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Some results in the theory of Orlicz spaces
and applications to variational problems

ANDREA CIANCHI

1 Introduction

The purpose of these notes is to report some contributions to the theory
of interpolation and of Sobolev inequalities in Orlicz spaces and to pre-
sent a few applications to nonlinear problems of the calculus of variations
and partial differential equations whose nonlinearities are not necessarily of
power type.

After recalling the necessary background (Section 2), in Section 3 we dis-
cuss inequalities of Sobolev type. In particular, a sharp embedding theorem
for Orlicz-Sobolev spaces is exhibited. Section 4 deals with an interpolation
theorem for quasilinear operators, a variant of which turns out to be a tool
for proving the Sobolev inequalities mentioned above. Applications of the
interpolation theorem to various problems, such as fractional integration,
a priori bounds for solutions to elliptic equations and Hardy type inequal-
ities are also presented. Sections 5 and 6 are devoted to the regularity of
solutions to variational problems. Section 5 deals with global regularity for
boundary value problems, and, in particular, with the boundedness of the
solutions. In Section 6, problems of a local nature are taken into account
and higher integrability properties for the gradient of local minimizers of
integral functionals are established.

2 Preliminaries

In this section we recall some definitions and basic facts about Orlicz spaces,
rearrangements of functions and quasilinear operators which will be used in
the sequel. For an exhaustive treatment of the theory of Orlicz and Orlicz-
Sobolev spaces we refer to [Al], [KR] and [RR]. A detailed exposition of
properties of decreasing rearrangements and rearrangement invariant spaces
is contained in [BS]; in particular, see [BZ], [M] [Tal] and [Ta5] for Pélya-
Szegl type principles involving the spherically symmetric rearrangement of
weakly differentiable functions.
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2.1 Young functions

A function A : [0,00) — [0, 00] is called a Young function if it has the form
A(s) :/ a(r)dr for s >0, (2.1)
0

where a : [0,00) — [0, 0] is an increasing, left-continuous function which is
neither identically zero nor identically infinite on (0, 00). In particular, if A is
finite-valued, vanishes only at 0 and lim,_ o+ A(s)/s = lims_.o s/A(s) =0,
then A is called an N-function.

The right-continuous generalized inverse of a Young function A is defined
on [0, oo] by

A7 (r) =inf{s: A(s) > r} (inf® = o0), (2.2)

so that

AAT () <r < ATHAMW)) for r > 0. (2.3)

The Young conjugate of a function A will be denoted either by A or by
AT and defined as

A(s) = sup{sr — A(r) : 7 > 0} (2.4)

Notice that, when A is a Young function, then A is also a Young function

and A = A.
The following relations hold for any Young function A:

1
r<AT'r)A (r)<2r  forr>0. (2.5)

Every Young function A satisfies
A(s) < s a(s) < A(2s) for s > 0. (2.6)

Hence, in particular, if A : [0,00) — [0, 00] is any left-continuous function
such that A(s)/s is increasing, then

A(s)2) < /O ) Aff) dr < A(s)  fors>0. (2.7)

A function A is said to belong to the class A,, or, equivalently, to satisfy
the As-condition, if there exists a constant ¢ > 0 such that

A(2s) < cA(s) for s > 0. (2.8)
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Similarly, A is said to belong to A near infinity if it is finite-valued and
(2.8) holds for large s.

A function B is said to dominate a function A globally (resp. near infin-
ity) if a positive constant ¢ exists such that

A(s) < B(cs) (2.9)

for s > 0 (resp. for s greater than some positive number). The functions A
and B are called equivalent globally (near infinity) if each dominates the
other globally (near infinity). If for every ¢ > 0 a number s, > 0 exists such
that inequality (2.9) holds for s > s, then A is said to increase essentially
more slowly than B.

2.2 Orlicz spaces

Let (M, v) be a positive measure space and let A be a Young function. The
Orlicz space LA(M,v) is defined as

LA(M,v) = { f: f is a v-measurable real-valued function on A

|f ()]

(2.10)
such that / A(—) dv < oo for some A\ > 0}.
M A

The Luxemburg norm || f||p4(az,,) is defined as

1Flla (ar) = inf{)\ >0: /M A(@) dv < 1}. (2.11)

The space L*(M,v), equipped with the norm || - llL4(as,0), is @ Banach
space. Note that, if A(s) = s? and p > 1, then LA(M,v) = L?(M,v), the
customary Lebesgue space, and || - [[paar,) = || lze(ar,; if A(s) = 0
for 0 < s < 1 and A(s) = oo otherwise, then LA(M,v) = L>(M,v) and
Il Nzaar,w) = |- |z~ (as,0)- In the case when M is a subset of R* and v is
the Lebesgue measure, we shall denote v by m,, and L4(M,v) simply by
LA(M).
The following generalized version of Holder’s inequality holds:

/M F@)g@)dv < 2l 9]l Lo 2t (2.12)
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Furthermore,

[fllzacare) < SUP{/Mf(w)g(w) dv/\gllLaaw) - 9 € LY(M, V)}~ (2.13)

Embeddings between Orlicz spaces defined by different Young functions are
characterized in terms of the notion of domination between the defining
Young functions. If (M, v) is a positive non-atomic o-finite measure space
and A and B are Young functions, then

LB(M,v) — LA(M,v)

if and only if B dominates A globally. Here, and in what follows, the ar-
row “—” denotes a continuous embedding. When v(M) < oo, the same
embedding holds if and only if B dominates A near infinity.

2.3 Orlicz-Sobolev spaces

Let G be an open subset of R”. Given a Young function A, the (first order)
Orlicz-Sobolev space W4 (@) is defined as
WHA(G) = {u € LA(G) : u is weakly differentiable

and |Du| € L4(G)}. (2.14)

Here, D stands for gradient. The space W'4(G), equipped with the
norm ||ully1.aq) = llullzacq) + [|Dullpa(g), is a Banach space. Clearly,
WtA(G) = WHP(Q), the standard Sobolev space, if A(s) = s? with p > 1.

Wol’A(G) will denote the subspace of W14(G) of those functions whose
continuation by 0 outside G belongs to W14 (R").

2.4 Rearrangements

Given a real-valued measurable function f on a positive measure space
(M,v), its distribution function py : [0, 00] — [0, 00) is defined as

wr(t) =v({x € M : |f(z)] > t}) for ¢ > 0. (2.15)

The decreasing rearrangement f* of f is the right-continuous non-increasing
function from [0, v(M)) into [0, co] which is equimeasurable with f. Namely,

f7(s) =sup{t > 0: puys(t) > s} for 0 < s < v(M). (2.16)
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The equimeasurability of f and f* implies that

/ A(lf @) dv = / A (s ds (217)
M 0

for every Young function A. Hence
I fllLacary = 1f loaqo,vcany (2.18)
and, in particular,
esssup | f| = f7(0). (2.19)
A variant of f* is the signed rearrangement f° defined by
fo(s) =sup{t >0: v({f > t}) > s} for 0 < s <wv(M). (2.20)

Clearly, f° enjoys properties analogous to those of f*.

Let u be any real-valued weakly differentiable function on R® decaying
to 0 at infinity, i.e. satisfying m, ({|u] > t}) < oo for every ¢ > 0. Let A
be a Young function. If [, A(|Du|)dz < oo, then u* is locally absolutely
continuous on (0,00) and the following Polya—Szego type inequality holds:

/n A(|Du|) dz > /OOOA(n C}L/”sl/”l< che )) ds. (2.21)

Here, C,, = n™/?/I'(1 4+ n/2), the measure of the unit ball in R* (see
[BZ] and [Ta5]). Notice that the right-hand side of (2.21) agrees with
Jon A(|Du*) dz, where u*(z) = w*(Cy|z|"), the spherically symmetric
rearrangement of u. Clearly, (2.21) implies a corresponding inequality for
Luxemburg norms.

Versions of inequality (2.21) for functions u € W4(G), not necessarily
vanishing on G, can be proved when G is a sufficiently regular subset of R™.
A suitable regularity assumption is an isoperimetric inequality between the
measure of any subset E of G and P(E;G), the perimeter of E relative to
G (see e.g. [M]). Recall that P(E;G) agrees with the (n — 1)-dimensional
Hausdorff measure of OF N G, if E is smooth; otherwise it is given by the
total variation over G of the gradient of the characteristic function of E.

For n > 2 and o > 1/n/, we set

G(o) ={GCR":
G is open and positive numbers N and C
exist such that m(E)? < CP(E;G)
for all E C G satisfying m,,(E) < N}.

(2.22)
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In particular, if G is any connected set from G(o) having finite measure,
then, as a consequence of Lemma 3.2.4 of [M], a positive number C' exists
such that

min®{m,(E),m,(G — E)} < CP(E;G) (2.23)

for all E C G. The smallest number C' which renders (2.23) true will be
denoted by C,(G) and called the relative isoperimetric constant of G asso-
ciated with the exponent o (see [Cil] for explicit evaluations and estimates
of C;(G) in the case where n = 2). Notice that Cy/,/(G) is dilation invari-
ant.

Any open set G C R™ having finite measure and satisfying the cone
property belongs to the class G(1/n") ([M], Corollary 3.2.1/3). If, in ad-
dition, G is connected, then it satisfies an inequality of type (2.23) with
o =1/n'. Recall that G has the cone property if there exist a cone X' such
that for any « € G, G contains a cone which is congruent to X' and whose
vertex is x.

If G is any set satisfying (2.23) with ¢ = 1/n’ and u € WH4(G), then
u° is locally absolutely continuous and

/A(|Du|) dz
“ (2.24)

. /Omn(a) A(Cl/nl(G),lminl/n’{s,mn(G) - s}( _ d:; )) ds

(see [Ci2]). Similarly, if G € G(1/n') and u is a function from W14(G) such
that m,({|u] > 0}) < N, then

/GA(|Du|) dz > /Om"(G) A(C*lsl/"' ( - dg)) ds. (2.25)

2.5 Quasilinear operators

Let (My,v1) and (Ma,vs) be positive measure spaces. We say that T' is a
quasilinear operator relative to (Mi,v1) and (Ma, vo) if its domain is a linear
subspace of v1-measurable a.e. finite functions on M, its range is contained
in the set of vy-measurable functions on Ms and a constant ¢ > 1 exists
such that

IT(f +9) )| < c(ITf()+ |Tgy)])

and [TOH) ()] = MITF) (2.26)
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for vp-a.e. y € My, for all f and ¢ in the domain of T and all A € R.

Given a positive measure space (M,v) and a number r € [1,00), we
denote by A" (M, v) the Lorentz space of all real-valued v-measurable func-
tions f on M for which the quantity

1f]

v = [ A > 0 d (297)

is finite and by M"(M,v) the Marcinkiewicz space of v-measurable func-
tions f on M for which the quantity

Al aer a0y = sup tv({If| > th'/" (2.28)

is finite. In the case when r = oo, we set A®(M,v) = M>®(M,v) =
L>°(M,v). For every r € [1,00], the following alternative formulas hold:

I1/1

) = /0 £7(s) diso (s)
and

W2z (a1,0) = sup ¥r(s) £ (s),
s>0

where 9, (s) = |[x[0,5]l|27(0,00) @and X2 denotes the characteristic function of
a set (2.

Assume that 1 < p,q < oo. Then a quasilinear operator T relative to
(My,v1) and (Ma, 1) is said to be of weak type (p, ¢) if a constant N exists

such that

||Tf||Mq(M2,U2) < N”f”/lp(Mth) (229)

for all f € AP(M;,v1). The smallest constant N which renders (2.29) true is
called the weak (p, ¢) norm of T'. The notion of weak type (p,q) that we are
using here is due to Calderén. Note that, since || f||Lr(ary,00) < 11142 (a11.00)
for p € [1,00] and f € AP(M;,vq) (with equality if p = 1 or p = o0), such
a notion is less restrictive, for p € (1,00), than that originally given by
Marcinkiewicz where the Lebesgue norm LP(M;,v;) replaced AP(M;,vy) in
(2.29).

Analogously, a quasilinear operator T relative to (My,v1) and (Ma, vs)
is said to be of strong type (p,q) if a constant N exists such that

||Tf||L‘1(M2,U2) < N||f||LP(M17V1) (230)
for all f S Lp(Ml,l/l).
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3 Sobolev inequalities

3.1 Standard results

The classical Sobolev embedding theorem tells us that if G is a sufficiently
smooth open subset of R”, n > 2, then

WhP(G) — L (G) (3.1)
where p* = np/(n — p), the Sobolev conjugate of p, if p < n, and
WP (G) — CO /(@) (3.2)

if p > n and m,(G) < oo (see e.g. [Al], [KJF], [M], [Zi]). Here C%*(G)
denotes the space of bounded Holder continuous functions on G with ex-
ponent a. When p = n, as long as Lebesgue spaces are taken into account,
one can only say that

wWin(G) — LYG) (3.3)

for every q € [n,00), whereas simple counterexamples show that W1 (G) ¢
L>(@G).

The embedding (3.3) can be improved if Orlicz spaces are taken into
play. Indeed, if m,,(G) < oo, then

win(G) — LB(@), B(s)=¢* —1, (3.4)

where n’ = n/(n — 1), the Holder conjugate of n ([Tr]; see also [Po], [Y]).
Moreover, the embedding (3.4) is sharp in the sense that there is no Orlicz
space, strictly contained in L?(G), into which W™ (@) is continuously em-
bedded ([HMT]).

In this section we address ourselves to the general problem of associating
with any Young function A a Young function B having the property that,
for any sufficiently smooth subset G of R", LB(G) is the smallest Orlicz
space into which W'4(Q) is continuously embedded.

3.2 Embeddings for WOI’A(G)

Given n > 2 and a Young function A satisfying

/O (ﬁ)nll dt < oo, (3.5)
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we define H : [0,00) — [0, 00) as

H(r) = (/O (ﬁ)nll dt) T e (3.6)

and A, : [0,00) — [0, cc] by
A,=AoH™Y (3.7)

where H~! is the left-continuous inverse of H. The function A4, plays the
role of an optimal Sobolev conjugate of A. Actually, we have

Theorem 3.1. Let n > 2 and let A be a Young function satisfying (3.5).
Then there exists a constant K, depending only on n, such that

llull Lan @m) < K||Dullpamn (3.8)

for every real-valued weakly differentiable function w on R™ decaying to 0 at
infinity. Moreover, the result is sharp, in the sense that condition (3.5) is
necessary for an inequality of type (3.8) to hold and LA (R™) is the smallest
Orlicz space which renders (3.8) true.

Let us mention that earlier (non-sharp) embeddings for Orlicz-Sobolev
spaces are contained in [A2] and [DT].

Remark 3.2. Assumption (3.5) prevents A(s) from vanishing for s > 0.
Thus, any function from WO1 “(@) decays to 0 at infinity. Consequently,
inequality (3.8) holds, in particular, for every function u € W, A(@).

Remark 3.3. If assumption (3.5) is dropped, an inequality of type (3.8)
still holds for functions supported in a set having finite measure, with K
depending also on such a measure and on A: one has just to replace A in
the definitions of H and A,, by any Young function equivalent with A near
infinity, for which the integral in (3.5) converges. This is a consequence of the
fact that Luxemburg norms over sets of finite measure turn into equivalent
norms if the defining convex functions are replaced by functions equivalent
near infinity.

Remark 3.4. Inequality (3.8) is equivalent to the integral inequality

/u An <K(fRn A|1(L|(13)31)L||)dy)1/n> dx < /HA(|DU|)dx. (3.9)
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Indeed, (3.9) implies (3.8) by the very definition of the Luxemburg norm.
Conversely, (3.9) follows on replacing A(s) by A(s) = A(s)/M in (3.8), with
M = [, A(|Du|) dz, and observing that, if A,, is the function defined as in

(3.6)—(3.7) but with A replaced by A, then A, (s) = M~TA,(M~1/").
Remark 3.5. In the case when A, is everywhere finite, i.e. when

n'—1
/= (ﬁ) dt = o0, inequality (3.9) enables one to show that

/ A, (|u(}\az)|> dx < o0 for every A > 0, (3.10)

whenever v € WH4(R"). Notice that, in general, (3.10) yields a stronger
information than just v € L4»(R™). Indeed, any function satisfying (3.10)
belongs to the closure of L°°(R") in L4»(R"), a space which is strictly
contained in LA» (R™) if A, does not satisfy the As-condition.

It obviously suffices to prove (3.10) under the assumption that
Jpn A(|Dul) dzz < oo. Let us choose ¢ so large that

1/n
K(/ A(|Du|)dac> < \/2,
{lul>1}

where K is the constant appearing in (3.9). Then, by the convexity of A,,
|

()] (2
" A {Jul<t}
/ an (1)
{\u|<t}
(2 |u] —t) >
{|u\>t} A
+ —/ An< ) dx
2 Jiju>ty
an (B2 o
{\u|<t} A

|U|—t i
{| oo\ f{| iy A(Dul)dy)'/"

2t

]

9).
dx + A, (—) dz
{Jul>t} A

|u

>|

~|=

>/

(3.11)
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Notice that the first integral on the right-hand side of (3.11) is finite since
lim, g+ An(As)/A(s) = 0 for every A > 0, the second one because of (3.9)
and the third one since we are assuming that A, is finite-valued. Hence,
(3.10) follows.

A tool to prove Theorem 3.1 is the following interpolation result (see
[Ci6]).

Theorem 3.6. Let (My,v1) and (Ma, 1) be positive non-atomic measure
spaces and let T be a linear operator whose domain is o linear subspace
of the set of vi-measurable functions on M, and whose range is contained
in the set of vo-measurable functions on Ms. Let p € (1,00). Assume that
T is of strong type (1,p") with norm < Ny and of weak type (p,o0) with
norm < Ni. Let A be a Young function satisfying condition (3.5) with n
replaced by p, and let A, be the Young function defined as in (3.6)—(3.7)
with n replaced by p. Then there exists a constant K, depending only on
No, N1 and p, such that

WT fll 24w (0zva) S KN FllLaasy i)
for every vi-measurable function f on M; such that ||f||LA(M1’,,1) < 0.

Proof of Theorem 3.1, outlined. Let u be any weakly differentiable func-
tion decaying to 0 at infinity and such that ||Du||pa@~) < oc. Since u* is
locally absolutely continuous, we have

u(s) = / (— d;‘ > dr for s > 0.

Owing to equation (2.18) and to inequality (2.21), inequality (3.8) will follow
if we show that there exists a constant C' such that

|| (-

Inequality (3.12) is a one-dimensional Hardy type inequality, which can be
proved via Theorem 3.6, after observing that the operator 7', defined on
a locally integrable function ¢ : [0,00) — R by

<cC
LAn(0,00)

(3.12)

LA4(0,00)

To(s) = /00 Y () dr for s >0,

S

is of strong type (1,n') with norm <1 and of weak type (n,oc) with
norm < n.
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As for the sharpness of the result, assume that inequality (3.8) holds
with A, replaced by some B. Let us consider radially decreasing test func-
tions u having the form

u(z) = L/m 1 (Y dr (3.13)

1
nC™ oo

for some measurable function ¢ : [0,00) — [0,00) with [|¢]|L4(0,0c) < 0.
Since |Du(z)| = ¢(Crlz|™), we have

‘ /00 ril/"lqﬁ(r) dr

S
If ¢ is any fixed positive number and the support of ¢ is contained in [t, o0),
then

< nCY K|l Lao,00) - (3.14)
LB(0,00)

161l 24 (0,00) = 161l 24 2,00) (3.15)

and

>
LB (0,00)

/00 Y o(r) dr

S

/00 Y () dr

S

LB(0,t)

> [ ey (316)
t

oo 1 1
:/t rt/ gb(r)drm.

Combining (3.14)—(3.16) and making use of inequality (2.13) yield

o —l/n’ d
KB~Y(1/)> sup o) dr
seLa(too)  9llLag,oo) (3.17)

> [l ™ || pagy 00 for t> 0.
Hence, the conclusion follows, owing to Lemmas 3.7 and 3.8 below. O

Lemma 3.7. Let A be a Young function. Then ||1"_1/”I||LA~(S’OO) < oo for
every s > 0 if and only if

~

/ A() dt < oo. (3.18)
0

t1+n’
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Moreover, if we set
Do(s) = (sJ 2™ )™ fors >0, (3.19)

where J~1 is the left-continuous inverse of the function given by

At
J(r) = nl/ 1+(n? dt forr >0, (3.20)
o ¢
then
l7= 1/ 24 (s,00) = D;'(1/s) for s >0, (3.21)

where D! is the right-continuous inverse of D.,,.

Lemma 3.8. Let A be a Young function. We have

A@) , , ¢\
/0 PR dt < oo if and only if /0 <m> dt < oo (3.22)

and

/OO :_8) dt < oo if and only if /OO (ﬁ)n - dt < co.  (3.23)
Moreover, there exist constants ¢1 and c2, depending only on n, such that
An(crs) < Dy(s) < Ap(cas) for s >0, (3.24)
where A, and D,, are the functions defined by (3.7) and (3.19), respectively.
A proof of Lemma 3.7 can be found in [Ci2]. Lemma 3.8 is proved
in [Ci8].
3.3 Embeddings for WH4(G)

It is well known that the validity of Poincaré-type inequalities and embed-
ding theorems involving spaces of functions defined in an open set GG, which
do not necessarily vanish on dG, depends on the regularity of G. In our
embedding such a regularity will be prescribed in terms of isoperimetric
inequalities—see Subsection 2.4.
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Theorem 3.9. Let n > 2. Let A be any Young function and let A, be the
function defined as in (3.6)—(3.7) with A modified, if necessary, near zero
in such a way that (3.5) is fulfilled.

i) If G € G(1/n') is connected and has finite measure, then there exists
a constant K, depending only on A, m,(G) and Ci/,(G) such that

lu = ucllpan (¢) < K| Dul[z4(q) (3.25)

for allu € WHA(G). Here,

1
ug = W/GU(JU) dz,

the mean value of u over G.

The constant I in (3.25) depends only on Ci/, (G) provided that (3.5)
holds.
i) The continuous embedding

WhA(@) — LA (G) (3.26)

holds for every G € G(1/n'). Here, A,, is the Young function defined by

- ) Au(s) ifs > sy
Ans) = {A(s) if0<s< s (3.27)

for (suitable) 0 < s1 < s2.
Moreover, LA (G) and LA (G) are the smallest Orlicz spaces which ren-
der (3.25) and (3.26), respectively, true.

A proof of Theorem 3.9 makes use of inequalities (2.24)—(2.25) and of
interpolation techniques as in Theorems 3.6—see [Ci3].

Remark 3.10. Notice that formula (3.27) determines A,, up to globally
equivalent Young functions; thus, the Orlicz space L4 (G) is uniquely de-

fined. Moreover, since the Young functions A,, and A, are equivalent near
infinity, L4 (G) = L4 (G) when m(G) < co.

Remark 3.11. A similar argument as in Remark 3.5 shows that, under
assumption (3.5), inequality (3.25) is equivalent to the integral inequality

/A < f(l“( |)D;|”ZL)W> dxg/GA(|Du|)dx. (3.28)
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Remark 3.12. Theorem 3.9 can be extended to the case where less smooth
domains G € G(o) with o € (1/n’,1) are taken into account: in the state-
ment, 1/n’ has to be replaced by ¢ and A, by the Young function A,/ _)
given by (3.6)—(3.7) with 1/(1 — o) in place of n.

Compact embeddings for W14 (G) are considered in the following

Theorem 3.13. Let n > 2 and let G be any open bounded set from the
class G(1/n'). Let A be any Young function. If B is any Young function
increasing essentially more slowly near infinity than the function A,, then
the embedding

wWhAG) — LB(G) (3.29)
18 compact.
Theorem 3.13 follows from Theorem 3.9 via the same arguments as in
the proof of Theorem 3.7 of [DT].
3.4 Embeddings into spaces of continuous functions

Let us now focus the case when

/OO (ﬁ)nq dt < 0o, (3.30)

Condition (3.30) is equivalent to saying that A, (s) = oo for large s. Thus,
Theorem 3.1 yields, in particular, the following corollary (see also [M],
[Ta3]).

Corollary 3.14. Let A be a Young function such that

I %)”"1 &t < oo

lull Lo (mmy < K[| Dul|pan

Then

for every weakly differentiable function uw decaying to 0 at infinity such that
||DU||LA(Rn) < 0.
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An analogous corollary for functions in W'4(G) follows from Theo-
rem 3.9.

Under assumption (3.30), a stronger result then Corollary 3.14 is true.
Namely, any function from W14(G) is in fact continuous and an estimate
for its modulus of continuity can be obtained. This is the object of the next
result. First, let us introduce the function @, defined by

~

O(r) = n'/ A(t) dt  forr >0,

t1+n’

and the function w, given by

!

w(s) = (59_1(5"1))71 for s > 0. (3.31)

Notice that, under assumption (3.30), the function ©(r) is finite for all r > 0
by Lemma 3.8.

Theorem 3.15. Let G be an open subset of R™ and let A be a Young func-
tion satisfying (3.30). Then

i) Bvery u € WHA4(G) equals a.e. a continuous function.

ii) For every compact subset G’ of G, a constant C exists such that

u(z) = u(y)| < Cllullwra@yw™ (lz —y|™") (3.32)

for everyu € WHA(G) and a.e. x,y € G', where, w™! is the right-continuous
inverse of the function defined by (3.31).

Under the additional assumption that G is a bounded strongly Lipschitz
domain inequality (3.32) holds for a.e. x,y € G.

Recall that a bounded open set G € R™ is called strongly Lipschitz
if, for each x € OG, there exist a neighbourhood U, of z, a coordi-
nate system (y1,...,¥n) centred at x and a Lipschitz-continuous function
= =Z(y1,...,Yn—1) such that

GNU, ={(y1,--»Yn) : Yn > ZE(W1,-- - Yn—1)}.

Proof of Theorem 3.15. Let G by any open subset of R™. Consider any cube
Qs contained in G and having sides of length ¢. Call v the restriction of u
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to Qs. By inequality (2.12),

6 o
esssupv — essinf v = / _dv dr
0 dr
< 2|y @umin = frm =y (3.33)
11w " dv®
X Hcl/n/(Q) 1m1n1/ {7’,6 — ’I’}( — ar )’ LA 5").

Here, Cy/,/(Q) denotes the relative isoperimetric constant of cubes in R"
for the exponent 1/n’. By Lemma 3.16 below, we have

Hmln_l/” {r, 6" < 2w HET™). (3.34)

A7(0,6m) -

Moreover, by (2.24),

|30 (@) rmin e 57—y (- 4|

<|IDvl[Laq,) < 1Dullae

LA(0,67) (3.35)

Combining (3.33)—(3.35) yields
esssupv — esssupv < 401/, (Q) w (67™) [ Dull pa(q).- (3.36)

Inequality (3.32) for a.e. z,y € G’ obviously follows from (3.36).

In the case when G is a strongly Lipschitz domain one may assume,
without loss of generality, that G is a cube (see e.g. [DT], Theorem 3.6).
Thus, (3.36) implies (3.32) for a.e. z,y € G, since, in this case, for every
x,y € G there exists a cube Q|,_,|, having sides of length not exceeding
|# — y| which are parallel to those of G, such that x,y € Q|.—, C G.

Finally, let us show that u is a.e. equal to a continuous function. For
k € N, denote by uy(z) the mean value of u over the cube Q1/x(x) centred
at = and having sides of length 1/k which are parallel to the coordinate axes.
Observe that uy, is a continuous function. Inequality (3.36) implies that

|ug,(z) — up(2)] < 4Cy /0 (Q)w ™ (K™) | Dull L4 (e

whenever h > k and Q; /;(z) C G. Since w (6~ ") tends to 0 as § goes to
0T, {ux} is a Cauchy sequence in the space of continuous functions on any
compact subset of G. Therefore, {uy} converges to a continuous function,
say 4, in G. By Lebesgue theorem, 7 = u a.e. in G. O
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Lemma 3.16 (see [Ci2]). Let A be a Young function. Then ||r—/" | La0,s)
< oo for every s > 0 if and only if (3.30) holds. Moreover,

=" a0, =™ (1/s)  fors >0,

where w™! is the right-continuous inverse of the function defined by (3.31).

3.5 Examples

Example 3.17. Consider Young functions A(s) which are equivalent to
sP(log(s))? near infinity, where either p > 1 and g € Ror p=1 and ¢ > 0.
Let G be any open subset of R” having finite measure. Then Theorem 3.1
yields

Wi AG) — LA (@), (3.37)
where A, (s) is equivalent near infinity to
5P/ (n=P) (logs)™a/(n=P) if 1 <p<n
exp (s”/(”_l_q)) ifp=mn,g<n-1
exp (exp (s")) ifp=mn, ¢g=n—1.
If either p > n, or p =n and ¢ > n — 1, then Corollary 3.14 tells us that
Wy H(G) = L=(G).

By Theorem 3.9, the same embeddings are true (and optimal) with WOI’A(G)
replaced by W1 4(G) provided that G € G(1/n'). Notice that when p # n
and ¢ = 0, (3.37) agrees with the Sobolev theorem; when p = n, the embed-
ding (3.37) yields (3.4) if ¢ = 0 and result of [FLS] if ¢ < 0 and of [EGO] if
qg=mn—1.

Example 3.18. Consider Young functions A(s) which are equivalent to
sP(loglog(s))? near infinity, where either p > 1 andg € Rorp=1and ¢ > 0.
Let G be any set from G(1/n’) having finite measure. Then Theorem 3.9
implies that

WhA(G) — LH(G),
where A, (s) is equivalent near infinity to

572/ (=) (loglog(s))™/(»=P) if 1 <p<n
exp (s (log(s))e/(»= 1 if p=n.
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When p > n, then

We (@) — L®(@).

4 Interpolation of operators

4.1 Statement of the result

The Marcinkiewicz interpolation theorem states that, if 1 < p; < ¢; < o0
for i = 0,1, and po # p1, qo # ¢1, then every (quasi)linear operator of weak
types (po, qo) and (p1,q1) is bounded between the Lebesgue spaces LP and
L1, provided that p and ¢ satisfy

l:(1—:9)i+t9i, l:(1—:9)l+t9i (4.1)

p Po P q q0 q1
for some 6 € (0,1) ([Mark], [Z]). This classical result has been the object
of various extensions and of developments in more abstract settings. Let us
recall, for instance, a Lorentz space version of it, which tells us that every
operator as above (with p; not necessarily < ¢;) is bounded between the
Lorentz spaces L™ and L?" if p and ¢ are related as in (4.1) and r is any
positive number ([Ca], [H]).

As far as interpolation in Orlicz spaces is concerned, contributions can
be found in several papers, including [GP], [Kr], [Pe], [Pu], [Ra], [Ri], [Tol],
[Z]. A survey of results is contained in [Mal].

In this section we present an optimal version of the Marcinkiewicz theo-
rem for Orlicz spaces. Namely, we exhibit a necessary and sufficient condi-
tion on N-functions A and B, extending (4.1), for every quasilinear operator
of weak type (pi,q;), with 1 < p; < ¢; < 00, 1 = 0,1, to be bounded from
LA into LE.

The extension of condition (4.1) that we find involves certain functions
Es 3, Fs 3, Go g, Hp g from [0, 0o] into [0, oc] associated with an N-function
& and with § € [1, 00] according to the following formulas. In each of these
formulas, the former equation stands for a definition, the latter follows via

an easy computation:
s r \B-1 1/8
dr fl1<f<o
([ G) ) s
(e%) if = oc;
(4.2)

£est) = (g7) |

LA(0,s)



Some results in the theory of Orlicz spaces 69

00 if =1
r 1/p6' 00 r 5—1 1/8 .
Fp5(s) = H (SP(T)) ‘ L(s,00) (/S <¢)(T)) dT) if 1 <p<o0
s/P(s) it 8= o0
(4.3)
s 1/p
_H r)1/9 - (/ d)ﬂ(ﬁdr> if1<8< o0
7‘1+1/ﬂ LA(0,s) ~ o " if 3 = oo
(4.4)
00 ifp=1
1/ﬂ > &(r) 1/8 .
Hg j5(s) = HW L8 (s,00) = (/S ] dr) ifl<f<oo
1/s if = o0.
(4.5)

All these functions are strictly monotone for those @ and 3 for which they
are not identically equal to oco. Actually, Es 3 and Gg g are increasing,
whereas F3 3 and Hg g are decreasing.

Throughout this section, the generalized inverse of a monotone function
¥ : [0,00] — [0, 00] will be defined by

T tr) =sup{s >0: ¥(s) <r} forr >0, (4.6)
if ¥ is non-decreasing, and by
) =inf{s > 0: ¥(s) <7} forr >0, (4.7

if ¥ is non-increasing, where sup § = 0 and inf ) = co. Moreover, monotone
functions ¥ defined on (0,00) will be understood extended to [0, 0] on
setting ¥(0) = lims_o4 ¥(s) and ¥(o0) = lim,_ 4o P(s). Expressions of
the forms 0- 0o, 2, 2 are defined as 0.

Our interpolation theorem can be stated as follows.

Theorem 4.1. Assume that 1 < pop < p1 < o0, 1 < qo,q1 < 00, and
pi < ¢q; fori=0,1. Let A and B be N-functions. Let (My,v1) and (Maz, vs)
be infinite, non-atomic and o-finite measure spaces. Assume that qo < q.
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Then LA(My,vy) C AP (My, 1) + AP (M, vy) and every quasilinear opera-
tor T of weak types (po,qo) and (p1,q1) relative to (My,v1) and to (M, vs)
is bounded from L*(My,vy) into LB (My,vy) if and only if the functions
Eaps Fap,, GBgos Hp g, defined as in (4.2)-(4.5), are finite on (0,00)
and a constant o > 0 exists such that

Fay, (Eg’lp,1 (05))GB,qp (ng’lq1 (1/s)) <o for s > 0. (4.8)

Moreover, if T is of weak types (pi,q;) with norms N;, i = 0,1, and the
above conditions are fulfilled, then

ITfllLo(a,00) < co K max{No, Ni} || flla(aty 00) (4.9)

for all f € LA(My,v1), where ¢ is the constant appearing in (2.26) and K
18 an absolute constant. When qo > q1, an analogous statement holds with
condition (4.8) replaced by

Fap (Ejg’lp,1 (08))Hp,q, (ng’lq1 (1/s)) <o for s > 0. (4.10)

Remark 4.2. Unlike the classical Marcinkiewicz theorem, here both the
case po = p1 and o = ¢, are admissible. It is easily verified that in each of
these cases, the sole finiteness of E4 v, Fa pr and of Gp,qy, Hp,q, 0r GB,g,
Hp 4 on (0,00), implies (4.8) or (4.10), respectively. In particular, observe
that (4.8) and (4.10) are equivalent when ¢o = ¢; .

Remark 4.3. Clearly, inequalities (4.8) and (4.10) depend only on the
asymptotic behaviour of A and B at 0 and at infinity. More precisely, it
is easy to see that the validity of those inequalities are invariant under
replacement of A and B by equivalent functions. This invariance is consis-
tent with the fact that replacement by equivalent N-functions leaves Orlicz
spaces unchanged (up to equivalent norms).

Remark 4.4. A version of Theorem 4.1 can be also proved under the
assumption that vy (M) or vo(Ms) is finite. The conclusions are the fol-
lowing. Assume that go < ¢ and denote by ©,(s) the left-hand side of
(4.8). Then every quasilinear operator of weak types (p;,¢;) (with p; and
¢; as in Theorem 4.1) is bounded from L4(Mj,v;) into LB(Ms, vs) if and
only if limsup, ., ., O,(s) < oo for some ¢ > 0 and either v1 (M) < o0,
v2(Mz) = o0 and Fa 1, GB g, Hp,q are finite on (0,00), or v1(M;) = oo,
v2(Mz) < o0 and En p, Fap,, Hp,q are finite on (0,00), or v1(M1) < oo,
vo(Ms) < 0o and Fyp ., Hp,q, are finite on (0, 00). Assume now that ¢o > ¢
and denote by =, (s) the left-hand side of (4.10). Then every quasilinear op-
erator as above is bounded from L4(M;,v,) into LZ(Ms, ) if and only if
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either 1 (M1) < o0, v2(Mz) = 00, Fapr, Gp,q,» Hp,q, ave finite on (0,00)
and limsup,_, | ., Z,(s) < o0, or v1(My) = 00, va(Mz) < 00, Fa s Faps
Hp 4, are finite on (0,00) and limsup,_ o, Zo(s) < 0o, or v1(M;) < o0,
vo(Msy) < oo and Fapy s Hp,g, ave finite on (0,00). This statement can be
proved via similar arguments as in Subsection 4.4 below, on making use
of the fact that replacing the defining N-functions in an Orlicz space over
a non-atomic finite measure space by an N-function equivalent near infinity
results in the same Orlicz space with an equivalent norm.

4.2 Examples

Throughout this subsection, we shall assume that 1 < pg < p; < o0,
1< ¢qo,q1 <00, and p; < g; fori=0,1.

Example 4.5. Assume that A and B are powers, i.e. A(s) = sP, B(s) = s

for some p, ¢ > 1. Then it follows from Theorem 4.1 that every quasilinear

operator of weak types (p;,q:), i = 0,1, is bounded from LP(M;j,r;) into

LY(Ms,vs) if and only if pg < p < p1, min{qgo,q1} < ¢ < max{qo,q1}

and (po = P11 = (%0 —p)th. Clearly, these conditions are equivalent to
(M —ppo (@1 —P)o

requiring that (4.1) holds for some 6 € (0, 1). Thus, the original theorem of

Marcinkiewicz is reproduced.

Example 4.6. Let us consider two limiting situations of the preceding
example (see also [BR], [BS] and [EOP]). Assume that ¢o < ¢ and
that the underlying measure spaces (Mi,v;) and (Ms,vs) have finite
measures. Owing to Remark 4.4, we have the following conclusions. If
1 < p1 < o0, then every quasilinear operator of weak types (p;,¢i), i = 0,1,
is bounded from LP*(M,vy) into LB (Ms, vs) if there exists k > 0 such that
B(ks) < 7 (log(s))~1=9/7v or B(ks) < exp(sP1) for large s, according to
whether ¢; < 0o or ¢ = 00. If 1 < gg < 00, then every quasilinear operator
of weak types (p;, ¢;), i = 0,1, is bounded from LA (M, v;) into L9 (Ms, v3)
if there exists k > 0 such that A(ks) > s7°(log s)Po~'+Po/® for large s.

Example 4.7. Here we take into account the “diagonal” case where
Po=qo, p1 = q1 and A = B in Theorem 4.1. Let us denote by I(A™1)
and i(A~1) the upper and lower Matuszewska-Orlicz indices of A=! respec-

tively, defined by
A—l
log (Sup w>

_ . >0 A~(r)
1y _ >0
HA™) = /\EToo log A
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and
-1
o o 2200)
. —1\ _ . T T
4= /\EToo log A

Lemma 4 of [Ci5] tells us that I(A™!) < 1/pq if and only if a constant
k > 0 exists such that

Fap (ks)Gapy(s) <k for s>0. (4.11)

Similarly, one can show that, if p; < oo, then i(A~1) > 1/p; if and only if
a constant k£ > 0 exists such that

Epp (ks)Hpp,(s) <k for s>0. (4.12)

When p; < oo, inequalities (4.11)—(4.12) imply (4.8). Thus, Theorem 4.1
ensures that every quasilinear operator of weak types (po,po) and (p1,p1)
is bounded from LA(M;,v,) into LA(Ms, vs) if
1 1
—<i(AhH) <At < —. (4.13)
D Po
When p; = o0, (4.11) agrees with (4.8); therefore the same conclusion is
true provided that

I(A Y < L (4.14)
Po

On the other hand, condition (4.13) or (4.14) is also necessary for every
operator of weak types (po, po) and (p1,p1) to be bounded from LA (M, vy)
into LA (M, 1), as can be shown by analogous arguments as in the proof of
Theorem 4.1. Thus, in particular, the result of Boyd’s interpolation theorem
(see e.g. Theorem 5.16, Chap. 3, of [BS]) is recovered in the case where the
rearrangement invariant space involved in that theorem is an Orlicz space.

4.3 Applications

As a first application of Theorem 4.1, let us consider boundedness properties
of the fractional integral operator, also called Riesz potential. Recall that
the fractional integral R, f of order a € (0,n) of a function f: R® — R is
defined by

_ /() n
Raf(x)—Aany foerR.
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The operator R,, is known to be of weak types (1,n/(n —a)) and (n/a, o)
(see e.g. [BS], [To2]). Therefore, by Theorem 4.1, R, is bounded from
LA(R") into LB(R™) if the functions Exnj(n—a) and GB ,/(n—a) are finite
on (0,00) and a constant o > 0 exists such that

-1 A(s)

Gan/(n_a) (o EA,n/(n—a) (s)) <o " for s > 0. (4.15)
Moreover, condition (4.15) is also necessary for R, to be bounded from
LA(R") into LB(R™), as can be shown on making use of an estimate from
below for R, f when f is radial (see e.g. [Sa]) and of similar arguments as
in the proof of the necessity part in Theorem 4.1.

In particular, (4.15) is fulfilled if A(s) = s and B(s) = s"?/(n—ap)
with 1 < p < n/a. Thus, the Hardy-Littlewood-Sobolev theorem stating
that R, is bounded from LP(R") into L"?/("=P)(R™) is reproduced. In
the case when (2 is a subset of R* having finite measure, we recover the
borderline results that R, is bounded from L™/(£) into L?(£2), where
B(s) = exp(s™/ (")) — 1 ([Stri], [T1]), and from LA(£2) into L™/ (*~)(12),
where A(s) = s(log(1 + s))(»~)/" ([0]). More general limiting situations
can be considered; for instance, if A(s) = s**(log(1 + 5))?, then R,
is bounded from LA(2) into LZ(0) where B(s) = exp(s™/("—e—ea)) _ 1
if ¢<(n—a)/a (cf. [FLS]) and B(s) = exp(exp(s™/(»=))) — 1 if
q = (n—a)/a (cf. [EGO]); when ¢ > (n — a)/a, R, is bounded from L4(2)
into LZ(2) for every B and the norm of R, is independent of B, whence
R, is in fact bounded from L4(£2) into L>(2).

Notice that the Hardy-Littlewood maximal operator, which is of weak
types (1,1) and (oo, 00), is another classical operator that can be easily dealt
with by Theorem 4.1.

We next take into account a priori estimates for solutions to uniformly
elliptic boundary value problems of the type

9 ou .
_gzjl a_m(aij(x)a—%) +e(@u=f(z) indG (w.16)
u=0 ondG.

Here, G is an open subset of R*, n > 3; the coefficients a,;(z) and c¢(x) are
functions from L*(G) satistying

Z ai;(2)&:& > |€)?  for every £ € R and a.e. x € G,

ig=1
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and
c(z) >0 forae z€G.

Moreover, f € L2/ ("+2)(@).
Theorem 1 of [Ta2] ensures that, if u is the weak solution from W,*(G)
to problem (4.16), then

* 1 — 2/n ° *
U(S)Sm(s 1+2/ /O f(r)dr

(4.17)
mq (G)
+ / £ (ryr12/m dr)

for s € (0, m,(G)).

By Lemma 4.10, Chap. 4 of [BS], inequality (4.17) implies that the linear
operator which associates with the datum f the corresponding solution u
to (4.16) is of weak types (1,n/(n —2)) and (n/2,00). By Theorem 4.1, we
have that the a priori estimate

llullz5(q) < Const. || fllpaa) (4.18)

holds whenever Ej ,,/(n—2) and G ,/(n—2) are finite on (0, 00) and inequal-
ity (4.15) holds with a = 2. This reproduces, for instance, the classical
estimate where A(s) = s? with 1 < p < n/2 and B(s) = s"/("=2) in
(4.18). When m,,(G) < oo, the limiting estimate where A(s) = 5"/ and
B(s) = exp(s™/("=2)) — 1 in (4.18) follows from Example 4.6. Notice that
similar results can be proved for problems of type (4.16) when the datum
on the right-hand side of the equation is in divergence form or when the
boundary condition is of Neumann type.

An alternative characterization of those Orlicz spaces between which R,
is bounded or for which an estimate of type (4.18) is true is given in [Ci4].
See also [CS] for a maximal function approach to the study of R, in Orlicz
spaces and for capacitary estimates of the Lebesgue points of R, f.

We conclude this section by considering n-dimensional Hardy type in-
equalities. The standard version of this inequality states that if G is an
open bounded subset of Euclidean space R” having a smooth boundary 0G
and d(z) denotes the distance of the point # € G from 9G, then, for every
p €[1,00] and a > —1 4 1/p, a positive constant C exist such that

(4.19)

Hlera Lr(G) H

Lr(G)
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for all sufficiently smooth functions u vanishing on 0G. A proof of inequal-
ity (4.19) can be found e.g. in [K], [OK]. Let us mention that such inequal-
ities and their generalizations have applications, for example, in the theory
of degenerate partial differential equations.

We are concerned here with the problem of finding necessary and suffi-
cient conditions on the real number « and on the Young functions A and B
for the inequality

H u (4.20)

d1+a

<CH%
@ ~ de

LB LA(G)

to hold for every smooth and bounded open subset G of R* and all functions
u from the space
V(G| d=*) = {u :u is a real-valued function on G such that
the continuation of w by 0 outside G (4.21)
is a weakly differentiable function on R" '
and |Duld™ € L4(G)}.
These conditions are provided by the following

Theorem 4.8. Let A and B be Young functions and let o > —1. Then for
every open set G having a Lipschitz-continuous boundary there exists a pos-
itive constant C' such that inequality (4.20) holds for all u € Vol’A(G |d—%)
if and only if either

a > 0 and there exist numbers k > 0 and § > 0 such that

4.22
B(s) < A(ks) for s >3, (4.22)
or
a = 0 and there exist numbers k > 0 and § > 0 such that
s B 4.23
s/ T(ZT) dr < A(ks) for s >3, (4.23)
or

—1 < a <0 and there exist numbers k > 0 and § > 0 such that

([ () )" ([ i) ™ < o

for s > 5.

If a < —1, inequality (4.20) cannot be true whatever A and B are.
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As an example, consider the limiting case of inequality (4.19) when
a = —1+1/p. Then Theorem 4.8 ensures that inequality (4.20) holds with
B(s) = sP and A(s) = (slog(e + s))P.

In the one-dimensional situation, inequality (4.20) is equivalent to

¢

SO(

<C

LB(0,V)

, (4.25)
LA(0,V)

—1l—a ° d
s /O 6(r) dr

where V' is a positive number and ¢ : [0,V] — R. The operator de-
fined at ¢ by T¢(s) = 717 [ é(r)dr is easily verified to be of type
(00,00). Moreover, T is of strong type (1,1) if @ > 0 and of weak type
(1/(14+«a),1/(1+a)) if =1 < a < 0. Thus, a version of Theorem 4.8
for inequality (4.25) follows from an interpolation theorem of Calderén
(Theorem 2.2, Chap. 3 of [BS]) when a > 0 and from Theorem 4.1 when
—1 < a < 0. The n-dimensional case can be treated via a similar approach,
after making use of local coordinates. The proof of necessity of conditions
(4.22)—(4.24) is based on the choice of a ball as domain G and of radial test
functions in inequality (4.20), but requires some technical lemmas. We refer
to [Ci5] for a specific treatment of the subject.

4.4 Proof of Theorem 4.1, sketched

We present here the main steps of the proof of Theorem 4.1. The details can
be found in [Ci7]. Consider the case when p; and ¢; are finite and ¢o < ¢
(the other cases are analogous). Inequality (4.9) will follow if we show that

there exists a constant C' (having the form specified in the statement) such
that, if f is any v;-measurable function on M; satisfying

A(lf(z)]) drn <1, (4.26)
M,

/M2 B (%) dvy < 1. (4.27)

Let a and b be the left-continuous derivatives of A and B, respectively. Thus,

then

| ats@nan = [ Tl > sPals) ds
M, 0
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[ () don = [Tzt > o) s

Setting f = fou) + f*), where f,y = sign (f) min{p(t),|f|} and p(t) is
a function to be specified later, making use of the subadditivity of T and
of the endpoint weak type estimates, and recalling (2.6), we reduce the
problem to the inequalities

([ B[ > sy as) a)

and

o 1/p1 (4.28)
< Const. </0 ni({|f] > t})@ dt>
and
o8] o0 q0 1/q0
</0 552( 0] sl > ey ds) dt) (4.29)

< Const. (/OOO n{If] > t})@ dt) l/po.

Inequalities (4.28)—(4.29) are weighted Hardy type inequalities, whose char-
acterization (see [OK]) ensures that they hold, whatever vy ({|f| > s}) is,
provided that condition (4.8) is fulfilled and p(t) = E;lp,l (0/Hp,q (t)) for
t > 0. This proves the sufficiency of condition (4.8). As for its necessity, one
can use an argument by Calderén ([Ca]) to deduce the boundedness from
LA(0, 00) into LB(0, 00) of the one-dimensional operator S, defined on ¢ by

1/}70 Tl/pl
/ o(r —m1 { oo 1/q1}dT for s > 0.
Such a boundedness is in turn equivalent to a couple of weighted Hardy type
inequalities in Orlicz spaces. Necessary conditions for those inequalities to
hold are not difficult to derive (see e.g. the proof of the sharpness of Theo-

rem 3.1). The remaining part of the proof consists in a technical lemma
showing that those conditions imply (4.8).

5 Boundedness of solutions to variational problems

In this and in the next section we prove some regularity properties of solu-
tions to variational problems under general growth conditions. In the present
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section boundary value problems, i.e. global problems, are focused, whereas
Section 6 deals with local questions. We stress that the approaches in these
two settings are of quite different types.

Let us mention that results concerning differential problems with not
necessarily polynomial growth have been considered in a number of papers,
including [BL]. [D], [FS], [Gol], [Go2], [Go3], [GM], [GIS], [LM], [L]. [Max],
[MP1], [MP2], [MT].

5.1 Statement of the problem and results

Consider the problem of the calculus of variations

min | F(x,u,Du)dx
P (5.1)

u=1ug ondG,

where G is an open subset of R*, n > 2, having finite measure; F' is
a Carathéodory function from G x RxR"™ into R; ug is a prescribed boundary
datum.

Our assumptions on the integrand F' amount to requiring that there
exist A, B and sg such that

F(z,s,8) = A([¢]) — B(]s]) (5.2)
F(z,s,0) < B(]s]) (5.3)
for |s| > sg, £ € R” and a.e. © € G. Here, s is a non-negative number, A is
a finite-valued Young function and B is an increasing function from [0, c0)
into [0, c0).
The boundary datum wug is assumed to be a bounded weakly differen-
tiable function on R such that [, A(|Duol) dz < oo.

The competing functions « in problem (5.1) are taken from the class
K2 defined as

Kf“ = {u :u is a real-valued weakly differentiable function in G,
/ A(|Du]) dz <
G

and the continuation of u — ug by 0 outside G

is a weakly differentiable function in R" }

We are concerned with conditions on A and B ensuring that any mini-
mizer of problem (5.1) is bounded in G. Our result can be stated as follows.
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Theorem 5.1. Assume that a positive constant ¢ exists such that
B(s) < Ap(cs) (5.5)

for large s, where A, is the Sobolev conjugate of A defined by (3.7). Then
any minimizer w of problem (5.1) is bounded.

Remark 5.2. When
/OO L " dt < oo
A(t) ’

A, (s) = oo for large s, so that condition (5.5) is certainly satisfied. In fact,
every function from the class K;fu is automatically bounded in this case, by
Corollary 3.14.

Remark 5.3. Let us point out that, unlike most results in the theory of
calculus of variations and of partial differential equations, the boundedness
result of Theorem 5.1 does not have a corresponding a priori estimate for
the maximum.

Example 5.4. In the special case where A and B are powers, Theorem 1
reproduces and slightly improves classical results appearing in [LU] and [S].
Indeed, choose A(s) = sP for some p € [1,n] (when p > n every u € Kfo is
bounded by the Sobolev embedding theorem). Then Theorem 5.1 ensures
that any minimizer of problem (5.1) is bounded provided that either p < n

and B(s) < ¢s”” or p=n and B(s) < e°s" for some ¢ > 0 and for large s.
The boundedness of minimizers of (5.1) follows from Theorem 3.2, Chap. 5
of [LU] or Theorem 6.2 of [S] under the stronger assumption that B(s) < cs?
for some ¢ < p* in case p < n and for any ¢ > 0 in case p = n.

Theorem 5.1 can also be shown to improve a result from [Ta4].

Example 5.5. The preceding example can be generalized on taking into
account functions A(s) having the form s?log?(e + s), where either p > 1
and ¢ € R, or p =1 and ¢ > 0. Theorem 5.1 and Example 3.17 tell us that
minimizers of (5.1) are bounded if

5

cs? (logs)™/(»=P) if 1 <p<mn
B(s) < S exp (es™*71=9)  ifp=mn, g<n—1
exp(exp (cs”’)) ifp=n,q=n-1

A
uo

for large s. When either p > n or p =n and ¢ > n — 1, then every u € K
is bounded (see Remark 5.2).
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Now let us discuss the boundedness of solutions to boundary value prob-
lems of the type

NG

g a—ai(as,u,Du) +b(z,u,Du)=0 inG
Ty

=1

(5.6)
U = Ug on 0G.
Here, a;, 1 = 1,...,n, and b are Carathéodory functions from G x R x R
into R satisfying growth conditions of the form
D ail,u, )& > A(l¢]) - B(|sl) (5.7)
i=1
sign (s) b(z, 5, §) < C(Js]) + D(|s[) E(|¢]) (5.8)

for |s| > so, £ € R* and a.e. * € G, where s¢ is a positive number, A is
a finite-valued Young function and B, C, D, E are increasing functions from
[0, 00) into [0, c0).

We consider weak solutions to problem (5.6) from the class Kfo, where
up is a function as above (in particular bounded). A function u € K7 will
be called a weak solution to (5.6) if

- 0
/ Zai(ac,u,Du) ¢ _ b(z,u, Du)p(z)dx =0 (5.9)
G =1 axl
for all test functions ¢ € K§'. Here, Kg' is defined as in (5.4) with ug = 0.
The next theorem gives conditions on the functions A, B, C, D, E ensur-
ing that every weak solution to (5.6) is bounded in G.

Theorem 5.6. Assume that:
i) Ao E~! is a Young function;
ii) There exist constants ¢ > 0 and k > 1 such such

B(s) < A,(cs) (5.10)
C(s) < %An(cs) (5.11)
D(s) < (A0 B)™) o Ay (es) (5.12)

for large s. Then any weak solution to problem (5.6) is bounded.
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Remark 5.7. When A, ..., E are positive powers, A(s) = s, B(s) = s,
C(s) = 87, D(s) = 87, E(s) = s9, say, then Theorem 5.6 states that weak
solutions to problem (5.6) are bounded provided that

n
1Sp<n7 qu_1+£7 CYS p7
n n—p
B2y 4Tl
n—p n—p

This result should be compared with Theorems 7.1, Chap. 4, and 3.1,
Chap. 5 of [LU], where equality is not allowed in the inequalities involv-
ing a, 3 and ~.

5.2 Proof of Theorem 5.1

In this section we outline the proof of Theorem 5.1, that of Theorem 5.6
being similar. In order to avoid technical complications, we drop the term
B(es) in condition (5.2), i.e. we assume that F' satisfies (5.3) and

F(z,s,8) > A([¢]). (5.13)

Moreover, we assume that (5.3) and (5.13) are fulfilled for every s > 0.

Suppose, by contradiction, that esssup|u| = oco. Let ¢ > 0 and set
v(z) = sign (u) min{t, |u(z)|}. Clearly, v € K2 provided that ¢t > to, where
to = sup |ug|. The minimum property of u ensures that

/F(ac,u,Du)de/ F(z,v,Dv) dz. (5.14)
G G

Hence, by conditions (5.3) and (5.13), and assumption (5.5), one easily
deduces that

[ AQDupds < A, (euy (5.15)
{lu|>t}

where p(t) = py(t), the distribution function of w. By Jensen’s inequality
we have

1 1
A<@ /{u|>t} [Pl dx) = u(t) /{|u>t} A(|Du|) de. (5.16)

Moreover, on making use of the coarea formula ([M], [Zi]) and of the stan-
dard isoperimetric inequality in R™ one can show that

nC}L/”/ /L(T)l/nldTS/ |Du| dx (5.17)
t {lul>t}
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if t > to (see e.g. [Tad], proof of Theorem 1]). Combining (5.15)—-(5.17) and
integrating yields

Cn/ [ e ) <[ e

This is already a contradiction in the case when the integral on the left-hand
side of (5.18) diverges. On the contrary, if such an integral converges, one
can conclude as follows. Remark 3.5 ensures that [, A, (A|u])dz < oo for
every A > 0. Thus, the function

or(t) = /{lm} A, (Au]) da

is finite for every A > 0 and ¢ > 0, and

lim wy(t) = 0. (5.19)

t——+oo

Since wy(t) > A, (At)u(t) for t > 0, we have

o'} Wy (t)l/'n,’
. A7

On combining (5.18) and (5.20) and making use of (5.19), we get

S ([ e ) ([ ) =0 o2

for every k > 0. This is impossible by the following lemma ([Ci6]).

dt > / ,u(t)l/”l dt for s > 0. (5.20)

Lemma 5.8. Let k > 2. Then there exists a positive constant C, depending
only n and k, such that

[ i < ([ i) e e

6 Higher integrability of the gradient of minimizers

6.1 Statement of the problem

In the present section we deal with local minimizers of functionals having
the form

J(u,G)zLF(wm,Du)dw, (6.1)
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where G is an open subset of R*, n > 2; v : G — RY, N > 1, is a weakly
differentiable function; F' is a Carathéodory function from G x R* x R*Y
into R.

Our assumptions on F' read as follows:

A(IE]) = b(2)E(|2]) — alz) < F(x, 2,8)

< cA(e) + b@ECl) + @) P

for every (z,£) € RN x R™Y and a.e. z € G. Here, A is a generalized Young
function, i.e. a function from [0, c0) into [0, 00) such that

A(s)

is increasing and A(s) = 0 if and only if s = 0, (6.3)

which will be assumed to satisfy the As-condition. E is an increasing func-
tion from [0,00) into [0,00), a and b are non-negative locally integrable
functions on G and c is a constant > 1.

A function u will be called a local minimizer of J if for every open set
G'cca

A(|Du]) dz < 00
GI

and
J(u,G") < J(u+v,G)

for every weakly differentiable function v : G’ — RY | with compact support,
such that [, A(|[Dv])dz < co.

The local boundedness of local minimizers of J can be proved in the
scalar case (N = 1) under suitable assumptions on E, a and b ([L]; see also
[MP1], [MP2]). Here we are concerned with the regularity of the gradient
of minimizers of J and, specifically, with a higher integrability property.
Notice that such a property is well-known in the case where the functions
A and E are powers ([GG]).

6.2 A model case
Let us begin by considering the model case where
A(lED) < F(z, 2,€) < e(1+ A(I€]))- (6.4)

Our result is stated in Theorem 6.1 below. Earlier results in the same di-
rection are contained in [BL], [FS], [GIS].
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Theorem 6.1. Let u be a local minimizer of (6.1). Assume that (6.4) holds.
Under the above assumptions on A, for every subset G' CC G there exists
6 > 0 such that

A(|Dul) (MY dx < oo.

leZ | Dul

The proof of Theorem 6.1 consists of the following three steps:
a Caccioppoli inequality, a Sobolev inequality and a Gehring type lemma.

Under assumption (6.4), the Caccioppoli inequality has the form

/;R A(|Dul) dz < c(/QzRA ('“]_%M) dx+R”> (6.5)

for every A € RV, every Qor CC G and some positive constant c. Here,
and in what follows, Qg denotes a cube having sides of length R and Qg
denotes a cube with the same centre as Qg and sides (of length 2R) parallel
to those of Qg. The proof of inequality (6.5) is based on the choice of test
functions v given by

1):77(“—)\)7

where 7 is a suitable cut-off function, and proceeds along standard lines—
see [GG] for the case when A is a power and [Sb] for a general A satisfying
(6.3) and the As-condition.

The Sobolev inequality is needed in order to estimate the integral on the
right-hand side of (6.5) by a term of the type

/ B(|Dul) dz,
Q2r

where B : [0, 00) — [0,00) grows at infinity more slowly that A (in a suit-
able sense). When A(t) = ¢? such an estimate holds with B(¢) = t? and
1<q<p<q* by the classical Sobolev inequality. In the general case, a
norm inequality like (3.25) or an integral inequality like (3.28) seem to be
of no use in the present framework. A new Sobolev inequality in integral
form, having a different structure, has to be used.

Theorem 6.2. Let A be any function satisfying (6.3). Set

S

B(s) = A(s) <@> o for s> 0. (6.6)
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Then there exists a constant ¢, depending only on n, such that

4 G o, A () )

< cB_1<m /QR B(c|Du|)dx>

for every cube Qr C R* and every weakly differentiable function
u:Qr — R Here

(6.7)

mn(Qr) }’ (6.8)

m(u) = sup {t eER: m,({x € Qr: u(z) > t}) > n2
the median of u in QR.

Notice that Theorem 6.2 applies in a very general setting, but may fail
to reproduce optimal results in standard situations. For instance, it does
not include the classical Sobolev inequality. This fact should not surprise,
since, unlike the classical Sobolev inequality, the constant ¢ in (6.7) depends
only on the dimension n. However, this lack of optimality does not affect
the proof of Theorem 6.1.

The next result contains the Gehring type lemma, which we need in a lo-
cal version. Such a result yields a higher integrability property for functions
satisfying a reverse Jensen inequality.

Lemma 6.3. Let A be any function satisfying (6.3) and the Ag-condition.
Let Q be any cube in R™ and let f and g be non-negative integrable functions
in Q. Assume that there exists a constant ¢ such that

@ o, 0 = (g L, )

1
+ 777%(@2}2) our A(g) dac)

(6.9)

for every cube Qar C Q. Furthermore, assume that

/QA(g) (%)J dr < o0

for some o > 0. Then for every subcube Q' CC Q there exists ¢ € (0,0),
depending on n, A, ¢, dist(Q’,9Q) and fQ A(f) dz, such that

/, A(f) (#) dr < oo. (6.10)
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We refer to [CF] for the proofs of Theorem 6.2 and Lemma 6.3, as well
as for the proofs of the results of the next section. Let us just say here that,
owing to (2.24), inequality (6.7) can be reduced to a one-dimensional Hardy
type inequality, which can be established by techniques related to those of
[BK]. As for Lemma 6.3, even if the basic idea goes back to the paper by
Gehring [Ge], the approach that we use is that of [Stre].

Proof of Theorem 6.1. From inequality (6.5) and Theorem 6.2 (applied to
the components of u) we deduce that a positive constant ¢ exists such that

1
— L[ a(Du))de
mn(QR) /R . (6.11)

< c<A oB™! (m o B(|Dul) dx) + 1)

for every cube Q2r C G. Notice that in (6.11) we have made use of the
Ay-condition for B and A o B~!. The result then follows from Lemma 6.3
with f = B(|Du|) and A replaced by Ao B~!, a function satisfying (6.3). O

6.3 The general case

Let us consider now the general situation when the integrand F' satisfies
the complete growth condition (6.2). In this context, assumptions on the
summability of a(z) and a balance between the degree of summability of
b(xz) and the growth of E are needed. To this purpose, let us introduce the
functions Fy and G, defined for ¢ > 1 and s > 0 by

Als)

1/q
. > , Gq(s):AOFq_l(s). (6.12)

Fi(s) = 49)
Notice that both F, and G, satisfy (6.3) and that F,, = B, the function
defined in (6.6).
Our assumption on a(z) is that a number 1 > 1 exists such that

G (a(2)) ( a(x)@)) 1 dr < oo  forevery G CCG. (6.13)

G Gt (a(

As far as b(z) and E are concerned, we require that there exist a > 0 and
r9 > 1 such that

1 ba(x) "2 !
/, G, (ba(x)) <m> dr < o0 for every G' CC G. (6.14)
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Here, b,(z) = ®,(b(x)), where @,(s) = F,, o H-'(aE~!(s)) and H is
the function defined by (3.6). The inverses H~! and E~! are taken left-
continuous.

Notice that, at least when lim_. ., A(s)/s = oo (the only case of interest
in this section), condition (6.14) forces E to grow slower than the Sobolev
conjugate A, of A defined by (3.7), in the sense that

. An(as)
] -
oo B(s)

(6.15)

for some a > 0. Indeed, if (6.14) holds for some a > 0 and some function

b(x) which does not vanish identically, then & ,(s) must be finite for some
s> 0. This is in turn true if and only if iminf,_, . $,(s)/s > 0, i.e. if and
only if liminf, . F,, o H *(as)/E(s) > 0. The last inequality obviously
implies (6.15).

In particular, if (3.30) is fulfilled, then &, is linear at infinity what-
ever E is. Consequently, E can be any function and condition (6.14) can be
equivalently written with b, replaced by b. This is consistent with the fact
that u, an hence E(|ul), is locally bounded whenever (3.30) is in force.

For technical reasons, in this subsection we shall also assume, without
loss of generality, that A is linear near 0. Indeed, A can be replaced, if
necessary, by the function A(s) which equals A(s) for s > 1 and agrees
with A(1)s for 0 < s < 1. The new function A still satisfies (6.3) and
the As-condition. Moreover, condition (6.2) is fulfilled with A and a(z) re-
placed by A and a(z) = a(z) + A(1), respectively. After these replacements,
conditions (6.13)—(6.14) are easily verified to be equivalent to the original
ones. Such a modification of A does not affect the higher integrability result
contained in the next theorem.

Theorem 6.4. Let u be a local minimizer of (6.1). Assume that (6.2) holds.
Under the above assumptions on A, E, a and b, for every subset G' CC G
there exists & > 0 such that

/, A(|Dul) (%)5 dz < oo.

Example 6.5. Consider the case where A(s) = sP for some p > 1. If p < n,

then our assumptions are certainly satisfied if E(s) = s¢ with ¢ < p*,
b e L{ (G) for some o > p*/(p* — ¢q) and a € L _(G) for some g and v > 1.

Notice that these are exactly the hypotheses of [GG]. When p > n, (6.13)-
(6.14) amount to saying that a,b € Lf (G) for some ¢ > 1. In the limiting

loc
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situation where p = n, assumptions (6.13)—(6.14) are fulfilled provided that
E(s) = e*" for some ¢ > 0, and a,b € LZ (G) for some o > 1.

loc
Besides Theorem 6.2 and Lemma 6.3, the proof of Theorem 6.4 requires

a Caccioppoli type estimate which now takes the following form.

Lemma 6.6. Letu be a local minimizer of (6.1). Assume the same hypothe-
ses as in Theorem 6.4. Let G' CC G. Then there exist positive constants c
and Ry such that for every A € RV

QRA(|Du|)dx < c(/ A (%) dw

: /QzR G," o An(elul) du + /ZR(ba(x) +a(z) +1) dx) (610)

if R< Ry and Qar C G'. Here p = max{ry,ra,n}.

Let us point out that in the derivation of Lemma 6.6 and Theorem 6.4
the Poincaré inequality for Orlicz-Sobolev functions, in the form of (3.28),
has also to be used.
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