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Quarks, fractals, non-linearities, and related elliptic
operators

HANS TRIEBEL

1 Introduction

This paper surveys some recent results in the theory of function spaces.
First we deal with quarkonial decompositions of function spaces and related
Taylor expansions of distributions. These subatomic representations are of
interest for their own sake (at least we hope so). But they are also an efficient
tool in some applications, which we are going to describe afterwards:

(i) Function spaces on fractals and a spectral theory of related fractal
elliptic operators,

(ii) mapping properties of some special non-linear operators and their
use in connection with a regularity theory of related semilinear elliptic dif-
ferential equations.

Our presentation will be somewhat sketchy. We outline motivations and
basic ideas, describe interrelations, and hint on further possibilities. We
do not give most general formulations. As for further details, systematic
treatments, and proofs one has to consult the cited papers and the references
given there. In other words, what follows is by no means a balanced report of
the state of art and its roots, but at the best a guide where more information
(also with respect to the omitted literature) can be found.

2 Function spaces: the Weierstrassian approach

2.1 Motivation

2.1.1 Holomorphic functions

Let f(x), where = (x1,x2), be a holomorphic function with respect to
the complex variable z = x1 + iz in a connected domain {2 in R2. Let K;
be open circles centred at 7 € {2 and of radius r; with 0 < r; < 1 such that
for some N € N at most IV of these circles have a non-empty intersection,

= U K; and dist(K;,09) >r; where jé€N. (1)
1=1
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We assume in addition that the circles K; are chosen in such a way that
there is a resolution of unity by C'*° functions v;(z) with

suppy; C Kj, 1= Zt/)j(ac) if zef, (2)
j=1
and
| DY (z)] < ¢y r;M where v €Np, j €N (3)

Here ¢, > 0 are suitable constants which are independent of j € N. With
z = 1 +ixy and 27 = 2] +iz), it follows from the classical Taylor expansion,

fl@) =323 oz = 29) 4y (x)

j=1 k=0
:Z Z )\}(x—xj)”*wj(x), x € 02, (4)
7=1 4eNg
where gf € C are the Taylor coefficients with respect to the off-points

27 € £2. Since by (1) for some ¢; > 0,

05 < ¢;(2r;)* if jEN and k€ N

(z =2 = (21 — ] + (2o — 2)))F = Z ay(z —a?)7 (5)
|vI=k

with Z la,| = 2%, and
|v[=k

Aj = o¥a, where |y =k, (6)

both the complex and the real representation in (4) converge absolutely at
any x € {2. One may ask whether this Weierstrassian approach to holomor-
phic functions has a counterpart for non-smooth functions, function spaces
and (tempered) distributions.
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2.1.2 Function spaces

Compared with 2.1.1 elements of function spaces on R™ are usually de-
fined in the Riemannian spirit, that means in qualitative terms. For exam-
ple, f belongs to the Sobolev space W;(R”) with 1 < p < oo and k£ € Ny
if, by definition,

DYf e L,(R™) where |y|<k.

Similarly, Holder-Zygmund spaces and classical Besov spaces are defined via
differences AM f(z). Recall that all the spaces

By (R") and F; (R") with 0<p<oo,0<¢qg<o0,seR, (7)

are introduced in qualitative terms, [11, 12, 13], how differently the diverse
definitions may look like. We assume that the reader is familiar with basic
notation of these spaces. We only recall the special cases:

CS — BS

o0 00

s € R, (Holder-Zygmund spaces),

HS =F;

» b2y 0<p<oo, s€R, (Hardy-Sobolev spaces).

It is our aim to introduce the spaces (7) in a Weierstrassian spirit: We ask
for representations of the real version in (4) with suitable building blocks of
type (z — 27)79;(z) where otherwise all information can be extracted from
the coeflicients )\;-’. In contrast to holomorphic functions, distributions in R"
are only local. Hence it is quite clear that the circles K; in 2.1.1 must be
replaced by a sequence of lattices with mesh lengths tending to zero. The

first choice in R" may be
{2_jm: meZ"}, jeNo, (8)

where Z" is the lattice of all points z € R™ with integer-valued components.
Let 9 (x) be a suitable non-negative compactly supported C* function and
let ¥7(x) = 27 (x), then the wavelet procedure

P (22 —m); v €NG, j € No, mez", (9)

seems to be a reasonable substitute of the functions (z — 27)79;(z) in (4).
Let A be the Laplacian in R™ and let A be either B or F. Recall the
well-known lifting property

(id — A)™ A3, (R™) = A3>™(R") (10)
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where
meN, 0<p<oo, 0<g<0, seR (11)

Together with the lifting (10) the outcome is perfect: The building blocks
(9) are completely sufficient for the Weierstrassian approach to the spaces in
(7) (slarge, p < oo in the F-case). In other words, we ask for representations
of type

f(z) = Z Z Z /\;’Wﬂp”’@jx—m)7 x € R™. (12)

veNG I=0 meZ"

2.2 Sequence spaces

2.2.1 Basic notation

As above we use standard notation: R" (Euclidean n-space); N (natural
numbers); Ng = NU{0}; Z" (explained above); Ny multi-indices; C (complex

numbers). Furthermore, let 7 = z]* - - - z)» where © = (z1,...,2,) € R"

and v = (71,.-.,7) € Ng.

Cubes in R", centred at 27“m with sides parallel to the axes and of
length 277, where v € Ng and m € Z", are denoted by Q... Let X,(f;)l be
the p-normalised characteristic function of @Q,.,, this means

X,(};zl(x) =2"/? ifx e Q,, and X,(};zl(x) =0 ifz & Qum, (13)
where v € Ny, m € Z" , and 0 < p < 0. Of course,
X2 | Ly (R = 1, (14)

where L,(R"™) are the usual Lebesgue spaces of p-integrable complex-valued
functions in R"™, quasi-normed in the natural way.

2.2.2. Definition. Let 0 < p< o0, 0< ¢ < o0, and
A={A\m €C: veNy, meZ"}. (15)
Then

by = {15 10yl = (f}( ) |Am|f’)q/p)1/q<oo} (16)

v=0 neZ"
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and

1/q
fra = {A A Fpall = H (Z Z |)\VmXum ) | Lp(R")

(17)
(with the usual modification if p = co and/or ¢ = ¢ ).
2.2.3. Remark. By (14) holds
pp = Jop = lp, 0 <p< oo (18)
Furthermore, using Hélder’s inequality, it follows
bp,min(p,q) C fpq C bp,maX(p,q)' (19)

2.3 Function spaces

2.3.1 Quarks

Let ) be a C* function in R™ with a compact support (say, near the
origin, but this is unimportant) and

Y Y-m)=1 ifzeR" (20)
meZ™
Let 0 < p < o0 and
s>ap:n<%—1>+. (21)
Recall ¥7(z) = 274 (x). Then
(vqu)um(x) = 276722 —m) (22)

are called (s, p)-v-quarks, related to Q,., where v € Ny and m € Z". This
coincides essentially with the normalised building blocks in (12), such that

1(vqu)vm | By (R ~ ([ (vqu)um [ Hp (R™)]| ~ 1, (23)

where the equivalence ~ is independent of v and m (but may depend on 7).
As suggested by (12) we complement (15) by

AN ={N,,€C:veNy, meZ}, v € Ng. (24)

As usual, S(R™) stands for the Schwartz space of all rapidly decreasing
(complex-valued) C*° functions on R". Its dual S’(R") is the collection of
all tempered distributions.
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2.3.2. Proposition. Let 0 < p <00, s > 0,, 0< g < 00 and o > p1o(s,p).
Let (yqu) jm be given by (22). If

sup 2#M”)‘7 | bpq” < 00, (25)
v

then
~eNg 7=0 meZ™

converges in S'(R™).

2.3.3. Remark. By (19) one can replace b,, in (25) by fpq. These are
the quarkonial decompositions of the spaces B, (R") and Fj, (R") we are
looking for. In the Weierstrassian spirit one can even take representations
of type (25), (26) as starting point.

2.3.4. Definition. (i) Let 0 < p < 00, § > 0, 0 < ¢ < o0 and u >
:LLO(Sap)' Then

B;q(R”) = {f € S'(R"™) can be represented by (26), (25)}, (27)

where (yqu);m are the (s, p)-y-quarks given by (22). Furthermore
171 By (R™)[| = inf |sup 2¢11[[X7 [ by (28)
vy

where the infimum is taken over all admissible representations.
(ii) Let 0 < p < 00, s > 0p, min(1,p) < g < oo and p > po(s,p,q). Then

F: (R™") ={f € S'(R™) can be represented by (26), (25)

. . (29)

with f,q in place of bp,},

where (yqu)jm are the (s, p)-vy-quarks given by (22). Furthermore,
151 Fpy(R")|| = inf Sup 24N fgl (30)

where the infimum is taken over all admissible representations.

2.3.5. Comments. As said above this is the constructive Weierstrassian
approach of introducing the spaces B, (R") and F; (R"). These spaces
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had been studied in detail in [1, 10, 11, 12, 13]. Quarkonial (or subatomic)
decompositions of these spaces had been treated first in [14], Sec 14. Some
clumsy formulations given there had been improved afterwards in [6] and
[15]. Furthermore, the restrictions s > o, and (in (ii)) ¢ > min(1,p) can
be removed if one uses arguments of type (10). Maybe the best formulation
covering all cases can be found in [15], Sec. 1.5. Furthermore the problem of
convergence of (26), (25) can be treated more directly similarly as in [18],
2.2.6. We repeat that we omit detailed references of the literature. They can
be found in the quoted books and papers.

2.3.6 Cauchy formula

We stressed the analogy of (26) with the classical Taylor expansion (4).
It is well-known that for given f the Taylor coefficients g? can be calcu-
lated by some Cauchy integrals. Of course they depend linearly on f. The
representation (26) is not unique. But for given s, p, ¢ and also p one finds
functions LT/;’m € S(R™) (depending on s, p, q, p) such that

)\_;/m: (fij’ym)a 76N87 j6N07 meva (31)
(dual pairing in S(R"™) and S’(R")), are optimal coefficients. This means,

sup 24N [ opqll ~ 11 £ By (R™)l, (32)
y

where A7 are given by (31) and the equivalence constants in (32) are inde-
pendent of f € By (R") . Similarly for F; (R"). We refer to [14], 14.16, on
p. 104. Curiously enough the linear dependence of the coefficients )\;’m on f
is out of interest for the linear problems we have in mind (spectral theory of
fractal PDEs) but it is at the heart of the matter of the non-linear problems
we are going to discuss later on (the @-method).

2.3.7 The role of

If s,p,q are fixed as in part (i) or in part (i) in 2.3.4 then there is a
number po > 0 such that (27)-(30) make sense for any p with u > puo.
Of course, (28) and (30) depend on the chosen p (equivalent quasi-norms).
However, the related equivalence constants depend also exponentially on p.
We discussed this phenomenon in [14], 14.6, p. 97. Hence there is a bargain:
If i is large, then one has rapid decay in (28), (30), but bad equivalence
constants.
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2.4 Further possibilities

2.4.1 Spaces on R"

If s is not restricted as in 2.3.4 then representations of type (26), (25)
cannot be expected in general. Some moment conditions for the underlying
elementary building blocks are needed. Maybe the best way to ensure this
is to generalise (22) by

(vqu) L, (2) = 27T (= 2) D 297) (270 — m) (33)

where (L + 1)/2 € Ny. Then the counterparts of (26), (25) look a little bit
more complicated, but they work for all spaces B, (R") and F;, (R"). We
refer to [14], Sec. 14, for details. An improved formulation may be found in
[15], 1.5. In that paper we replaced ¥7(x) = 279 (z) by the Gausslets

G(z) =27e "2 4 e NP, 2 e R™. (34)

Including normalising factors the counterpart of (33) is given by
(YG) () = 277D () VG (2 — m) (35)
with v € Ng and m € Z". Tt is the main aim of [15] to prove representations

of type (26), (25) based on the (s, p)-v-Gausslets (35).

2.4.2 Spaces on domains

Let {2 be a bounded C*° domain in R™. Spaces of type
F3,(2) = {f € F},(R") : supp f € 2}, (36)

similarly ’35;(1((2)7 and their special cases, have a long history, see [11]. In [16]
we developed a theory of these spaces, especially quarkonial representations.
These results and techniques can be used to study quarkonial decomposi-
tions of (weighted) spaces on some special hyperbolic manifolds (with the
Poincaré n-ball as proto-type). This, in turn, is the basis of a related spectral
theory. We refer to [17].

2.4.3 Taylor expansions of distributions
Let (z) = (1+ |2]*)Y/?, a € R, and

By (R, (2)*) = {(x)" f € B,,(R")}, (37)
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obviously quasi-normed. As for these spaces we refer to [1] and the literature
quoted there. There is no problem to find quarkonial representations for
these weighted spaces. Since

S'(R") = | B;, (R, (2)°) (38)
SER

for any 0 < p < oo, the Taylor expansions can be extended to any tempered
distribution. We refer for details to [18].

3 Fractals and spectra

3.1 Fractals

3.1.1 Distinguished fractals

Let I' be a compact subset of R” and let 0 < d < n. Then I is called
a d-set if there is a Radon (or Borel) measure p in R™ with

suppp =TI and p(B(y,7)) ~7°, (39)

where B(v,r) stands for a ball centred at v € I" and of radius 0 < r < 1.
Here (and in the sequel) the equivalence means that each side in (39) can
be estimated from above by some constant multiplied with the other side
where this constant is independent of v and r. The notion of d-sets is well-
known both in fractal geometry (see [14] for references, especially to the
books by Falconer, [4, 5], and Mattila, [8]) and in the theory of function
spaces, where [7] is the standard reference.

We are interested in a generalisation of (39). Let ¥(r) be a positive
monotone (decreasing or increasing) function on (0, 1] with

w27 ~W(27%), jEN. (40)

Let I" be again a compact set in R” and let 0 < d < n. Then I' is called
a (d,¥)-set if there is a Radon (or Borel) measure p in R™ with

supppu =1 and p(B(y,r)) ~r@(r); 0<r<1. (41)

We refer to [2, 3].
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3.1.2 Examples and properties
Ifbe Rand 0 < ¢ <1 then

(r) =|loger|’, 0<r <1, (42)

are typical examples of the above function ¥. Furthermore, one finds in any
case positive numbers b, ¢1, ¢ and 0 < ¢ < 1 such that

c1lloger| =" < W(r) < ey|loger|’. (43)

3.1.3 Limiting case

Let ¥(r) be monotonically decreasing and let ¥(r) — oo if r — 0. Then
(41) with d = n makes sense and the outcome is called an (n,¥)-set. In this
case and also in all the other cases with 0 < d < n we have always

|I'l =0 (Lebesgue measure). (44)

3.1.4 Self-similar and pseudo self-similar sets

Under suitable conditions for 2! € R™ the contractions
Ax=rz+2Yy 0<r<l1;1=1,...,N, (45)

generate self-similar sets I" in R™. It is one of the basic facts of fractal
geometry that for any d with 0 < d < n there are self-similar d-sets, [4, 5, §].
The contraction factor of the jth iteration of the maps in (45) is 7. Varying
this contraction factor 77 slightly, say, by 77§ with » € R, then the resulting
fractals are called pseudo self-similar, see [3] for a more precise version. As
proved there, for any d and ¥ in 3.1.1 and 3.1.3 there are pseudo self-similar
(d,¥)-sets.

3.2 Function spaces on and related to fractals

3.2.1 Traces

We repeat a few assertions in simplified versions which may be found
in [14]. Let I" be a d-set in R" with 0 < d < n according to 3.1.1. First
we clarify under which conditions traces of f € B, (R™) on I" make sense.
Let ¢ € S(R™). Then trr¢ denotes the pointwise trace of ¢ on I'. There is
a constant ¢ > 0 such that for all ¢ € S(R"),

W VPEY) 1<p<oe.  (46)

[trro | Ly (D) < clle| B
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Of course, L,(I") has the usual meaning with respect to the measure p
in (39). By completion, trp can be extended from S(R") to B](:fd)/p(R").
The outcome is perfect:

3.2.2. Proposition. Let 1 < p < oo and let I' be the above d-set with
0<d<n. Then

Ly(I) = trrB TP (R, (47)

3.2.3 Spaceson I
Let s >0 and 1 < ¢ <o0. By 3.2.2,

B (I) = trFB;g*@/P“(R"), (48)

obviously normed, are Besov spaces on I'. It is quite clear that the embed-
ding

id: B3, (I) = Ly(I") (49)

is compact. It comes out that a precise knowledge of the related entropy
numbers ey (id) is of crucial importance for the spectral theory of fractal
(pseudo) differential operators. Basic information for entropy numbers may
be found in [1].

3.2.4. Theorem. Letid be given by (49). Then
ex(id) ~ K5/ where ke N. (50)

3.2.5. Comment.

As said we rely on [14].

The proof of (50) is just the point where the quarkonial decompositions
described in Sec. 2 enter the scene.

In very rough terms: (28) with p = ¢ (this is sufficient) reduces the
involved spaces to sequence spaces (, with some weights. In other words:

Quarkonial decompositions allow to reduce problems of type (50) to cor-
responding problems between (weighted) sequence spaces of type £,.

As for details we refer again to [14]. Historical remarks about entropy
numbers may be found in [1], 3.3.5, pp. 126-128. In [1], 3.3, we proved asser-
tions of type (50) for bounded C*° domains 2 C R™ in place of I". The proof
works for any bounded domain in R™. It is based on the original Fourier
analytical definition of B, (R"™). However the step from bounded domains (2
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in R™ to fractals I" in R™ destroys the application of this method (at least at
first glance). This was the main reason for the author to develop the theory
of quarkonial (subatomic) decompositions of function spaces in [14] and as
described in Sec. 2. As for the alternative approach to construct frames in
function spaces of type B;, (R™) and Fj, (R") via splines and wavelets we
refer to [9] and [10], 2.3 (some comments may also be found in [15], 2.4). The
advantage of the y-quarks are their simplicity and the described interrela-
tion with Taylor expansions. They are useful in rather different applications
such as entropy numbers, spectral theory, and non-linear problems (the
Q-method, discussed below).

3.2.6 The golden triangle

The identification of L,(I") with some trace spaces in 3.2.2 is perfect.
The other side of the same coin is the question what can be said about
functions

freL, ), 1<p<oo, I': d-set, (51)

0 < d < n, interpreted as (singular) distributions in R™. If one looks at f
as a complex measure then there is only one reasonable way to interpret 7
as f € S'(R™), given by

f(o) = / ST () (Duldr), ¢ € SRY). (52)

It comes out that the quality of f can be described in terms of the spaces
B; . (R™) which are located in an (1/p, s)-diagram in the triangle (fractal

country)
{(%,):1<p<oo,n(%—1><s<0}. (53)

BLL(R™) = {f € Bo (BY)
flp) =0if o € S(R™) and trrp =0} .

Let
(54)

In particular, if f € B5:L(R") then supp f C I'. Hence, by (44), any non-
trivial distribution f belonging to this space is singular.

3.2.7. Proposition. Let I be the above d-set in R"™ with 0 < d < n. Then,
according to the interpretation (52),

Ly(I) = By~ T (R (55)
where 1 < p< oo and 1/p+1/p' =1.
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3.2.8. Remark. Details, explanations and proofs may be found in [14],
Sec. 17, 18. Of course the B-space in (55) lies in the triangle (53).

3.2.9 The operator tr’

The trace operator trp has the meaning of 3.2.1 — 3.2.3, where I is again
a d-set in R™ with 0 < d < n. Formalising (52) by

idp: fI— f (56)
we have
trl = idp o try (57)
with
o’ : BUTP(R?) - L(I') — B9/ (R™) (58)

by 3.2.2 and 3.2.7. This, together with (50), paves the way to introduce and
to study fractal (pseudo)-differential operators.

3.2.10 Generalisation

So far everything what had been said in 3.2.1 — 3.2.9 is covered by [14].
One can extend all these considerations from d-sets to (d, ¥)-sets introduced
in 3.1. For this purpose one has to generalise the smoothness s in B; by

a couple (s,¥%), hence BI(,‘;’W), where a € R and ¥ have the same meaning
asin 3.1.1 and 3.1.2. Afterwards one has counterparts of Propositions 3.2.2,
3.2.7, Theorem 3.2.4 and interpretation (58). We do not go into detail and
refer to [3] and the announcement [2].

3.3 Fractal elliptic operators
3.3.1 The Dirichlet Laplacian

As usual we put
H*(R") = B; ,(R"), s€R, (59)
and
H*(2) = H*(R")\ {2, (60)

for the restriction of H*(R™) to the bounded C* domain {2 in R™. If s > 1/2,
then

H(0) = {f € H () : tronf = 0} (61)
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makes sense. Let A = é 92 Then
<

—AHY(0) = HY(Q) (62)

is an isomorphic map of I-}l(()) onto H1(£2). To indicate the vanishing
boundary data one calls —A with (62) the Dirichlet Laplacian.

3.3.2 The set-up

Let again {2 be a bounded C* domain in R™ and let I" be a distinguished
fractal according to 3.1.1, that means a d-set or a (d, ¥)-set, with

I'c . (63)
We ask under which conditions
B=(—A)"toul : H(Q) — H(Q) (64)

makes sense. Of course, (—A)~?! is the inverse of the Dirichlet Laplacian in
(62). By (58) with p = 2 one needs for (64) that n — d < 2, at least in case
of d-sets. But this holds also for (d,¥)-sets. By (50) one can even expect
qualitative assertions of the compactness of B.

3.3.3 Physical background

We interpret the bounded C* domain 2 in the plane R? as a membrane,
fixed at its boundary 92 and with the mass density m(z). Vibrations are
described by

Au(z,t) = m(x)aQ—u(ac,t), u(y,t) =0 in 9N xRy. (65)

Via u(z,t) = e*v(x) the eigenfrequencies \ are given by
—Av(x) = X2m(z)v(z), (66)

where — A is the above Dirichlet Laplacian. What happens if the membrane
is crumbling or gets rusty? Assume that the outcome (in an idealised form)
can be described replacing m(x) by a measure p related to a (d,¥)-set I
with I" C {2 according to 3.1.1. Then (66) results in (64), and the positive
eigenvalues uy of B and the eigenfrequencies A\ are related by A\ = ,ukfl/ 2
where & € N. As for more details we refer again to [14].
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3.3.4. Theorem. Let 2 be a bounded C>® domain in R" and let I' be a
(d,¥)-set according to 3.1.1 with

I'cf and n—-2<d<n. (67)

Then B, given by (64), is self-adjoint, non-negative, and compact with null-
space

N(B) = {f € H(Q) : trrf = 0} (68)
and
0< g~k Y (kTE )2/ EeN, (69)

for the positive eigenvalues. Furthermore, B is generated by the quadratic
form

/F F) ) = (BS. g)s (70)

in H'(02).

3.3.5. Comments. For details we refer to [3] and its announcement [2].
It generalises both in formulation and proofs a corresponding assertion for
d-sets in [14]. The main point is the estimate of p from above in (69). It is
based on Carl’s inequality

e < V2er(B), keEN, (71)

where ey (B) are the entropy numbers of B. The estimate of e;(B) in case
of d-sets can be reduced via (58) and (62) to 3.2.4. For (d,¥)-sets one finds
the corresponding counterpart in the quoted papers.

In other words, the most difficult part of the above theorem is proved via
appropriate quarkonial decompositions of the type as described in Sec. 2.

3.3.6. Corollary. Let I' be a (n,¥)-set according to 3.1.3 with I' C {2.
Then the assertions of Theorem 3.5.4 remain valid, now with d = n in (69).

3.3.7 Further possibilities

As said the above material is taken from [14] and [2, 3]. There one finds
further considerations of this type. We mention three of them.



Quarks, fractals, non-linearities 215

(i) The fractals I" treated so far are isotropic (there are no distinguished
directions in R™). This fits pretty well to the isotropic operator A. One can
deal with anisotropic fractals I' (ferns, grasses, etc.). One can say at least
something as in Theorem 3.3.4, where one has now only estimates for the
wr in (69): The music of the ferns. We refer to [14].

(ii) All considerations are qualitative. One needs mapping properties
of type (62) (but nothing special related to —A, or better, (—A)~!) and
estimates for the entropy numbers based on quarkonial decompositions. One
may also replace u(dy) on I' by b € L,.(I") (where b = 1 corresponds to
u(dv)). Hence, the method works if one generalises B in (64) by

B=0bioAoby, bjeL, (I and A€W (72)

1 g 9
where ¥ * is the Hormander class of pseudo-differential operators in R",
here Wlth 2 > 0and 0 < p <1, and r; are suitably chosen numbers Wlth
1<r; <oo.

(iii) In quantum mechanics one asks for the behaviour of the so called
negative spectrum of Schrédinger operators of type

H=—-A+p8V if f— (73)

(semi-classical limits). Here V' is a potential in R™, assumed to be relatively
compact with respect to —A, that means V(—A +id)~! is compact, say, in
Ly (R™). (Of course, n = 3 is the case of physical relevance.) What happens
if

V =b()u(dy), be L(D), (74)

where p is the above measure with respect to a d-set or a (d, ¥)-set I in R™?
With the help of the so called Birman-Schwinger principle one can reduce
this question to assertions as treated in Theorem 3.3.4 and Corollary 3.3.6.
In [14] we dealt with problems of this type in the case of d-sets. There is no
doubt that these considerations can be extended to (d, ¥)-sets.

4 Composition operators and the Q-method

4.1 Introduction

Let G(t) be a real continuous function on the real line R with G(0) = 0.
Then

Tg: f— G(f(2)), f(x) € LY*(R") real, (75)



216 Hans Triebel

is called a composition operator. One asks for mapping properties of T be-
tween suitable function spaces: boundedness, continuity, Lipschitz continu-
ity, compactness. Of course, L,(R™) with 1 < p < oo, is the classical choice
of underlying function spaces (maybe with different p’s in the source and
the target space): Nemytskii operators. If one replaces L, by (real) Sobolev
spaces W or, more general, By and Fj, spaces, then the corresponding
theory becomes more complicated. Nevertheless, there is an astonishingly
comprehensive related theory which may be found in [10] and the references
given there. The adopted point of view is the following:

Given a space (or may be two spaces, source and target). For which G is
Te a (bounded, continuous, Hélder or Lipschitz continuous) map?

The other side of the same coin is the following question:

If G is given, find all (real) spaces B,,, Fy;, for which Tg

Pq’
is a (bounded, continuous, Holder or Lipschitz continuous) map.

First non-smooth candidates are
G(t) =|t]”, x>0, (76)
and, in particular,
G(t) =|t| and G(t) =ty =max(t,0). (77)
Put
T:f(x) = [f(=)| and T7f(z) = fi(x) =max(f(2),0)  (78)

if f € L°°(R™), real. As far as mapping properties are concerned there is
no big difference between T and T since

2T+ =id + T. (79)

Obviously, the operators T' and T+ attracted a lot of attention. However the
corresponding theory in the spaces B,, and F;, (maybe restricted to their
real parts) is surprisingly complicated (especially if s > 1). What is known
so far may be found in [10], 5.4. We complement these results below by
describing under which conditions T' (and hence also T") is bounded. Cor-
responding results with respect to continuity or even Lipschitz continuity
are not available so far (with exception of L,-spaces). However such conti-
nuity assertions seem to be indispensable if one wishes to apply fixed point
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theorems in connection with existence, uniqueness, regularity of solutions
of semi-linear differential equations or integral equations of proto-type

(—A+id)u(x) = b(x)|u(x)| + h(z), =z € R, (80)

and
u(@) = [ Ko = s ) dy -+ hia), (1)

respectively. Here b, K, h are given, and one asks for solutions u. Besides
existence (and uniqueness), one wishes to obtain maximal smoothness as-
sertions for u, especially in dependence on the quality of h. If, roughly
speaking, b(x) = ¢ > 0 small, K € L;(R") real and real h € B, (R"),
then the perfect outcome would be u € BsF?(R™) in (80) and u € By, (R")
in (81). Direct application of, say, Banach’s contraction theorem would re-
quire that 7" and 7't in suitable (real) spaces Bj, (R™) and F}5 (R") are not
only bounded but Lipschitz continuous. But the latter is simply not avail-
able (and, in general, not true). This is the point where again quarkonial
decompositions as described in 2.3 enter the scene. Let f be given by (26),
(25) with A}, = A7 (f) as in (31). Then we put

QF =2 > > INuOl(gu)jm (). (82)

7€N3 I=0meZ”
For real f we have by (78)
0<STHf<Tf<LQFf. (83)

The operator @ is the quarkonial twin of T': In the assertions below, @ is
bounded in, say, those spaces B;, (R") where T' is bounded, but in addition
it is Lipschitz continuous (in sharp contrast to 7'). This is the starting point
of what we call the @Q-method. Very roughly: First one replaces the right-
hand side of (81) by the auxiliary operator

(Qu(x) = C(z — u ).
KOu(a) = [ (= y(Qu)s) dy+ ha) (34)

Suppose real h € B, (R") (such that @ can be applied), ||K|L;| small,
K(y) > 0, then by Banach’s contraction theorem, K% has a fixed point
u9(z) € B3, (R™). By (83) this function u? is a supersolution for (81).
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Using the well-known technique of supersolutions and what is known about
T, T" and B;,(R") one arrives at a solution u € Bj, (R") of (81) with
maximal smoothness. In the following subsections we outline this method
and the underlying mapping properties of the operators 7" and Q. Detailed
proofs will be published elsewhere.

4.2 The operators T and Q

4.2.1 Preliminaries

We may always assume that the function ¢ in (20) is non-negative.
Recall

P (x) = 27YP(x) with 27 =a]' - 2"

Hence if 7" or Q maps a given space B; (R") or Fj; (R") into itself then
at least |z7|y(z) must be an element of this space. This question can be
reduced ton = 1 and v = 1. Then

lalo(2) € BLEVP(R), 0<p< . (85)

If ¥(0) # 0 then this is the best possible assertion: B;jol/p cannot be

replaced by B;;l/p with ¢ < oo, [12], pp. 147-9. Together with some Fubini
arguments, see [12], [10], or [16], one arrives at the natural restriction

1 1
0 < p<oo, n(——l) <s<1l4 -, (86)
D n D

(not to speak about limiting points in the (1/p, s)-diagram). It is somewhat
curious but in case of () one can avoid smoothness restrictions of type (86)
if one chooses a function 1 with

supp® C{y = (y1,--.,yn) € R" : y; > 0}. (87)

But at least so far we have no use for this observation: beyond (86) there
is no reasonable interplay between T and @ (not to speak about limiting
cases). Although not necessary for some assertions concerning 7" and for all
assertions concerning (), we restrict ourselves now to the real part B;q of
B;, (similarly F; ).
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4.2.2. Theorem. Let
1 1
0<p<oo, 0<qg<oo, n{-—-1] <s<1l+-. (88)
p + p

(i) Then T and T, given by (78), are bounded operators in By (R™): there
is a constant ¢ > 0 such that

ITf | Bog (R < cllf | Byg(R™)]] (89)
and

IT*f | By (R™)I < cllf | By (R™)]] (90)
for all f € By (R") .

(ii) Then Q, given by (82), is a bounded and Lipschitz continuous operator
in B, (R™): there is a constant ¢ > 0 such that

1Qf = Qg | Bpy(R")[[ < cllf — g | By, (R")]] (91)
for all f and g belonging to B; (R™).

4.2.3. Remark. The boundedness of () is a special case of (91) with g = 0.
The assertions for @ follow easily from (82), (31) and the quarkonial decom-
positions. What is known about 7' (and 7") may be found in [10], 5.4. The
proof of the full theorem will be published elsewhere.

4.2.4. Comment. There is a similar result for F; (R") with the additional
(presumably technical) restriction s # 1/pif p <1 for T and 7.

4.3 The Q-method

4.3.1 Preliminaries

Let b(z) = € in (80). By (79) there is no essential difference if we replace
|u(z)| in (80) by u4(z). Let G(y) be the Green’s function of —A +id in R".
Then (80) (modified in the indicated way) is equivalent to

u(r) = (Bu)(x) = ¢ /]R” G(x —y)uy(y) dy + H(x) (92)
with H = (—A +id)"*h. Recall G(y) > 0 in R™. In other words, (92) fits

in the scheme of (81). We restrict ourselves here to (80) in the modified
version of (92). But the method works also for problems of type (81).



220 Hans Triebel

4.3.2. Theorem. Let

1 1
0<p<oo, 0<g< o0, n(——l) <s+A<1+- (93)
D n D

for some A € [0,2]. There is a number o > 0 such that for any ¢ with
0<e<eoand any h € B, (R"),

(—A+id)u(z) = euy(x) + h(z), =€ R, (94)
has a unique solution u € B2 (R™).

4.3.3. Method of proof and comments.

(i) By some embedding and Banach’s contraction theorem (94) has always
a unique solution w(z) in L,(R™) for some 1 < r < oo. If 1 < p < oo then
one may even choose r = p and bootstrapping arguments yield the desired
result. However this does not work if p < 1 and it never works in more
general problems of type (81).

(ii) It would be desirable to apply Banach’s contraction theorem to the
operator B in (92) in BSf?(R™). For this purpose one would need that
T+ is bounded and Lipschitz continuous in some spaces B5F*(R") with
A € [0,2] (the rest is a matter of lifting in this case, but nothing of this
type of argument can be used for more general problems related to (81)).
However this Lipschitz continuity is not available. As indicated in (84) one
deals first with the auxiliary operator

(B0@) = ¢ [, Gl =1)Qu) dy+ H). (95)
By Theorem 4.2.2 (ii) with B3*(R") in place of B5 (R") and Banach’s
contraction theorem one finds a (unique) solution of (95).
(iii) By G(y) > 0 and (83) it follows
(@) =¢ [ Ga=nT ) dy+ H@) Swl@). (96)
Hence ug is a supersolution of the original problem and by Theorem 4.2.2 (i)

combined with lifting u; € B;;FQ(R”). Iteration yields the decreasing se-
quence

wn@ =¢ [ G- n)Tu)dy+ H@ Suyle) (O
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with
s+2 n
sup [[u; | By~ (R")]| < o0 (98)
J
and
wj—u in S (R") if j— oo (99)

(even in some L,(R™) with 1 < 7 < o0). But (98), (99), and the Fatou
property of the spaces By/?(R") ensure v € B5F?(R™). It is the solution we
are looking for.

4.3.4. Remark. It is quite clear that (80), (81), (94) are model cases. They
can be extended in several directions, including boundary value problems
and, maybe, obstacle problems where u, (y) in (81) or (92) is replaced by
(u — @)+ (y) where ¢ is a given function.
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