z 1t (Pf�)(s)s(m=n)�1 ds � � K%D(f�); (2.3)for every f 2M+(0; 1), f(1�) = 0.



162 Lubo�s PickRemark 2.3. (i) A short argument involving Fubini's theorem yields (2.3)equivalent to%R�t(m=n)�1 Z t0 f�(s) ds + Z 1t f�(s)s(m=n)�1 ds� � K%D(f�);where f 2M+(0; 1), f(1�) = 0.(ii) It is important that %D and %R in Theorem 2.2 are norms. Thesituation is di�erent when we allow quasinorms (cf. [EKP]).The proof of the su�ciency part of Theorem 2.2 follows for n � 3 andm � 2 from O'Neil's convolution inequality ([O])[P (f � g)�](t) � t(Pf�)(t)(Pg�)(t) + Z 1t f�(s)g�(s) ds; (2.4)and, when m = 1, from the following version of the P�olya-Szeg�o inequality,proved in [CPi] (cf. also [Ta], p. 203):Z t0 h� y1=n0 du�dy i�(s) ds � C Z t0 jruj�(s) ds; t 2 R+ ;where u 2 C10 (Rn ). The necessity part of Theorem 2.2 is proved by a reduc-tion of (1.5) to spherically symmetric functions. Details of the proof can befound in [EKP, Section 3].The well-known estimateju(x)j � C ZRn j(rmu)(y)jjx� yjn�m dy; u 2 Cm0 (Rn );where C > 0 depends only on m and n (see [Z], Remark 2.8.6), combinedwith (2.4), yields, for 0 < t < 1,u�(t) � C�t(m=n)�1 Z t0 jrmuj�(s) ds + Z 1t jrmuj�(s)s(m=n)�1 ds�:(The constant C is given explicitly in [Ad], p. 390.)Corollary 2.4. Let m = 1. Then (2.3) is su�cient for (1.5). If moreover%R�Z 1t (Pf�)(s)s�1=n0 ds� � C%R�Z 1t f�(s)s�1=n0 ds�; (2.5)then (2.3) is also necessary for (and hence equivalent to) (1.5).



Optimal Sobolev embeddings 163Proof. That (2.3) implies (1.5) follows from the preceding remarks. Next,Theorem 2.2 yields that (1.5) is equivalent to (2.2). The more so, (1.5)implies (2.2) restricted to monotone functions, that is,%R�Z 1t f�(s)s�1=n0 ds� � K %D(f�); f 2M+(0; 1):If now (2.5) is satis�ed, then the last estimate is equivalent to (2.3) (withm = 1).It would be of interest to be able to decide that a given r.i. norm %Rsatis�es (2.5). A su�cient condition can be expressed by means of the lowerBoyd index.Given an r.i. norm % on M+(0; 1), the lower Boyd index i% is given byi% = limt!0+ log(1=t)logh%(t) ;whereh%(t) = supf 6�0 %(Etf)%(f) ; Etf(s) = f(st); f 2M+(0; 1); 0 < s; t < 1:Theorem 2.5. Let %R be an r.i. norm onM+(0; 1). Then (2.5) holds when-ever the lower index iR of %R satis�esiR > n=(n�m): (2.6)Proof. Fix g 2 M+(0; 1), with %0R(g) = 1. Then, by Fubini's theorem andan elementary change of variable,Z 10 g�(t)Z 1t (Pf�)(s)s(m=n)�1 ds dt� Z 10 s�m=nZ 10 g�(t) Z 1st f�(y)y(m=n)�1 dy dt ds:Taking the supremum over g, we obtain%R�Z 1t (Pf�)(s)s(m=n)�1 ds� � Z 10 s�m=n%R�Z 1st f�(y)y(m=n)�1 dy� ds� �Z 10 s�m=nh%R(s) ds �%R�Z 1t f�(y)y(m=n)�1 dy�:But (see [B]), iR > n=(n�m) is equivalent to R 10 s�m=nh%R(s) ds <1.



164 Lubo�s PickEquipped with these facts, we shall now investigate the optimality of(1.3) and (1.4).3 The optimality of (1.4) in the context ofLorentz-Zygmund spacesGiven two (quasi-)normed spaces X;Y , we say that X is embedded intoY , and write X ,! Y , when X � Y and there is a C > 0 such thatkfkY � CkfkX for every f .De�nition 3.1. The fundamental function of an r.i. norm % on M+(R; �)is the function '%, de�ned at t 2 [0; 1] by'%(t) := %(�E); where �(E) = t:The function '% is quasiconcave, that is, nondecreasing on [0; 1], satisfy-ing '%(t) = 0 if and only if t = 0, and such that the function t='%(t) isnondecreasing on (0; 1).Conversely, every quasiconcave function ' on [0; 1] is a fundamentalfunction of certain r.i. space(s). Among these, of particular importance arethe endpoint Lorentz space �'(R), given bykfk�'(R) = Z 10 f�(t) d'(t);and the endpoint Marcinkiewicz space M'(R), given bykfkM'(R) = sup0<t<1(Pf�)(t)'(t):If X is an r.i. space with the fundamental function ', then�'(R) ,! X ,!M'(R): (3.1)We shall make use of the following embedding theorem from [Sh], Propo-sition 3.1 (for more general version cf. e.g. [OP], Theorem 4.6 and [EOP],Theorem 6.3; most of the results can be obtained also from various earlierones on weighted embeddings of classical Lorentz spaces|cf. e.g. [St], [Sor],or [CPSS] and the references given there).



Optimal Sobolev embeddings 165Theorem 3.2. Let 0 < p; p1; p2; q; r � 1 and let �; � 2 R.(i) If p1 > p2, then the embeddingLp1;q;�(
) ,! Lp2;r;�(
)holds.(ii) The embedding Lp;q;�(
) ,! Lp;r;�(
)holds if and only if one of the following conditions is satis�ed:0 < q � r � 1; p =1; �+ 1q � � + 1r ;0 < q � r � 1; 0 < p <1; � � �;0 < r < q � 1; �+ 1q > � + 1r :Our aim is to use Theorem 3.2 and some ideas from [EOP] to showthat the range norm in (1.4) cannot be improved in the context of Lorentz-Zygmund norms, but the domain norm can be replaced by the norm of anyof the spaces Ln;r;(1=n)�(1=r)(
); 1 � r � n: (3.2)By Theorem 3.2, for every two distinct values of r 2 [1; n], the correspondingspaces in (3.2) are incomparable (we say that two (quasi)-normed spaces X ,Y are incomparable if neither of the embeddings X ,! Y , Y ,! X holds).Theorem 3.3. (i) Assume that r 2 [1; n]. Then there exists a C > 0 suchthat for every u 2 C10 (
)�Z 10 u�(t)n� log(e=t)��n dtt �1=n� C�Z 10 �j(ru)j�(t)�rt(r=n)�1� log(e=t)�(r=n)�1 dt�1=r:(ii) Assume that for some 0 < p; q � 1 and � 2 RkukLp;q;�(
) � C�Z
 j(ru)(x)jn dx�1=n:Then, necessarily, L1;n;�1(
) ,! Lp;q;�(
):



166 Lubo�s PickProof. (i) follows immediately from Corollary 2.4 and [EOP], Theo-rem 4.2 (ii) with p2 = n, r 2 [1; n], q2 =1, s = n,  = �1, � = (1=n)�(1=r),and � = � = 0. The proof of (ii) can be obtained from Theorem 3.2and [EOP], Theorem 10.4 (ii), via a tedious veri�cation of conditions forvarious parameters involved. Details are omitted.We conclude that, in (1.4), the range norm is optimal among Lorentz-Zygmund norms, but there is no optimal Lorentz-Zygmund domain norm.Using [EOP], Lemma 9.1, we can improve on (1.4) by replacing thedomain space Ln(
) by the sum of \endpoint spaces" in (3.2), (Ln(
) +Ln;1;�1=n0(
)). We formulate the resulting inequality as a corollary.Corollary 3.4. There exists a C > 0 such that for every u 2 C10 (
)�Z 10 u�(t)n� log(e=t)��n dtt �1=n � C inff+g=jruj��Z
 jf(x)jn dx�1=n+ Z 10 t�1=n0� log(e=t)��1=n0g�(t) dt�:Remark 3.5. The result of Corollary 3.4 is a special case of [EOP], The-orem 12.6 with p = n0, r = n, � = �1=n0 and � = 0. The sumLn(
) + Ln;1;�1=n0(
) is indeed essentially larger than Ln(
); this fol-lows from Theorem 3.2. It is also of certain interest to note that thefundamental function of Ln(
) + Ln;1;�1=n0(
) is equivalent near zero tot1=n(log(e=t))�1=n0 , hence it is \better" than that of Ln(
).Now let us switch to Orlicz spaces.4 The optimality of (1.3) in the context of Orliczspaces|Part 1Given a Young function A, we de�ne its complementary function eA byeA(t) := sups>0(st�A(s)); t > 0:Given two Young functions A and B, we shall say that B � A whenA(t) � B(Ct) for some C > 0 and every large t and, moreover, for every�xed � > 0, lim supt!1 B(�t)A(t) =1:



Optimal Sobolev embeddings 167As mentioned in the Introduction, Hempel, Morris and Trudinger ([HMT])proved that expLn0(
) is the optimal (that is, the smallest possible) Orliczrange space in (1.3) when the given domain space is Ln(
). The followingremarkable general result on the optimality of an Orlicz range space wasproved recently by A. Cianchi ([Ci]).Theorem 4.1. Let A be a Young function, satisfyingZ 11 eA(s)sn0+1 ds =1 and Z 10 eA(s)sn0+1 ds <1:Set An(t) = Z tn00 ���1n (s)�n0 ds;where ��1n is the inverse function of�n(t) = Z t0 eA(s)sn0+1 ds:Then kukLAn(
) � krukLA(
); u 2 C10 (
); (4.1)and (4.1) no longer holds when An is replaced by a Young function B suchthat B � An.However, neither the result of [HMT] nor Cianchi's theorem give anyinformation on the optimality of the Orlicz domain space. Our aim in thissection is to investigate the optimality of Ln as an Orlicz domain spacein (1.3).Rather surprisingly, it will turn out that Ln(
) is not optimal as anOrlicz domain space in (1.3), and even worse, that such an optimal Orliczdomain space does not exist at all (a similar situation is described by (1.2),in which case there is no optimal Lebesgue range space).First, we need an auxiliary lemma, which can be obtained by a simpleexercise with Luxemburg norms (cf. also [Ci], Lemma 2).Lemma 4.2. Let A be a Young function and 0 6= � 2 R. De�neE�(t) = 1j�j t�1=� Z t0 A(s)s(1=�)�1 ds; t 2 (0;1);



168 Lubo�s Pickand G�(t) = 1j�j t�1=� Z 1t A(s)s(1=�)�1 ds; t 2 (0;1):Then both E� and G� are increasing and, for a 2 (0; 1=2),t��(0;a)(t)LA(0;1) �8>>>><>>>>: a�E�1� (1=a) if � > 0;a�G�1� (1=a) if � < 0;t��(a;1)(t)LA(0;1) �8>>>><>>>>: a�G�1� (1=a) if � > 0;a�E�1� (1=a) if � < 0;and Z 1t s��1�(0;a)(s) dsLA(0;1) �8>>>><>>>>: a�A�1(1=a) if � > 0;a�G�1� (1=a) if � < 0;Now we are in a position to prove the main theorem of this section (thisresult was obtained in collaboration with R. Kerman).Theorem 4.3. Let A be a Young function such thatkukexpLn0(
) � CkrukLA(
): (4.2)Then there exists another Young function, A1, say, such thatA� A1 (4.3)and kukexpLn0 (
) � CkrukLA1(
):



Optimal Sobolev embeddings 169Proof. First, we note that i% = 1 when %(f) = kfkexpLn0(0;1). Hence, byTheorem 2.5,Z 1t s�1=n0(Pf�)(s) dsexpLn0 (0;1) � CZ 1t s�1=n0f�(s) dsexpLn0 (0;1):Thus, by Corollary 2.4 with m = 1, (4.2) is equivalent toZ 1t s�1=n0(Pf�)(s) dsexpLn0 (0;1) � CkfkLA(0;1):By duality, this is equivalent toZ 1t s�1=n0(Pf�)(s) dsL eA(0;1) � CkfkL(logL)1=n0 (0;1): (4.4)Using the argument of [Ca], we obtain that (4.4) is equivalent to the same in-equality restricted to characteristic functions of intervals (0; a) for a 2 (0; 1),namely Z 1t s�1=n0(P��(0;a))(s) dsL eA(0;1) � Ca (log(e=a))1=n0 :Now, it can be easily seen that, for a 2 (0; 1=2),Z 1t s�1=n0(P��(0;a))(s) dsL eA(0;1) � akt�1=n0�(a;1)(t)kL eA(0;1);hence, by Lemma 4.2, for a 2 (0; 1),Z 1t s�1=n0(P��(0;a))(s) dsL eA(0;1) � a1=nG�1(1=a) ;where G(t) = n0tn0 R t0 eA(s)s�n0�1 ds. Passing to inverse functions, we getthat (4.2) is equivalent to the existence of some C1 > 0 such that for everyt 2 (e;1), Z t1 eA(s)sn0+1 ds � C1 log t: (4.5)



170 Lubo�s PickThus, to prove the statement of the theorem, we need to construct afunction A1 satisfying (4.3) and, for some C2 > 0,Z t1 eA1(s)sn0+1 ds � C2 log t; t 2 (e;1): (4.6)Suppose that A is �xed and that (4.5) holds. Then, with no loss of generality,we may assume that there is a C3 > 0 such thateA(t) � C3tn0 ; t 2 (e;1): (4.7)Observe that (4.5) implies that, for some C4 > 0,eA(t) � C4tn0 log t; t 2 (e;1): (4.8)Indeed, for t 2 (e;1), we haveZ 2t1 eA(s)sn0+1 ds � Z 2tt eA(s)sn0+1 ds � �1� 2�n0n0 � eA(t)t�n0 (4.9)and (4.8) follows from (4.9) and (4.5).Now, we note that, by (4.7),eA(s)s log s � csn0�1log s !1 as s!1: (4.10)Let � > 21�n0C4 be �xed. We associate to each t 2 (e;1) the setGt = ns 2 (0;1); eA(s)s log s � �(2t)n0�1o;and the number � = �(t) := inf Gt: (4.11)By (4.10), Gt 6= ;. Further, � > t, since, by (4.8),eA(s)s log s � C4sn0�1 � C4tn0�1 < �(2t)n0�1; s 2 (e; t);and, because the function eA(s)=(s log s) is continuous in s,eA(�)� log � = �(2t)n0�1: (4.12)



Optimal Sobolev embeddings 171Next, (4.7) implies that every s, satisfyingC3 sn0�1log s � �(2t)n0�1;belongs to Gt. Since the inverse function F�1 ofF (s) := sn0�1log ssatis�es for large values of tF�1(t) � �t log t�n�1;it follows that there is a C5 > 0 such that�C5t� log t�n�1;1� � ns; C3 sn0�1log s � �(2t)n0�1o � Gt:This, combined with (4.7), implies thatlog t < log � � C log t; t 2 (e;1): (4.13)We now claim that for every � > e there exists a t > 0 such that thecorresponding � = �(t) satis�es � � �t.Indeed, suppose that the claim is not true, that is, there exists a � > esuch that � � �t for every t 2 (e;1). Then, by (4.12), (4.13) and themonotonicity of eA(s)=s,�(2t)n0�1 log t < eA(�)� � eA(�t)�t ;that is, eA(�t) � �2n0�1�tn0 log t; t 2 (e;1):We therefore obtain, for su�ciently large t,Z t1 eA(s)sn0+1 ds � Z t� eA(s)sn0+1 ds � c Z t� log(s=�)s ds � c� log t�2;a contradiction with (4.5). This proves our claim. In turn, by convexity ofeA, we get, for some t0 large enough,eA(�) � 2 eA(t); t � t0: (4.14)



172 Lubo�s PickNext we claim that, for every �xed M 2 N, there exists a sequencetj %1 such that eA(�j)�j tjeA(Mtj) !1; j !1; (4.15)where �j corresponds to tj in the sense of (4.11). Suppose that our claim isnot satis�ed, namely, that there is an M 2 N and a K > 0 such thateA(�)� teA(Mt) � K; t 2 (e;1):Then, for t > Me, we have by (4.12) and (4.13)Z t1 eA(s)sn0+1 ds � Z tM eA(s)sn0+1 ds =M�n0 Z t=M1 eA(Ms)sn0+1 ds� K�1M�n0 Z t=M1 log ss ds � c� log t�2;a contradiction with (4.5). This shows (4.15). Passing to a diagonal sequenceif necessary, we obtaineA(�j)�j tjeA(jtj) !1; j !1: (4.16)We may assume with no loss of generality that t1 � t0, where t0 is from(4.14), tj > �j�1 and 2tj < �j , j � 2 (again, we can pass to a subsequencewhen necessary).Now we are ready to construct A1. We shall in fact construct eA1. Forj = 2; 3; : : : , seteA1(t) = 8><>: eA(tj) + eA(�j)� eA(tj)�j � tj (t� tj) if tj � t � �j ;eA(t) otherwise. (4.17)Obviously, eA1(t) � eA(t) for every t 2 (0;1), and, moreover, by (4.17),(4.14) and (4.16), eA1(2tj)eA(jtj) � 12 eA(�j)tjeA(jtj)�j !1; j !1:



Optimal Sobolev embeddings 173This shows that eA1 � eA, which is equivalent to (4.3).It remains to verify (4.6). Fix j 2 N and assume that t 2 [tj ; tj+1). ThenZ t1 eA1(s)sn0+1 ds � Z t1 eA(s)sn0+1 ds+ jXk=1 Z �ktk " eA(tk) + eA(�k)� eA(tk)�k � tk (s� tk)#s�n0�1 ds;(4.18)and, by (4.12) and (4.13),Z �ktk " eA(tk) + eA(�k)� eA(tk)�k � tk (s� tk)#s�n0�1 ds� C Z �ktk " eA(tk) + eA(�k)�k s#s�n0�1 ds � C eA(�k)�ktn0�1k� C log �k � C log tk: (4.19)With no loss of generality we may assume thattj � exp� j�1Xk=1 log tk�;whence, by (4.18), (4.19), (4.5), and the fact that t � tj ,Z t1 eA1(s)sn0+1 ds � C log t+ jXk=1 log tk � C(log t+ log tj) � C log t:Remark 4.4. We have shown that there is no optimal Orlicz range spacein (4.4), although, by Theorem 4.1, there is one for the correspondingSobolev inequality with the �xed domain space L(logL)1=n0(
). This showsthat (2.3) is not equivalent to (1.5) in general.5 The optimality of Sobolev embeddings in thecontext of rearrangement-invariant spacesThe surprising results of Theorems 4.3 and 3.3 motivate us to dig a littledeeper and to investigate the optimality of Sobolev embeddings in a broader



174 Lubo�s Pickcontext than in that of, say, Lebesgue, Orlicz or Lorentz-Zygmund spaces.The natural appropriate environment seems to be that of rearrangement-invariant spaces (which moreover includes all the three above-mentionedclasses of function spaces). We shall apply Theorem 2.2, as in [Ke1], to as-sociate to a given r.i. norm %R the essentially smallest r.i. norm %D for which(1.5) holds. For the sake of brevity, in the case m = 1 we restrict ourselvesto r.i. norms %R which satisfy (2.5). When this restriction is removed, wecan still obtain certain optimality results (see [EKP] for details).Theorem 5.1. Let %R be an r.i. norm on M+(0; 1).(i) Assume that (2.5) (with m = 1) holds. Then the functional%D(f) = %R�Z 1t f�(s)s�1=n0 ds�; f 2M+(0; 1); (5.1)is equivalent to an r.i. norm. Moreover, it is the optimal (that is, thesmallest) r.i. domain norm for %R in (1.5) with m = 1.(ii) Let n � 3 and 2 � m � n� 1. Then the functional%D(f) = %R�Z 1t (Pf�)(s)s(m=n)�1 ds�; f 2M+(0; 1); (5.2)is the optimal r.i. domain norm for %R in (1.5).The proof of Theorem 5.1 can be derived from Theorem 2.2, Corollary 2.4and the axioms of an r.i. norm.Remark 5.2. The condition (2.5) is not necessary for the functional%R� R 1t f�(s)s�1=n0ds� to be equivalent to an r.i. norm; consider for examplethe Lorentz norm %R(f) = R 10 f�(t)t�1=n dt. Then %R� R 1t f�(s)s�1=n0 ds� =R 10 f�(t) dt, but (2.5) is not satis�ed.Now we turn our attention to the question of the optimal range spacewhen the domain space is given.Theorem 5.3. Suppose that %D is an r.i. norm on M+(0; 1). Then thefunctional �, de�ned by�(g) = 8<:%0D(t1=n(Pg�)(t)) if m = 1%0D�Z 1t (Pg�)(s)s(m=n)�1 ds� if n � 3 and m � 29=; (5.3)is an r.i. norm on M+(0; 1). Put %R = �0. Then %R is the optimal (that is,the largest) r.i. norm for %D in (1.5).



Optimal Sobolev embeddings 175Proof of Theorem 5.3 again follows from Theorem 2.2 and the axioms ofan r.i. norm.6 Optimal pairs of Lorentz-Karamata normsOur next goal is to combine the results on the optimality of a domain normwith those on the optimality of a range norm and to investigate the opti-mality of the pair (%D; %R), that is, the question of when the %D associatedto %R in Theorem 5.1 has %R as its optimal range norm.The key obstacle is of course the fact that the optimal range norm isgiven implicitly via its associate norm by (5.3). However, we can apply theconstruction of Section 5 to a quite large family of classical Lorentz norms(the so-called Lorentz-Karamata norms), which includes almost all examplesof norms that have been mentioned so far.De�nition 6.1. A positive function b is said to be slowly varying (s.v.) on(1;1), in the sense of Karamata, if for each " > 0, t"b(t) is equivalent toan increasing function and t�"b(t) is equivalent to a decreasing function on(1;1).Example 6.2. The following functions are slowly varying on (1;1):(i) b(t) = (e+ log t)�� log(e+ log t)�� , �; � 2 R;(ii) b(t) = exp(plog t).The properties of slowly varying functions are discussed in some detailin [Zy], Chapter 2, p. 184, see also [W] and [Ke2]. We list some that will beneeded later.Lemma 6.3. Suppose that b is slowly varying on (1;1). Then(i) br is slowly varying on (1;1) for all r 2 R;(ii) R 1t�1 s�1b(s�1) ds is slowly varying on (1;1) and (see [Zy], Chapter 2,p. 186) limt!1 b(t)R 1t�1 s�1b(s�1) ds = 0; (6.1)(iii) limt!1 b(ct)b(t) = 1 for all c > 0.



176 Lubo�s PickDenote %p(g) = kgkLp(0;1); 0 < p � 1:De�nition 6.4. Let 0 < p; q � 1, and suppose b is slowly varying on(1;1). Let � = �p;q;b be given by�(t) = t(1=p)�(1=q)b(t�1); 0 < t < 1:Assume that %q(t�1=qb(t�1)) < 1 when p = 1. The Lorentz-Karamata(L-K) (quasi-)norm % = %p;q;b is given at f 2M+(0; 1) by%(f) = %q(�f�):Standard calculations (see [B]) yieldi% = p:We shall need some information on associate norms of classical Lorentznorms.Proposition 6.5. Assume that p 2 (0;1] and � 2M+(0; 1). Let%(g) = %�;p(g) := %p(�g�):Then
%0(g) � 8>>>>>>>>>><>>>>>>>>>>:

%1� t1�(1=p)(Pg�)(t)(P�p)(t)1=p � if 0 < p � 1;%p0 ��p�1Pg�P�p � if 1 < p <1;%1�g�� � if p =1; � nondecreasing:
9>>>>>>>>>>=>>>>>>>>>>; (6.2)

Proof. By (2.1), %0(g) = %0d(g�). In [Sa], Theorem 1, it was shown that if1 < p < 1 (and � is any locally integrable nonnegative function (weight)on (0; 1)), then%0d(g) � %p0��p�1PgP�p �+ %1(g)%p(�) ; g 2M+(0; 1): (6.3)



Optimal Sobolev embeddings 177It remains to observe that when g is decreasing, then the second summandon the right hand side of (6.3) is not greater than a constant multiple ofthe �rst one.The corresponding expression for 0 < p � 1 was obtained in [St], Propo-sition 1: %0d(g) � %1� t1�(1=p)(Pg)(t)(P�p)(t)1=p �; g 2M+(0; 1): (6.4)As for p =1, it is clear that when � is nondecreasing on (0; 1), then%0d(g) = %1� g��; g 2M+(0; 1): (6.5)Given the index p, 1 < p <1, and the weight � on (0; 1), withZ 10 �(t)p dt <1; (6.6)it is not di�cult to verify that%(f) = %p(�Pf�); f 2M+(0; 1); (6.7)is an r.i. norm. We will need the following result, which is of independentinterest.Theorem 6.6. Let 1 < p <1 and suppose the weight � on (0; 1) satis�es(6.6). Assume, further, that R 10 �(t)pt�p dt =1 andZ r0 �(t)p dt � Crp�1 + Z 1r �(t)ptp dt�; 0 < r < 1: (6.8)Then the r.i. norm % de�ned in (6.7) has the associate norm%0(g) � %p0( g�); g 2M+(0; 1);where  (s)p0 = dds��1 + Z 1s �(y)pyp dy�1�p0�; 0 < s < 1: (6.9)



178 Lubo�s PickProof. Observe that (t)p0 = (p0 � 1)�1 + Z 1t �(s)psp ds��p0 �(t)ptp :Hence, integrating both sides of (6.9) between 0 and t, we obtainZ t0  (s)p0 ds = �1 + Z 1t �(s)psp ds�1�p0 : (6.10)These equations, together with (2.1) and (6.2), yield%0 ;p0(g) � %p(�Pg�) = %(g):Thus, by the duality principle it su�ces to show that % ;p0 is a Banachfunction norm. According to [Sa], Theorem 4 this will be true if and only if�Z r0  p0�1=p0�Z r0 (P p0)1�p�1=p � Cr; 0 < r < 1:But, by (6.10),Z r0 ((P p0)(t))1�p dt = Z r0 tp�1�Z t0  p0�1�p dt= rpp �1 + Z 1r �(t)ptp dt�+ Z r0 tp�1 Z rt �(s)psp ds dt� Crp�1 + Z 1r �(t)ptp dt�; (6.11)sinceZ r0 tp�1 Z rt �(s)psp ds dt = 1p Z r0 �(t)p dt � Crp�1 + Z 1r �(t)ptp dt�by (6.8). The result now follows from (6.10) and (6.11).Remark 6.7. The norm (6.7) de�nes a space denoted by � p(�p) in [Sa].An expression equivalent to the associate norm, %0�p(�p) was obtainedin [GHS], but it is not always easy to compute. Theorem 2.7 thus givesa more tractable way to deal with the associate norm, provided that (6.8)is satis�ed. This is the case, for example, whenZ r0 �p � C Z 2rr �p; 0 < r < 1=2;and so, in particular, when � is essentially nondecreasing on (0; 1).More results and references on the associate spaces of classical Lorentzspaces can be found e.g. in [CPSS].



Optimal Sobolev embeddings 179We shall frequently use various weighted estimates for integral operatorson (0; 1) (possibly restricted to monotone functions). Of the vast literatureavailable on this subject, our standard general reference is [OK] and, whenthe restricted version is needed, [Sa].We can now state the main results of this section. First we discuss thecase m = 1.Theorem 6.8. Let p 2 (n0;1] and q 2 [1;1], and suppose that b isa slowly varying function on (1;1) such that �(t) = t(1=p)�(1=q)b(t�1) sat-is�es %q(�) <1. Let%R(f) = (%q(�f�) when p > q;%q(�Pf�) when p � q;and %D(f) = %R�Z 1t f�(s)s�1=n0 ds�:Then %R and %D are optimal r.i. norms in (1.5) (with m = 1).Proof. In view of Theorem 5.1, only the optimality of %R needs to be shown.To this end, we prove %0R(g) � %0D(t1=n(Pg�)(t));and then invoke Theorem 5.3. Now, one always has%0R(g) � %0D(t1=n(Pg�)(t)):This is readily seen, via Fubini's theorem and H�older's inequality, from%0D(t1=n(Pg�)(t)) = supf 6�0 R 10 g�(t) R 1t f(s)s1=n0 ds dt%D(f)� supf 6�0 %0R(g)%R �R 1t f(s)s�1=n0 ds�%D(f)and the de�nition of %D(f). Hence, it just remains to show%0D(t1=n(Pg�)(t)) � c%0R(g):



180 Lubo�s PickWe shall only sketch the proof in the case when 1 < q <1.By known weighted inequalities for Hardy integral operators we have%R(f) � %q(�f�):Thus, by (6.2), %0R(g) � %q0��q�1P�q Pg�� � %q0�Pg�� �: (6.12)Again, %D(f) � %q(t1=n�(t)f(t)):So, by (6.12),%0D(t1=n(Pg�)(t)) � c%q0 � t�1=nt1=n(Pg�)(t)�(t) � � c%0R(g):In the case m � 2 we have the following result:Theorem 6.9. Let n � 3 and 2 � m � n � 1. Let 1 � p; q � 1, and letb; � and %R be as in Theorem 6.8. Given f 2M+(0; 1), de�ne%D(f) = %R�Z 1t Pf�(s)s(m=n)�1 ds�:Then %R and %D are optimal r.i. norms in (1.5) if either p > n=(n�m) orp = n=(n �m), q = 1 and b is bounded away from zero. In all the othercases of p; q and b, %D is optimal but %R is not.Proof. Once again, just the optimality of %R is in question. We examine thisby cases.Case 1: n=(n�m) < p � 1Assume that 1 < q < 1. It is easy to see that it su�ces to get %Roptimal in (1.5) for some r.i. norm. In view of Theorem 5.3, we need onlyto �nd an r.i. norm % such that%0R(g) � %0�Z 1t (Pg�)(s)s(m=n)�1 ds�: (6.13)



Optimal Sobolev embeddings 181Since p0 < n=m, we have %R(f) � %q(�f�), so, from (6.2),%0R(g) � %q0( Pg�); (6.14)where  (t) =8><>:�(t)�1; when p <1;t1=qb(t�1)q�1R t0 s�1b(s�1)q ds ; when p =1:We claim that a suitable choice for % is the one with associate norm%0(g) = %q0(t�m=n (t)(Pg�)(t)):A weighted inequality for the operator P yields%0(g) � %q0(t�m=n (t)g�(t)): (6.15)Now,%0�Z 1t (Pg�)(s)s(m=n)�1 ds�� %q0��(0;1=2)(t)t�m=n (t) Z 2tt (Pg�)(s)s(m=n)�1 ds�� c%q0��(0;1=2)(t) (2t)(Pg�)(2t)� � c%0R(g):Similarly, using (6.15) and (6.14),%0�Z 1t (Pg�)(s)s(m=n)�1 ds� � %q0�t�m=n (t) Z 1t (Pg�)(s)s(m=n)�1 ds�� C%q0( Pg�) � C%0R(g);whence (6.13) is veri�ed. The proof in other cases of q is similar.Case 2: p < n=(n�m) or p = n=(n�m) and %q(t�1=qb(t�1)) <1In this case, %D(f) � %1(f). Indeed,%D(f) = %q��(t) Z 1t (Pf�)(s)s(m=n)�1 ds�� %q��(t)%1(f�) Z 1t s(m=n)�2 ds� � C%1(f);



182 Lubo�s Pickand the converse inequality follows from the axiom (A6) of the r.i. norm,applied to % = %D.The optimal r.i. range norm for %1 is the classical Lorentz norm�(f) = %1(t1�(m=n)f�(t)):This follows from Theorem 5.3, since%01�Z 1t (Pg�)(s)s(m=n)�1 ds� = %1�Z 1t (Pg�)(s)s(m=n)�1 ds�= %1(Pg�(t)t(m=n)�1) � %1(t(m=n)�1g�(t)) � �0(g):We conclude that %R is optimal if and inly if p0 = n=m, q = 1, and b isequivalent to a constant.Case 3: p0 = n=m and %q(t�1=qb(t�1)) =1By Theorem 5.3, the optimality of %R in (1.5) is equivalent to%0R(g) � %0D�Z 1t (Pg�)(s)s(m=n)�1 ds�: (6.16)We start with 1 < q <1. By weighted inequalities for P and its dual,%D(f) � %q��(t) Z 1t (Pf�)(s)s(m=n)�1 ds� � %q(tm=n�(t)(Pf�)(t));so, by Theorem 6.6,%0D(g) � %q0( g�);  (t) = t�1=q0b(t�1)q�11 + R 1t s�1b(s�1)q ds :Direct calculation yields%0D�Z 1t (P�(0;a))(s)s(m=n)�1 ds� � am=n�1 + Z 1a s�1b(s�1)q ds��1=q ;and %0R(�(0;a)) � a%R(�(0;a)) � aa1=pb(a�1) = am=nb(a�1)�1:



Optimal Sobolev embeddings 183Thus,%0D �R 1t (P�(0;a))(s)s(m=n)�1 ds�%0R(�(0;a)) = " b(a�1)q1 + R 1a s�1b(s�1)q ds#1=q ! 0as a ! 0+ by (6.1). As this is not compatible with (6.16), %R cannot beoptimal.Let q = 1. Then, by Fubini's theorem,%R(f) = %1�f�(t) Z 1t s(1=p)�2b(s�1) ds� � %1(�f�);since b is slowly varying. Denoting�(t) = Z 1t�1 s�1b(s�1) ds; 1 < t <1;and using Fubini's theorem and the slow variance of b, we obtain%D(f) � %1��(t) Z 1t (Pf�)(s)s(m=n)�1 ds�� %1(b(t�1)(Pf�)(t)) � %1(�(t�1)f�(t));Therefore, from (6.4) and the slow variance of b (hence of �)%0R(g) � %1�Pg�P� � � %1�g�� �;and %0D(g) � %1 R t0 g�(s) dsR t0 �(s�1) ds! � %1� g�(t)�(t�1)�:In particular,%0D�R 1t (P�(0;a))(s)s(m=n)�1 ds�%0R(�(0;a)) � am=n�1 + R 1a s�1b(s�1) ds��1am=nb(a�1)�1� b(a�1)1 + R 1a s�1b(s�1) ds ! 0 as a! 0+ :



184 Lubo�s PickAs before, this rules out (6.16), whence %R is not optimal.Finally, let q =1. Then%R(f) = %1(�Pf�) � %1(�f�);so, by (6.5) %0R(g) � %1�g�� �;moreover,%D(f) � %1��(t) Z 1t (Pf�)(s)s(m=n)�1 ds� � %1(tb(t�1)(Pf�)(t)):If b(t) � 1, then one readily veri�es that%0D�Z 1t (Pg�)(s)s(m=n)�1 ds� � %0R(g)whence %R is optimal. In other cases we may assume that b is continuousand (replacing b(t) by �(t) = infs>t b(s), if necessary) that it increases toin�nity. If, in addition, we require that ddtb(t�1)�1 is nonincreasing, then%0D(g) = %1� ddtb(t�1)�1g�(t)�;and hence, applying Fubini's theorem twice,%0D�Z 1t (Pg�)(s)s(m=n)�1 ds� � %1�� ddtb(t�1)�1�Z 1t (Pg�)(s)s(m=n)�1 ds�= %1(t(m=n)�1b(t�1)�1(Pg�)(t)) � %1(t(m=n)�1b(t�1)�1g�(t)) � %0R(g):Thus, %R is optimal, again. We conclude that %R is optimal if and only ifq =1 and b increases to in�nity.7 ExamplesWe present here examples of norms, %D and %R, which, in view of Theo-rems 6.8, 6.9 and 5.1, are optimal in (1.5). Throughout this section, b isa slowly-varying function on (1;1).



Optimal Sobolev embeddings 185Example 7.1 (nonlimiting case). Let 1 < p < n=m and let%D(f) = %p(f)and %R(f) = %p�t�m=nf�(t)�:Then (%R; %D) is an optimal pair of r.i. norms in (1.5).Indeed, this follows for m > 1 from Theorem 6.9 on observing that%p�t�m=n Z 1t (Pf�)(s)s(m=n)�1 ds� � %p(Pf�) � %p(f):When m = 1, we have to combine the arguments of Theorems 6.8 and 5.1 (i)and note that (2.5) is satis�ed because i%R = np=(n� p) > n0.In particular, this improves (1.1) in the following sense: the range spaceLp�(
) in (1.1) can be replaced by the (smaller) Lorentz space Lp�;p(
).That is a well-known fact, but here we may moreover conclude that Lp�;p(
)is the smallest possible such rearrangement-invariant space.Example 7.2 (limiting case). Suppose that %D(f) = %n=m(f) and that%R is the norm of the Lorentz-Zygmund space L1;n=m;�1:%R(f) = %n=m�t�m=n� log(e=t)��1f�(t)�: (7.1)Then %R and %D are r.i. norms satisfying (1.5); moreover, by Theorems 5.3and 6.6, %R is optimal, though %D is not (see Corollary 3.4). The %R givenby (7.1) and the %D, de�ned by%D(f) = %n=m�t�m=n� log(e=t)��1 Z 1t (Pf�)(s)s(m=n)�1 ds�� %n=m�t�m=n� log(e=t)��1 Z 1t f�(s)s(m=n)�1 ds�are optimal in (1.5).For m > 1, this follows from Theorem 6.9 with p = 1, q = m=n andb(t) = (log t)�1. When m = 1, we have i%R = 1, whence, by Theorem 2.5,(2.5) is satis�ed. The assertion then follows, as above, from the combinationof arguments of Theorem 5.1 (i) and Theorem 6.8.



186 Lubo�s PickExample 7.3 (limiting case|a general version). The above examplecan be formulated for a general slowly-varying function as follows: Ther.i. norms %D(f) = %n=m�t�m=nb(t�1) Z 1t (Pf�)(s)s(m=n)�1 ds�� %n=m�t�m=nb(t�1) Z 1t f�(s)s(m=n)�1 ds�and %R(f) = %n=m�t�m=nb(t�1)f�(t)�are optimal in (1.5).When b(t) = �1 + log �1 + log t���1, this result extends and gives thebest possible re�nement of the double-exponential analogue of (1.3), provedin [EGO].Example 7.4 (the optimal domain space for L1(
)). Take%D(f) = %1�b(t�1) Z 1t (Pf�)(s)s(m=n)�1 ds�� %1�b(t�1) Z 1t f�(s)s(m=n)�1 ds�and %R(f) = %1�b(t�1)(Pf�)(t)� � %1�b(t�1)f�(t)�:Then (%D; %R) is an optimal pair of r.i. norms in (1.5). Given b(t) � 1and m = 1, this yields the pair %D(f) = %1�t�1=n0f�(t)� and %R(f) =%1(f). In other words, when L1(
) is the target space, then the opti-mal rearrangement-invariant domain space is the Lorentz space Ln;1(
).This fact was obtained also in [CPi], Theorem 5.3, by di�erent means (seeTheorem 10.2 below).8 The optimal rearrangement-invariant domain spacein (1.4)A particular case of Example 7.2 �nishes the analysis of the optimality of thelimiting case of Sobolev inequality initiated by the domain space Ln(
). We



Optimal Sobolev embeddings 187can reformulate the result in terms of function spaces in the following way:For the domain space Ln(
), the smallest possible rearrangement-invariantrange space is the Lorentz-Zygmund space L1;n;�1(
). However, thenLn(
) is not optimal (the largest possible) rearrangement-invariant domainspace for the Sobolev embedding into L1;n;�1(
). This is already knownto us from Corollary 3.4. By Theorem 5.1 (i), the optimal rearrangement-invariant domain space, denoted by X = X(
), say, is normed bykfkX = Z 1t s�1=n0(Pf�)(s) dsL1;n;�1(0;1): (8.1)We shall see that the space X is still essentially larger than �Ln(
) +Ln;1;�1=n0(
)�, obtained by Evans, Opic and Pick (Corollary 3.4 above). Itturns out that X is a new type of a very important function space. Ourgoal in this section is to carry out a detailed study of X , in particular todescribe its relations to familiar function spaces.First we recall the important fact that there exists exactly one Orliczspace per a fundamental function.Remark 8.1. Given a quasiconcave function ' on [0; 1], then there existsexactly one (up to equivalence of norms) Orlicz space LA(R) whose funda-mental function is '. This space is determined by the Young function A,satisfying A(t) � 1'�1(1=t) ; t 2 (1;1):Then, of course, by (3.1)�'(R) ,! LA(R) ,!M'(R);and LA(R) may coincide with either (or both) of the endpoint spaces.The main result of this section is the following theorem.Theorem 8.2. Let the space X be de�ned by (8.1). Then(i) the fundamental function 'X of X satis�es'X (t) � t1=n� log(e=t)��1=n0 ; t 2 (0; 1); (8.2)(ii) the following relations hold:�Ln(
) + Ln;1;�1=n0(
)� ,! X; (8.3)



188 Lubo�s PickX � �Ln;n;�1=n0(
) \ \�>1Ln;1;��=n0(
)�; (8.4)and both the embedding (8.3) and the inclusion (8.4) are strict;(iii) X is incomparable to every space from the scale of Lorentz-Zygmundspaces �Ln;r;�1=n0(
)	; r 2 (1; n);(iv) X is incomparable to every space from the scale of Orlicz spaces�Ln;n;��=n0(
)	; � 2 (0; 1):Proof. To show (i) is an easy exercise. We shall prove (ii) in several steps.First, since Ln;1;�1=n0(
) is the endpoint Lorentz space correspondingto the fundamental function 'X from (8.2), it follows from (i) and (3.1) thatLn;1;�1=n0(
) ,! X:We next observe that Ln(
) is admissible as a domain space in theSobolev embedding with the range space L1;n;�1(
), and X is the largestsuch space. Hence it must be Ln(
) ,! X;showing (8.3). We shall verify that this embedding is strict.Using [BS], Chapter 3, Exercise 5, we obtain a formula for the associatespace of (Ln(
) + Ln;1;�1=n0(
)), namely�Ln(
) + Ln;1;�1=n0(
)�0 = �Ln0(
) \ Ln0;1;1=n0(
)�:Thus, it will su�ce to �nd f 2 X and g 2 �Ln0(
) \ Ln0;1;1=n0(
)� suchthat R 10 f�g� = 1. A little calculation shows that such functions are, forexample, those having rearrangementsf�(t) = 1Xk=1 ak�Ik(t); g�(t) = 1Xk=1 bk�Ik (t);where Ik are the intervals � exp(�2k+1); exp(�2k)�, k 2 N, and the se-quences fakg, fbkg are de�ned byak = k�12k=n0 exp�2kn �; bk = 2�k=n0 exp�2kn0 �:



Optimal Sobolev embeddings 189There are several ways of showing thatX ,! Ln;n;�1=n0(
): (8.5)For example, one can use weighted estimates on Hardy-type operators re-stricted to monotone functions. We present a simple direct proof.First, kfkX � Z 1t s�1=n0f�(s) dsL1;n;�1(0;1):It will be useful to observe thatkfknX � Z 10 t�1 (log(e=t))�n�Z 1t s�1=n0f�(s) ds�n dt; (8.6)and kfknn;n;�1=n0 = Z 10 (log(e=t))1�n f�(t)n dt� Z 10 t�1 (log(e=t))�n Z 1t f�(s)n ds dt (8.7)We claim that, for t 2 (0; 1=2),Z 10 f�(y)nmin(t; y) dy � C Z t0 �Z 1s f�(y)y�1=n0 dy�n ds: (8.8)Indeed,Z t0 �Z 1s f�(y)y�1=n0 dy�n ds � Z t0 �Z 2ss f�(y)y�1=n0 dy�n ds� c Z t0 f�(2s)ns ds � c Z t0 f�(s)ns ds; (8.9)and alsoZ t0 �Z 1s f�(y)y�1=n0 dy�n ds � Z t=20 �Z 1s f�(y)y�1=n0 dy�n ds� ct�Z 1t=2 f�(y)y�1=n0 dy�n: (8.10)



190 Lubo�s PickNow, an argument similar to that of [Ca], Theorem 7, shows that�Z 1t f�(y)n dy�1=n � C Z 1t=2 f�(y)y�1=n0 dy; t 2 (0; 1):Combined with (8.10) and (8.9), this yields (8.8).Now, (8.8) can be rewritten, using Fubini's theorem, asZ t0 Z 1s f�(y)n dy ds � C Z t0 �Z 1s f�(y)y�1=n0 dy�n ds:Hence, by Hardy's lemma ([BS], Chapter 2, Proposition 3.6),Z 10 t�1� log(e=t)��n Z 1t f�(s)n ds dt� C Z 10 t�1� log(e=t)��n�Z 1t f�(y)y�1=n0 dy�n dt; (8.11)and (8.5) follows from (8.6), (8.7) and (8.11).It is easy to show that X 6= Ln;n;�1=n0(
);as this would contradict Theorem 4.1.In order to prove the embeddingX ,! Ln;1;��=n0(
); � > 1; (8.12)we de�neu(t) = 1t � log(e=t)��(�=n0)�1; w(t) = 1t � log(e=t)��n:Note that kfkn;1;��=n0 = Z 10 u(t) Z 1t f�(y)y�1=n0 dy dtand kfkX = �Z 10 w(t)�Z 1t f�(y)y�1=n0 dy�n dt�1=n;



Optimal Sobolev embeddings 191hence (8.12) follows from the weighted embeddingZ 10 g(t)u(t) dt � C�Z 10 g(t)nw(t) dt�1=n; g 2M+(0; 1);which is (cf. [Ka], [Av]) equivalent toZ 10 � u(t)w(t)�n0w(t) dt <1: (8.13)It is a matter of a simple calculation to verify (8.13).To prove that X 6= \�>1Ln;1;��=n0(
);it is enough to take any functiong 2 \�>1Ln;1;��=n0(
) n Ln;n;�1=n0(
)(this set di�erence is not empty, cf. [EOP]).This �nishes the proof of (ii).(iii) It is easy to verify that the functiong(t) = t�1=n� log(e=t)��1=nsatis�es g 2 Ln;r;�1=n0(
) nX; 1 < r < n:Conversely, every function h�, whose rearrangement ish��(t) = 1Xk=1�[exp(�2k+1);exp(�2k))(t)k��2k=n0 exp�2kn � ;satis�es h� 2 X n Ln;r;�1=n0(
) when 1n < � < 1r :(iv) By Theorem 3.2 (ii),Ln;n;��=n0 ,! Ln;r;�1=n0 if 0 < � < 1 and n0(n0 � �) < r < n:



192 Lubo�s PickTherefore, we conclude that, for � 2 (0; 1),X 6,! Ln;n;��=n0(
);as the embedding would imply X ,! Ln;r;�1=n0(
) and thus contradict (iii).Conversely, assume that, for some � 2 (0; 1), the embeddingLn;n;��=n0(
) ,! Xholds. Then (recall that Ln;n;��=n0(
) coincides with the Orlicz spaceLA(
) where A(t) � tn(log t)�(1�n)) we get a contradiction with Theo-rem 4.1.Remark 8.3. It has been recently brought to our attention that spacesof type X appear naturally also in certain limiting interpolation problems(see [CPu], [Pu]).9 The optimality of (1.3) in the context of Orliczspaces|Part 2Let us now return to the question of the optimality of (1.3) in the contextof Orlicz spaces. Theorem 4.1 of A. Cianchi shows that, given a �xed Orliczdomain space, there always exists the optimal Orlicz range space. On theother hand, the situation described in Theorem 4.3 shows that for a givenOrlicz range space, the optimal Orlicz domain space need not necessarilyexist. Still, this situation is not universal: consider the simplest possibleexample of Orlicz range space, i.e. a Lebesgue space Lq(
), n0 < q < 1.Then it can be shown that the optimal Orlicz domain space is the Lebesguespace Lr(
) with r = qnq + n < q: (9.1)A natural question now occurs: what governs the di�erence betweenthe case represented by the range space expLn0(
) (for which there is nooptimal Orlicz domain space) and the case represented by the range spaceLq(
), q 2 (n0;1) (for which the optimal Orlicz domain space is readilyfound)?Certain insight into this problem is achieved when the \optimal funda-mental function" is calculated and the corresponding Orlicz space is con-sidered. We shall give the details below, but perhaps it might be helpful tothe reader if we outline the idea �rst:



Optimal Sobolev embeddings 193(i) start with a given Orlicz range space LA;(ii) �nd the corresponding optimal rearrangement-invariant domain spaceX ;(iii) calculate its fundamental function ' = 'X ;(iv) �nd the (unique) Orlicz space whose fundamental function is equivalentto ', denote this space by LB ;(v) �nd out whether or not LB is a candidate as a domain space for theSobolev embedding into LA;(vi) if the answer to the question in (v) is a�rmative, then LB is the optimalOrlicz domain space for LA in (1.5).Now, when LA = Lq, q 2 (n0;1), then X is the Lorentz space Lr;qwith the r from (9.1), '(t) = t1=r, and therefore LB = Lr, which is a goodcandidate for the Sobolev embedding into Lq. Thus, it is the optimal Orliczdomain space for such embedding. On the other hand, when LA = expLn0 ,then X is the space given by (8.1), the optimal fundamental function 'is by (8.2) equivalent to t1=n(log(e=t))�1=n0 , and LB = Ln;n;�1=n0 , whichis the Orlicz space generated by the Young function B satisfying B(t) �tn� log t)1�n for large t. It follows from Theorem 4.1 that LB is too big tobe a candidate for the Sobolev embedding into expLn0 .This relatively simple observation can be extended to a general principlewhich provides us with a su�cient condition for the existence of an optimalOrlicz domain space.We shall �rst determine the optimal fundamental functions. The proofof the following proposition is an easy exercise.Proposition 9.1. (i) Let %R be a rearrangement-invariant norm onM+(0; 1). In case m = 1 assume further that (2.5) holds. Let %D be givenby (5.2). Then%D(�(0;a)) � a%R��(a;1)(t)t(m=n)�1�; a 2 (0; 1=2):(ii) Let %D be a rearrangement-invariant norm. Let � be given by (5.3) (with% = %D) and set %R = �0. Then%R(�(0;a)) � 1%0D��(a;1)(t)t(m=n)�1� ; a 2 (0; 1=2):Of course, the above-outlined procedure works as well for any givenr.i. range space which is not necessarily an Orlicz space. Here is a generalsu�cient condition for the existence of the optimal Orlicz domain spacewhen an arbitrary r.i. range space is given.



194 Lubo�s PickTheorem 9.2. Let %R be a rearrangement-invariant norm on M+(0; 1)such that (2.5) holds when m = 1. Let %D be given by (5.2). Assume thatthere exists a quasiconcave function ' on [0; 1], satisfying'(t) � t%R��(t;1)(s)s(m=n)�1�; t 2 (0; 1=2): (9.2)Let A be a Young function such thatA(t) � 1'�1(1=t) ; t 2 (1;1):Assume that there is a C > 0 such that, for every u 2 LA(
),%D(u�) � CkukLA(
): (9.3)Then for every u 2 C10 (
)%R(u�) � CkrmukLA(
);and LA(
) is the optimal (largest) such Orlicz space.Proof. This readily follows from the fact that there is only one Orlicz spaceper a fundamental function (cf. Remark 8.1). More precisely, suppose LB(
)is another such space with A� B. Then, since %D is the optimal r.i. domainspace, we get for every u 2 LA(
)%D(u�) � CkukLB(
) � kukLA(
):By assumptions of the theorem, %D and k � kA have the same fundamentalfunction, equivalent to '. Thus, necessarily, the fundamental function ofk � kB is also equivalent to ', which contradicts A� B.For the case when %R is an Orlicz norm, we have the following result,which follows immediately from Theorem 9.2, (9.2) and Lemma 4.2.Theorem 9.3. Let B be a Young function. If m = 1, we assume that thenorm %, given by %(f) = kfkLB(0;1), satis�es (2.5). Suppose that there isa quasiconcave function ' on [0; 1], satisfying'(t) � tm=n �1(t) ; t 2 (0; 1=2);where  �1 is the inverse function of (t) = tn=(n�m) Z t0 B(s)s(n=(n�m))+1 ds:



Optimal Sobolev embeddings 195Let A be a Young function such thatA(t) � 1'�1(1=t) ; t 2 (1;1):Assume that there is a C > 0 such that, for every f 2 LA(0; 1),Z 1t (Pf�)(s)s(m=n)�1 dsLB(0;1) � CkfkLA(0;1):Then LA(
) is the optimal (largest) Orlicz domain space such thatkukLB(
) � CkrmukLA(
):Remark 9.4. It is not known to us whether or not the condition (9.3) isalso necessary for the existence of the optimal Orlicz domain space.10 The optimal domain spaces for Sobolevembeddings into L1, BMO and VMO.We conclude with a brief survey of results from [CPi] on the optimality ofdomain space for a Sobolev embedding of order 1 when the range space iseither BMO or VMO. The space BMO of functions having bounded meanoscillation, introduced by John and Nirenberg [JN], has proved to be partic-ularly useful in various areas of analysis, especially harmonic analysis andinterpolation theory. For example, it serves as an appropriate substitute forL1 when L1 does not work. In this section we establish necessary andsu�cient conditions for the membership of a function to BMO, VMO, or toL1 in terms of the summability properties of its gradient.De�nition 10.1. Let Q be a cube in Rn such that jQj = 1. The spaceBMO(Q) is the class of real-valued integrable functions on Q such thatkfk�;Q = supQ0�Q 1jQ0j ZQ0 jf(x)� fQ0 j dx <1;where the supremum is extended over all subcubes Q0 of Q, and fQ0 =jQ0j�1 RQ0 f . Let us recall that BMO is not a Banach space, although it canbe turned into one by introducing the normkfkBMO(Q) = kfk�;Q + kfkL1(Q):



196 Lubo�s PickWe say that a function f : Q ! R belongs to VMO(Q), the space offunctions with vanishing mean oscillation, if limt!0+ �f (t) = 0, where�f (t) = supjQ0j�t 1jQ0j ZQ0 jf(x)� fQ0 j dx; t 2 (0; 1):Throughout this section, ifX = X(Q) is an r.i. space onM+(Q), then wedenote by %X its representation r.i. norm on (0; 1), that is, kukX := %X(u�)for every u 2M+(Q) (see [BS] for details).We start with recalling the result on L1(Q) (cf. Example 7.4 above),formulated in a slightly modi�ed way.Theorem 10.2. Let X(Q) be an r.i. space on M+(Q). Then the followingstatements are equivalent:(i) kukL1(Q) � C%X(jruj�); u 2 C10 (Q);(ii) %0X�t�1=n0�(0;1)(t)� <1;(iii) X(Q) ,! Ln;1(Q).In other words, the space Ln;1(Q) is the largest r.i. space X(Q) that ren-ders (i) true.Main results of this section are the following two theorems. The tech-niques of proofs are based on the notion of signed nonincreasing rearrange-ment. Details can be found in [CPi].Theorem 10.3. Let X(Q) be an r.i. space on M+(Q). Then the followingstatements are equivalent:(i) kuk�;Q � C%X(jruj�); u 2 C10 (Q);(ii) sup0<t<1 t�1 %0X�s1=n�(0;t)(s)� <1;(iii) X(Q) ,! Ln;1(Q).In other words, the space Ln;1(Q) is the largest r.i. space X(Q) that ren-ders (i) true.Theorem 10.4. Let X(Q) be an r.i. space on M+(Q). Then the followingstatements are equivalent:(i) limt!0+ sup%X (jruj�)�1 �u(t) = 0;(ii) limt!0+ t�1%0X�s1=n�(0;t)(s)� = 0;(iii) X(Q) � (Ln;1)a(Q), where (Ln;1)a(Q) is the set of all functions havingabsolutely continuous norm in Ln;1(Q).



Optimal Sobolev embeddings 197In particular, for Orlicz spaces we get the following results:Corollary 10.5. Let A be a Young function.(i) The embedding kuk�;Q � CkrukLA(Q); u 2 C10 (Q); (10.1)holds if and only if there is a C > 0 such that for all large tZ t0 eA(s) ds � Ctn0+1:(ii) The embeddingkukL1(Q) � CkrukLA(Q); u 2 C10 (Q); (10.2)holds if and only if Z 11 eA(s)s�n0�1 ds <1:To conclude, let us investigate the existence of an optimal Orlicz domainspace.Theorem 10.6. (i) The space Ln(Q) is the largest Orlicz space LA(Q)such that (10.1) holds.(ii) There does not exist any largest Orlicz space LA(Q) such that (10.2)holds.The assertion (i) recovers a result obtained earlier by Fiorenza in [F] bydi�erent means. It can be also shown by a method analogous to that of theproof of Theorem 9.2.Acknowledgements: This research was partly supported by the grantno. GR/L79236 from the EPSRC, NATO Collaborative Research GrantOUTR.CRG 970071, Royal Society grant rc/jp/nov, and grants no.201/94/1066 and 201/97/0744 of the Grant Agency of the Czech Republic.The author wishes to thank B. Opic and A. Kufner for a careful readingof the text and for many valuable comments.
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