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Quarks, fractals, non-linearities, and related ellipticoperatorsHans Triebel1 IntroductionThis paper surveys some recent results in the theory of function spaces.First we deal with quarkonial decompositions of function spaces and relatedTaylor expansions of distributions. These subatomic representations are ofinterest for their own sake (at least we hope so). But they are also an e�cienttool in some applications, which we are going to describe afterwards:(i) Function spaces on fractals and a spectral theory of related fractalelliptic operators,(ii) mapping properties of some special non-linear operators and theiruse in connection with a regularity theory of related semilinear elliptic dif-ferential equations.Our presentation will be somewhat sketchy. We outline motivations andbasic ideas, describe interrelations, and hint on further possibilities. Wedo not give most general formulations. As for further details, systematictreatments, and proofs one has to consult the cited papers and the referencesgiven there. In other words, what follows is by no means a balanced report ofthe state of art and its roots, but at the best a guide where more information(also with respect to the omitted literature) can be found.2 Function spaces: the Weierstrassian approach2.1 Motivation2.1.1 Holomorphic functionsLet f(x), where x = (x1; x2), be a holomorphic function with respect tothe complex variable z = x1 + ix2 in a connected domain 
 in R2. Let Kjbe open circles centred at xj 2 
 and of radius rj with 0 < rj < 1 such thatfor some N 2 N at most N of these circles have a non-empty intersection,
 = 1[l=1Kl and dist(Kj ; @
) > rj where j 2 N : (1)



Quarks, fractals, non-linearities 201We assume in addition that the circles Kj are chosen in such a way thatthere is a resolution of unity by C1 functions  j(x) withsupp j � Kj ; 1 = 1Xj=1  j(x) if x 2 
; (2)and jD
 j(x)j � c
 r�j
jj where 
 2 Nn0 ; j 2 N : (3)Here c
 > 0 are suitable constants which are independent of j 2 N . Withz = x1+ix2 and zj = xj1+ixj2 it follows from the classical Taylor expansion,f(x) = 1Xj=1 1Xk=0 %kj (z � zj)k j(x)= 1Xj=1 X
2N 20 �
j (x� xj)
 j(x); x 2 
; (4)where %kj 2 C are the Taylor coe�cients with respect to the o�-pointszj 2 
. Since by (1) for some cj � 0,j%kj j � cj(2rj)�k if j 2 N and k 2 N 0;(z � zj)k = (x1 � xj1 + i(x2 � xj2))k = Xj
j=k a
(x� xj)
 (5)with Xj
j=k ja
 j = 2k, and�
j = %kj a
 where j
j = k; (6)both the complex and the real representation in (4) converge absolutely atany x 2 
. One may ask whether this Weierstrassian approach to holomor-phic functions has a counterpart for non-smooth functions, function spacesand (tempered) distributions.



202 Hans Triebel2.1.2 Function spacesCompared with 2.1.1 elements of function spaces on Rn are usually de-�ned in the Riemannian spirit, that means in qualitative terms. For exam-ple, f belongs to the Sobolev space W kp (Rn) with 1 < p < 1 and k 2 N 0if, by de�nition, D
f 2 Lp(Rn) where j
j � k:Similarly, H�older-Zygmund spaces and classical Besov spaces are de�ned viadi�erences �Mh f(x). Recall that all the spacesBspq(Rn) and F spq(Rn) with 0 < p � 1 ; 0 < q � 1 ; s 2 R; (7)are introduced in qualitative terms, [11, 12, 13], how di�erently the diversede�nitions may look like. We assume that the reader is familiar with basicnotation of these spaces. We only recall the special cases:Cs = Bs11; s 2 R; (H�older-Zygmund spaces);Hsp = F sp;2; 0 < p <1; s 2 R; (Hardy-Sobolev spaces):It is our aim to introduce the spaces (7) in a Weierstrassian spirit : We askfor representations of the real version in (4) with suitable building blocks oftype (x� xj)
 j(x) where otherwise all information can be extracted fromthe coe�cients �
j . In contrast to holomorphic functions, distributions in Rnare only local. Hence it is quite clear that the circles Kj in 2.1.1 must bereplaced by a sequence of lattices with mesh lengths tending to zero. The�rst choice in Rn may be�2�jm : m 2 Zn	 ; j 2 N 0; (8)where Zn is the lattice of all points x 2 Rn with integer-valued components.Let  (x) be a suitable non-negative compactly supported C1 function andlet  
(x) = x
 (x), then the wavelet procedure 
(2jx�m) ; 
 2 Nn0 ; j 2 N 0; m 2 Zn; (9)seems to be a reasonable substitute of the functions (x � xj)
 j(x) in (4).Let � be the Laplacian in Rn and let A be either B or F . Recall thewell-known lifting property(id��)mAspq(Rn) = As�2mpq (Rn) (10)



Quarks, fractals, non-linearities 203where m 2 N ; 0 < p � 1; 0 < q � 1; s 2 R: (11)Together with the lifting (10) the outcome is perfect: The building blocks(9) are completely su�cient for the Weierstrassian approach to the spaces in(7) (s large, p <1 in the F -case). In other words, we ask for representationsof type f(x) = X
2Nn0 1Xj=0 Xm2Zn �
jm 
(2jx�m); x 2 Rn: (12)2.2 Sequence spaces2.2.1 Basic notationAs above we use standard notation: Rn (Euclidean n-space); N (naturalnumbers); N 0 = N[f0g; Zn (explained above); Nn0 multi-indices; C (complexnumbers). Furthermore, let x
 = x
11 � � � x
nn where x = (x1; : : : ; xn) 2 Rnand 
 = (
1; : : : ; 
n) 2 Nn0 .Cubes in Rn, centred at 2��m with sides parallel to the axes and oflength 2�� , where � 2 N 0 and m 2 Zn, are denoted by Q�m. Let �(p)�m bethe p-normalised characteristic function of Q�m, this means�(p)�m(x) = 2�n=p if x 2 Q�m and �(p)�m(x) = 0 if x 62 Q�m; (13)where � 2 N 0; m 2 Zn , and 0 < p � 1. Of course,k�(p)�m jLp(Rn)k = 1; (14)where Lp(Rn) are the usual Lebesgue spaces of p-integrable complex-valuedfunctions in Rn, quasi-normed in the natural way.2.2.2. De�nition. Let 0 < p � 1; 0 < q � 1, and� = f��m 2 C : � 2 N 0; m 2 Zng: (15)Then bpq = �� : k� j bpqk = � 1X�=0� Xm2Zn j��mjp�q=p�1=q <1� (16)



204 Hans Triebelandfpq = �� : k� j fpqk = 



� 1X�=0 Xm2Zn j��m�(p)�m(�)jq�1=q jLp(Rn)



 <1�(17)(with the usual modi�cation if p =1 and/or q =1 ).2.2.3. Remark. By (14) holdsbpp = fpp = `p; 0 < p �1: (18)Furthermore, using H�older's inequality, it followsbp;min(p;q) � fpq � bp;max(p;q): (19)2.3 Function spaces2.3.1 QuarksLet  be a C1 function in Rn with a compact support (say, near theorigin, but this is unimportant) andXm2Zn  (x �m) = 1 if x 2 Rn: (20)Let 0 < p �1 and s > �p = n�1p � 1�+ : (21)Recall  
(x) = x
 (x). Then(
qu)�m(x) = 2��(s�n=p) 
(2�x�m) (22)are called (s; p)-
-quarks, related to Q�m where � 2 N 0 and m 2 Zn. Thiscoincides essentially with the normalised building blocks in (12), such thatk(
qu)�m jBspp(Rn)k � k(
qu)�m jHsp(Rn)k � 1; (23)where the equivalence � is independent of � and m (but may depend on 
).As suggested by (12) we complement (15) by�
 = f�
�m 2 C : � 2 N 0; m 2 Zng; 
 2 Nn0 : (24)As usual, S(Rn) stands for the Schwartz space of all rapidly decreasing(complex-valued) C1 functions on Rn. Its dual S0(Rn) is the collection ofall tempered distributions.



Quarks, fractals, non-linearities 2052.3.2. Proposition. Let 0 < p �1; s > �p; 0 < q � 1 and � � �0(s; p).Let (
qu)jm be given by (22). Ifsup
 2�j
jk�
 j bpqk <1; (25)then f = X
2Nn0 1Xj=0 Xm2Zn �
jm (
qu)jm(x) (26)converges in S0(Rn).2.3.3. Remark. By (19) one can replace bpq in (25) by fpq . These arethe quarkonial decompositions of the spaces Bspq(Rn) and F spq(Rn) we arelooking for. In the Weierstrassian spirit one can even take representationsof type (25), (26) as starting point.2.3.4. De�nition. (i) Let 0 < p � 1; s > �p; 0 < q � 1 and � ��0(s; p). ThenBspq(Rn) = ff 2 S0(Rn) can be represented by (26), (25)g; (27)where (
qu)jm are the (s; p)-
-quarks given by (22). Furthermorekf jBspq(Rn)k = inf �sup
 2�j
jk�
 j bpqk� (28)where the in�mum is taken over all admissible representations.(ii) Let 0 < p <1; s > �p; min(1; p) � q � 1 and � � �0(s; p; q). ThenF spq(Rn) = ff 2 S0(Rn) can be represented by (26), (25)with fpq in place of bpqg; (29)where (
qu)jm are the (s; p)-
-quarks given by (22). Furthermore,kf jF spq(Rn)k = inf �sup
 2�j
jk�
 j fpqk� (30)where the in�mum is taken over all admissible representations.2.3.5. Comments. As said above this is the constructive Weierstrassianapproach of introducing the spaces Bspq(Rn) and F spq(Rn). These spaces



206 Hans Triebelhad been studied in detail in [1, 10, 11, 12, 13]. Quarkonial (or subatomic)decompositions of these spaces had been treated �rst in [14], Sec 14. Someclumsy formulations given there had been improved afterwards in [6] and[15]. Furthermore, the restrictions s > �p and (in (ii)) q � min(1; p) canbe removed if one uses arguments of type (10). Maybe the best formulationcovering all cases can be found in [15], Sec. 1.5. Furthermore the problem ofconvergence of (26), (25) can be treated more directly similarly as in [18],2.2.6. We repeat that we omit detailed references of the literature. They canbe found in the quoted books and papers.2.3.6 Cauchy formulaWe stressed the analogy of (26) with the classical Taylor expansion (4).It is well-known that for given f the Taylor coe�cients %kj can be calcu-lated by some Cauchy integrals. Of course they depend linearly on f . Therepresentation (26) is not unique. But for given s; p; q and also � one �ndsfunctions 	
jm 2 S(Rn) (depending on s; p; q; �) such that�
jm = (f; 	
jm) ; 
 2 Nn0 ; j 2 N 0; m 2 Zn; (31)(dual pairing in S(Rn) and S0(Rn)), are optimal coe�cients. This means,sup
 2�j
j k�
 j bpqk � kf jBspq(Rn)k; (32)where �
jm are given by (31) and the equivalence constants in (32) are inde-pendent of f 2 Bspq(Rn) . Similarly for F spq(Rn). We refer to [14], 14.16, onp. 104. Curiously enough the linear dependence of the coe�cients �
jm on fis out of interest for the linear problems we have in mind (spectral theory offractal PDEs) but it is at the heart of the matter of the non-linear problemswe are going to discuss later on (the Q-method).2.3.7 The role of �If s; p; q are �xed as in part (i) or in part (ii) in 2.3.4 then there is anumber �0 > 0 such that (27){(30) make sense for any � with � � �0.Of course, (28) and (30) depend on the chosen � (equivalent quasi-norms).However, the related equivalence constants depend also exponentially on �.We discussed this phenomenon in [14], 14.6, p. 97. Hence there is a bargain:If � is large, then one has rapid decay in (28), (30), but bad equivalenceconstants.



Quarks, fractals, non-linearities 2072.4 Further possibilities2.4.1 Spaces on RnIf s is not restricted as in 2.3.4 then representations of type (26), (25)cannot be expected in general. Some moment conditions for the underlyingelementary building blocks are needed. Maybe the best way to ensure thisis to generalise (22) by(
qu)L�m(x) = 2��(s�n=p)((��)(L+1)=2 
)(2�x�m) (33)where (L+ 1)=2 2 N 0. Then the counterparts of (26), (25) look a little bitmore complicated, but they work for all spaces Bspq(Rn) and F spq(Rn). Werefer to [14], Sec. 14, for details. An improved formulation may be found in[15], 1.5. In that paper we replaced  
(x) = x
 (x) by the GaussletsG
(x) = x
e�jxj2=2; 
 2 Nn0 ; x 2 Rn: (34)Including normalising factors the counterpart of (33) is given by(
G)L�m(x) = 2��(s�n=p)((��)(L+1)=2G
)(2�x�m) (35)with � 2 N 0 and m 2 Zn. It is the main aim of [15] to prove representationsof type (26), (25) based on the (s; p)-
-Gausslets (35).2.4.2 Spaces on domainsLet 
 be a bounded C1 domain in Rn. Spaces of typeeF spq(
) = ff 2 F spq(Rn) : supp f � 
 g; (36)similarly eBspq(
), and their special cases, have a long history, see [11]. In [16]we developed a theory of these spaces, especially quarkonial representations.These results and techniques can be used to study quarkonial decomposi-tions of (weighted) spaces on some special hyperbolic manifolds (with thePoincar�e n-ball as proto-type). This, in turn, is the basis of a related spectraltheory. We refer to [17].2.4.3 Taylor expansions of distributionsLet hxi = (1 + jxj2)1=2; � 2 R, andBspq(Rn; hxi�) = fhxi� f 2 Bspq(Rn)g; (37)



208 Hans Triebelobviously quasi-normed. As for these spaces we refer to [1] and the literaturequoted there. There is no problem to �nd quarkonial representations forthese weighted spaces. SinceS0(Rn) = [s2R Bspp(Rn; hxis) (38)for any 0 < p � 1, the Taylor expansions can be extended to any tempereddistribution. We refer for details to [18].3 Fractals and spectra3.1 Fractals3.1.1 Distinguished fractalsLet � be a compact subset of Rn and let 0 < d < n. Then � is calleda d-set if there is a Radon (or Borel) measure � in Rn withsupp� = � and �(B(
; r)) � rd; (39)where B(
; r) stands for a ball centred at 
 2 � and of radius 0 < r < 1.Here (and in the sequel) the equivalence means that each side in (39) canbe estimated from above by some constant multiplied with the other sidewhere this constant is independent of 
 and r. The notion of d-sets is well-known both in fractal geometry (see [14] for references, especially to thebooks by Falconer, [4, 5], and Mattila, [8]) and in the theory of functionspaces, where [7] is the standard reference.We are interested in a generalisation of (39). Let 	(r) be a positivemonotone (decreasing or increasing) function on (0; 1] with	(2�j) � 	(2�2j); j 2 N : (40)Let � be again a compact set in Rn and let 0 < d < n. Then � is calleda (d; 	)-set if there is a Radon (or Borel) measure � in Rn withsupp� = � and �(B(
; r)) � rd	(r) ; 0 < r < 1: (41)We refer to [2, 3].



Quarks, fractals, non-linearities 2093.1.2 Examples and propertiesIf b 2 R and 0 < c < 1 then	(r) = j log crjb; 0 < r � 1; (42)are typical examples of the above function 	 . Furthermore, one �nds in anycase positive numbers b; c1; c2 and 0 < c < 1 such thatc1j log crj�b � 	(r) � c2j log crjb: (43)3.1.3 Limiting caseLet 	(r) be monotonically decreasing and let 	(r)!1 if r ! 0. Then(41) with d = n makes sense and the outcome is called an (n; 	)-set. In thiscase and also in all the other cases with 0 < d < n we have alwaysj� j = 0 (Lebesgue measure): (44)3.1.4 Self-similar and pseudo self-similar setsUnder suitable conditions for xl 2 Rn the contractionsAlx = rx+ xl; 0 < r < 1; l = 1; : : : ; N; (45)generate self-similar sets � in Rn. It is one of the basic facts of fractalgeometry that for any d with 0 < d < n there are self-similar d-sets, [4, 5, 8].The contraction factor of the jth iteration of the maps in (45) is rj . Varyingthis contraction factor rj slightly, say, by rjj{ with { 2 R, then the resultingfractals are called pseudo self-similar, see [3] for a more precise version. Asproved there, for any d and 	 in 3.1.1 and 3.1.3 there are pseudo self-similar(d; 	)-sets.3.2 Function spaces on and related to fractals3.2.1 TracesWe repeat a few assertions in simpli�ed versions which may be foundin [14]. Let � be a d-set in Rn with 0 < d < n according to 3.1.1. Firstwe clarify under which conditions traces of f 2 Bspq(Rn) on � make sense.Let ' 2 S(Rn). Then tr�' denotes the pointwise trace of ' on � . There isa constant c > 0 such that for all ' 2 S(Rn),ktr�' jLp(� )k � c k' jB(n�d)=pp;1 (Rn)k; 1 < p <1: (46)



210 Hans TriebelOf course, Lp(� ) has the usual meaning with respect to the measure �in (39). By completion, tr� can be extended from S(Rn) to B(n�d)=pp;1 (Rn).The outcome is perfect:3.2.2. Proposition. Let 1 < p < 1 and let � be the above d-set with0 < d < n. Then Lp(� ) = tr�B(n�d)=pp;1 (Rn): (47)3.2.3 Spaces on �Let s > 0 and 1 � q �1. By 3.2.2,Bspq(� ) = tr�B(n�d)=p+spq (Rn); (48)obviously normed, are Besov spaces on � . It is quite clear that the embed-ding id : Bspq(� )! Lp(� ) (49)is compact. It comes out that a precise knowledge of the related entropynumbers ek(id) is of crucial importance for the spectral theory of fractal(pseudo) di�erential operators. Basic information for entropy numbers maybe found in [1].3.2.4. Theorem. Let id be given by (49). Thenek(id) � k�s=d where k 2 N : (50)3.2.5. Comment.As said we rely on [14].The proof of (50) is just the point where the quarkonial decompositionsdescribed in Sec. 2 enter the scene.In very rough terms: (28) with p = q (this is su�cient) reduces theinvolved spaces to sequence spaces `p with some weights. In other words:Quarkonial decompositions allow to reduce problems of type (50) to cor-responding problems between (weighted) sequence spaces of type `p.As for details we refer again to [14]. Historical remarks about entropynumbers may be found in [1], 3.3.5, pp. 126{128. In [1], 3.3, we proved asser-tions of type (50) for bounded C1 domains 
 � Rn in place of � . The proofworks for any bounded domain in Rn. It is based on the original Fourieranalytical de�nition of Bspq(Rn). However the step from bounded domains 




Quarks, fractals, non-linearities 211in Rn to fractals � in Rn destroys the application of this method (at least at�rst glance). This was the main reason for the author to develop the theoryof quarkonial (subatomic) decompositions of function spaces in [14] and asdescribed in Sec. 2. As for the alternative approach to construct frames infunction spaces of type Bspq(Rn) and F spq(Rn) via splines and wavelets werefer to [9] and [10], 2.3 (some comments may also be found in [15], 2.4). Theadvantage of the 
-quarks are their simplicity and the described interrela-tion with Taylor expansions. They are useful in rather di�erent applicationssuch as entropy numbers, spectral theory, and non-linear problems (theQ-method, discussed below).3.2.6 The golden triangleThe identi�cation of Lp(� ) with some trace spaces in 3.2.2 is perfect.The other side of the same coin is the question what can be said aboutfunctions f� 2 Lp(� ); 1 < p <1; � : d-set; (51)0 < d < n, interpreted as (singular) distributions in Rn. If one looks at f�as a complex measure then there is only one reasonable way to interpret f�as f 2 S0(Rn), given byf(') = Z� f� (
) (tr�')(
)�(d
); ' 2 S(Rn): (52)It comes out that the quality of f can be described in terms of the spacesBsp1(Rn) which are located in an (1=p; s)-diagram in the triangle (fractalcountry) ��1p ; s� : 1 < p <1; n�1p � 1� < s < 0� : (53)Let Bs;�p1(Rn) = ff 2 Bsp1(Rn) :f(') = 0 if ' 2 S(Rn) and tr�' = 0g : (54)In particular, if f 2 Bs;�p1(Rn) then supp f � � . Hence, by (44), any non-trivial distribution f belonging to this space is singular.3.2.7. Proposition. Let � be the above d-set in Rn with 0 < d < n. Then,according to the interpretation (52),Lp(� ) = B�(n�d)=p0;�p1 (Rn) (55)where 1 < p <1 and 1=p+ 1=p0 = 1.



212 Hans Triebel3.2.8. Remark. Details, explanations and proofs may be found in [14],Sec. 17, 18. Of course the B-space in (55) lies in the triangle (53).3.2.9 The operator tr�The trace operator tr� has the meaning of 3.2.1 { 3.2.3, where � is againa d-set in Rn with 0 < d < n. Formalising (52) byid� : f� ! f (56)we have tr� = id� � tr� (57)with tr� : B(n�d)=pp;1 (Rn)! Lp(� )! B�(n�d)=p0p1 (Rn) (58)by 3.2.2 and 3.2.7. This, together with (50), paves the way to introduce andto study fractal (pseudo)-di�erential operators.3.2.10 GeneralisationSo far everything what had been said in 3.2.1 { 3.2.9 is covered by [14].One can extend all these considerations from d-sets to (d; 	)-sets introducedin 3.1. For this purpose one has to generalise the smoothness s in Bspq bya couple (s; 	a), hence B(s;	a)pq , where a 2 R and 	 have the same meaningas in 3.1.1 and 3.1.2. Afterwards one has counterparts of Propositions 3.2.2,3.2.7, Theorem 3.2.4 and interpretation (58). We do not go into detail andrefer to [3] and the announcement [2].3.3 Fractal elliptic operators3.3.1 The Dirichlet LaplacianAs usual we put Hs(Rn) = Bs2;2(Rn); s 2 R; (59)and Hs(
) = Hs(Rn)n
; (60)for the restriction ofHs(Rn) to the bounded C1 domain
 in Rn. If s > 1=2,then H�s(
) = ff 2 Hs(
) : tr@
f = 0g (61)



Quarks, fractals, non-linearities 213makes sense. Let � = nXj=1 @2@x2j . Then�� : H�1(
)() H�1(
) (62)is an isomorphic map of H�1(
) onto H�1(
). To indicate the vanishingboundary data one calls �� with (62) the Dirichlet Laplacian.3.3.2 The set-upLet again
 be a bounded C1 domain in Rn and let � be a distinguishedfractal according to 3.1.1, that means a d-set or a (d; 	)-set, with� � 
: (63)We ask under which conditionsB = (��)�1 � tr� : H�1(
)! H�1(
) (64)makes sense. Of course, (��)�1 is the inverse of the Dirichlet Laplacian in(62). By (58) with p = 2 one needs for (64) that n� d < 2, at least in caseof d-sets. But this holds also for (d; 	)-sets. By (50) one can even expectqualitative assertions of the compactness of B.3.3.3 Physical backgroundWe interpret the bounded C1 domain 
 in the plane R2 as a membrane,�xed at its boundary @
 and with the mass density m(x). Vibrations aredescribed by�u(x; t) = m(x)@2u@t2 (x; t); u(y; t) = 0 in @
 � R+ : (65)Via u(x; t) = ei�tv(x) the eigenfrequencies � are given by��v(x) = �2m(x)v(x); (66)where �� is the above Dirichlet Laplacian. What happens if the membraneis crumbling or gets rusty? Assume that the outcome (in an idealised form)can be described replacing m(x) by a measure � related to a (d; 	)-set �with � � 
 according to 3.1.1. Then (66) results in (64), and the positiveeigenvalues �k of B and the eigenfrequencies �k are related by �k = ��1=2kwhere k 2 N . As for more details we refer again to [14].



214 Hans Triebel3.3.4. Theorem. Let 
 be a bounded C1 domain in Rn and let � be a(d; 	)-set according to 3.1.1 with� � 
 and n� 2 < d < n: (67)Then B, given by (64), is self-adjoint, non-negative, and compact with null-space N(B) = ff 2 H�1(
) : tr� f = 0g (68)and 0 < �k � k�1(k 	(k�1))(n�2)=d; k 2 N ; (69)for the positive eigenvalues. Furthermore, B is generated by the quadraticform Z� f(
)g(
)�(d
) = (Bf; g)H1 (70)in H�1(
).3.3.5. Comments. For details we refer to [3] and its announcement [2].It generalises both in formulation and proofs a corresponding assertion ford-sets in [14]. The main point is the estimate of �k from above in (69). It isbased on Carl's inequality�k � p2 ek(B); k 2 N ; (71)where ek(B) are the entropy numbers of B. The estimate of ek(B) in caseof d-sets can be reduced via (58) and (62) to 3.2.4. For (d; 	)-sets one �ndsthe corresponding counterpart in the quoted papers.In other words, the most di�cult part of the above theorem is proved viaappropriate quarkonial decompositions of the type as described in Sec. 2.3.3.6. Corollary. Let � be a (n; 	)-set according to 3.1.3 with � � 
.Then the assertions of Theorem 3.3.4 remain valid, now with d = n in (69).3.3.7 Further possibilitiesAs said the above material is taken from [14] and [2, 3]. There one �ndsfurther considerations of this type. We mention three of them.



Quarks, fractals, non-linearities 215(i) The fractals � treated so far are isotropic (there are no distinguisheddirections in Rn). This �ts pretty well to the isotropic operator �. One candeal with anisotropic fractals � (ferns, grasses, etc.). One can say at leastsomething as in Theorem 3.3.4, where one has now only estimates for the�k in (69): The music of the ferns. We refer to [14].(ii) All considerations are qualitative. One needs mapping propertiesof type (62) (but nothing special related to ��, or better, (��)�1) andestimates for the entropy numbers based on quarkonial decompositions. Onemay also replace �(d
) on � by b 2 Lr(� ) (where b = 1 corresponds to�(d
)). Hence, the method works if one generalises B in (64) byB = b1 �A � b2; bj 2 Lrj (� ) and A 2 	�{1;% ; (72)where 	�{1;% is the H�ormander class of pseudo-di�erential operators in Rn,here with { > 0 and 0 � % � 1, and rj are suitably chosen numbers with1 < rj �1.(iii) In quantum mechanics one asks for the behaviour of the so callednegative spectrum of Schr�odinger operators of typeH = ��+ �V if � !1 (73)(semi-classical limits). Here V is a potential in Rn, assumed to be relativelycompact with respect to ��, that means V (��+ id)�1 is compact, say, inL2(Rn). (Of course, n = 3 is the case of physical relevance.) What happensif V = b(
)�(d
); b 2 Lr(� ); (74)where � is the above measure with respect to a d-set or a (d; 	)-set � in Rn?With the help of the so called Birman-Schwinger principle one can reducethis question to assertions as treated in Theorem 3.3.4 and Corollary 3.3.6.In [14] we dealt with problems of this type in the case of d-sets. There is nodoubt that these considerations can be extended to (d; 	)-sets.4 Composition operators and the Q-method4.1 IntroductionLet G(t) be a real continuous function on the real line R with G(0) = 0.Then TG : f ! G(f(x)); f(x) 2 Lloc1 (Rn) real; (75)



216 Hans Triebelis called a composition operator. One asks for mapping properties of TG be-tween suitable function spaces: boundedness, continuity, Lipschitz continu-ity, compactness. Of course, Lp(Rn) with 1 � p � 1, is the classical choiceof underlying function spaces (maybe with di�erent p's in the source andthe target space): Nemytskii operators. If one replaces Lp by (real) Sobolevspaces Wmp or, more general, Bspq and F spq spaces, then the correspondingtheory becomes more complicated. Nevertheless, there is an astonishinglycomprehensive related theory which may be found in [10] and the referencesgiven there. The adopted point of view is the following:Given a space (or may be two spaces, source and target). For which G isTG a (bounded, continuous, H�older or Lipschitz continuous) map?The other side of the same coin is the following question:If G is given, �nd all (real) spaces Bspq, F spq for which TGis a (bounded, continuous, H�older or Lipschitz continuous) map.First non-smooth candidates areG(t) = jtj{ ; { > 0; (76)and, in particular,G(t) = jtj and G(t) = t+ = max(t; 0): (77)Put T : f(x)! jf(x)j and T+f(x) = f+(x) = max(f(x); 0) (78)if f 2 Lloc1 (Rn), real. As far as mapping properties are concerned there isno big di�erence between T and T+ since2T+ = id + T: (79)Obviously, the operators T and T+ attracted a lot of attention. However thecorresponding theory in the spaces Bspq and F spq (maybe restricted to theirreal parts) is surprisingly complicated (especially if s > 1). What is knownso far may be found in [10], 5.4. We complement these results below bydescribing under which conditions T (and hence also T+) is bounded. Cor-responding results with respect to continuity or even Lipschitz continuityare not available so far (with exception of Lp-spaces). However such conti-nuity assertions seem to be indispensable if one wishes to apply �xed point



Quarks, fractals, non-linearities 217theorems in connection with existence, uniqueness, regularity of solutionsof semi-linear di�erential equations or integral equations of proto-type(��+ id)u(x) = b(x)ju(x)j + h(x); x 2 Rn; (80)and u(x) = ZRn K(x� y)u+(y) dy + h(x); (81)respectively. Here b;K; h are given, and one asks for solutions u. Besidesexistence (and uniqueness), one wishes to obtain maximal smoothness as-sertions for u, especially in dependence on the quality of h. If, roughlyspeaking, b(x) = " > 0 small, K 2 L1(Rn) real and real h 2 Bspq(Rn),then the perfect outcome would be u 2 Bs+2pq (Rn) in (80) and u 2 Bspq(Rn)in (81). Direct application of, say, Banach's contraction theorem would re-quire that T and T+ in suitable (real) spaces Bspq(Rn) and F spq(Rn) are notonly bounded but Lipschitz continuous. But the latter is simply not avail-able (and, in general, not true). This is the point where again quarkonialdecompositions as described in 2.3 enter the scene. Let f be given by (26),(25) with �
jm = �
jm(f) as in (31). Then we putQf = X
2Nn0 1Xj=0 Xm2Zn j�
jm(f)j j(
qu)jm(x)j: (82)For real f we have by (78)0 � T+f � Tf � Qf: (83)The operator Q is the quarkonial twin of T : In the assertions below, Q isbounded in, say, those spaces Bspq(Rn) where T is bounded, but in additionit is Lipschitz continuous (in sharp contrast to T ). This is the starting pointof what we call the Q-method. Very roughly: First one replaces the right-hand side of (81) by the auxiliary operatorKQu(x) = ZRn K(x� y(Qu)(y) dy + h(x): (84)Suppose real h 2 Bspq(Rn) (such that Q can be applied), kKjL1k small,K(y) � 0, then by Banach's contraction theorem, KQ has a �xed pointuQ(x) 2 Bspq(Rn). By (83) this function uQ is a supersolution for (81).



218 Hans TriebelUsing the well-known technique of supersolutions and what is known aboutT , T+ and Bspq(Rn) one arrives at a solution u 2 Bspq(Rn) of (81) withmaximal smoothness. In the following subsections we outline this methodand the underlying mapping properties of the operators T and Q. Detailedproofs will be published elsewhere.4.2 The operators T and Q4.2.1 PreliminariesWe may always assume that the function  in (20) is non-negative.Recall  
(x) = x
 (x) with x
 = x
11 � � � x
nn :Hence if T or Q maps a given space Bspq(Rn) or F spq(Rn) into itself thenat least jx
 j (x) must be an element of this space. This question can bereduced to n = 1 and 
 = 1. Thenjxj (x) 2 B1+1=pp1 (R); 0 < p �1: (85)If  (0) 6= 0 then this is the best possible assertion: B1+1=pp1 cannot bereplaced by B1+1=ppq with q <1, [12], pp. 147{9. Together with some Fubiniarguments, see [12], [10], or [16], one arrives at the natural restriction0 < p �1; n�1p � 1�+ < s < 1 + 1p ; (86)(not to speak about limiting points in the (1=p; s)-diagram). It is somewhatcurious but in case of Q one can avoid smoothness restrictions of type (86)if one chooses a function  withsupp � fy = (y1; : : : ; yn) 2 Rn : yj > 0g : (87)But at least so far we have no use for this observation: beyond (86) thereis no reasonable interplay between T and Q (not to speak about limitingcases). Although not necessary for some assertions concerning T and for allassertions concerning Q, we restrict ourselves now to the real part Bspq ofBspq (similarly Fspq).



Quarks, fractals, non-linearities 2194.2.2. Theorem. Let0 < p � 1; 0 < q �1; n�1p � 1�+ < s < 1 + 1p : (88)(i) Then T and T+, given by (78), are bounded operators in Bspq(Rn): thereis a constant c > 0 such thatkTf j Bspq(Rn)k � c kf j Bspq(Rn)k (89)and kT+f j Bspq(Rn)k � c kf j Bspq(Rn)k (90)for all f 2 Bspq(Rn) .(ii) Then Q, given by (82), is a bounded and Lipschitz continuous operatorin Bspq(Rn): there is a constant c > 0 such thatkQf �Qg j Bspq(Rn)k � c kf � g j Bspq(Rn)k (91)for all f and g belonging to Bspq(Rn).4.2.3. Remark. The boundedness of Q is a special case of (91) with g = 0.The assertions for Q follow easily from (82), (31) and the quarkonial decom-positions. What is known about T (and T+) may be found in [10], 5.4. Theproof of the full theorem will be published elsewhere.4.2.4. Comment. There is a similar result for Fspq(Rn) with the additional(presumably technical) restriction s 6= 1=p if p � 1 for T and T+.4.3 The Q-method4.3.1 PreliminariesLet b(x) = " in (80). By (79) there is no essential di�erence if we replaceju(x)j in (80) by u+(x). Let G(y) be the Green's function of ��+id in Rn.Then (80) (modi�ed in the indicated way) is equivalent tou(x) = (Bu)(x) = " ZRn G(x� y)u+(y) dy +H(x) (92)with H = (�� + id)�1h. Recall G(y) > 0 in Rn. In other words, (92) �tsin the scheme of (81). We restrict ourselves here to (80) in the modi�edversion of (92). But the method works also for problems of type (81).



220 Hans Triebel4.3.2. Theorem. Let0 < p � 1; 0 < q � 1; n�1p � 1�+ < s+ � < 1 + 1p (93)for some � 2 [0; 2]. There is a number "0 > 0 such that for any " with0 < " < "0 and any h 2 Bspq(Rn),(��+ id)u(x) = "u+(x) + h(x); x 2 Rn; (94)has a unique solution u 2 Bs+2pq (Rn).4.3.3. Method of proof and comments.(i) By some embedding and Banach's contraction theorem (94) has alwaysa unique solution u(x) in Lr(Rn) for some 1 � r � 1. If 1 < p � 1 thenone may even choose r = p and bootstrapping arguments yield the desiredresult. However this does not work if p < 1 and it never works in moregeneral problems of type (81).(ii) It would be desirable to apply Banach's contraction theorem to theoperator B in (92) in Bs+2pq (Rn). For this purpose one would need thatT+ is bounded and Lipschitz continuous in some spaces Bs+�pq (Rn) with� 2 [0; 2] (the rest is a matter of lifting in this case, but nothing of thistype of argument can be used for more general problems related to (81)).However this Lipschitz continuity is not available. As indicated in (84) onedeals �rst with the auxiliary operator(BQu)(x) = " ZRn G(x� y)Qu(y) dy +H(x): (95)By Theorem 4.2.2 (ii) with Bs+�pq (Rn) in place of Bspq(Rn) and Banach'scontraction theorem one �nds a (unique) solution of (95).(iii) By G(y) > 0 and (83) it followsu1(x) = " ZRn G(x � y)T+u0(y) dy +H(x) � u0(x): (96)Hence u0 is a supersolution of the original problem and by Theorem 4.2.2 (i)combined with lifting u1 2 Bs+2pq (Rn). Iteration yields the decreasing se-quence uj+1(x) = " ZRn G(x � y)T+uj(y) dy +H(x) � uj(x) (97)



Quarks, fractals, non-linearities 221with supj kuj j Bs+2pq (Rn)k <1 (98)and uj ! u in S0(Rn) if j !1 (99)(even in some Lr(Rn) with 1 < r � 1). But (98), (99), and the Fatouproperty of the spaces Bs+2pq (Rn) ensure u 2 Bs+2pq (Rn). It is the solution weare looking for.4.3.4. Remark. It is quite clear that (80), (81), (94) are model cases. Theycan be extended in several directions, including boundary value problemsand, maybe, obstacle problems where u+(y) in (81) or (92) is replaced by(u� ')+(y) where ' is a given function.References[1] D. E. Edmunds and H. Triebel, Function spaces, entropy numbers, di�erentialoperators. Cambridge University Press, Cambridge 1996.[2] D. E. Edmunds and H. Triebel, Spectral theory for isotropic fractal drums.C. R. Acad. Sci. Paris 326, S�erie I. Math. 326 (1998), 1269{1274.[3] D. E. Edmunds and H. Triebel, Eigenfrequencies of isotropic fractal drums.Preprint, 1998 (submitted).[4] K. J. Falconer, The geometry of fractal sets. Cambridge University Press,Cambridge 1985.[5] K. J. Falconer, Fractal geometry. Wiley, Chichester 1990.[6] W. Farkas, Atomic and subatomic decompositions in anisotropic functionspaces. To appear in Math. Nachr.[7] A. Jonsson and H. Wallin, Function spaces on subsets of Rn. Math. reports 2,1. Harwood Acad. Publ., London 1984.[8] P. Mattila, Geometry of sets and measures in Euclidean spaces. CambridgeUniversity Press, Cambridge 1995.[9] Y. Meyer, Wavelets and operators. Cambridge University Press, Cam-bridge 1992.[10] Th. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytzkij oper-ators, and nonlinear partial di�erential equations. de Gruyter, Berlin 1996.[11] H. Triebel, Interpolation theory, function spaces, di�erential operators.North-Holland, Amsterdam 1978 (sec. ed. Barth, Heidelberg 1995).[12] H. Triebel, Theory of function spaces. Birkh�auser, Basel 1983.[13] H. Triebel, Theory of function spaces II. Birkh�auser, Basel 1992.
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