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RECENT DEVELOPMENTS IN THE

THEORY OF FUNCTION SPACES WITH

DOMINATING MIXED SMOOTHNESS

Hans-Jürgen Schmeisser

Abstract. The aim of these lectures is to present a survey of some results
on spaces of functions with dominating mixed smoothness. These results
concern joint work with Winfried Sickel and Miroslav Krbec as well

as the work which has been done by Jan Vyb́iral within his thesis. The
first goal is to discuss the Fourier-analytical approach, equivalent charac-
terizations with the help of derivatives and differences, local means, atomic
and wavelet decompositions. Secondly, on this basis we study approximation

with respect to hyperbolic crosses, embeddings and traces. We follow [42],
[43], [44], [59], [63], [64], [70], and [94], [95], [96]. Partial results can be found
also in [6], [7], [8], [37] and [48].

1. Introduction – Dominating mixed
smoothness and related topics

1.1. Sobolev spaces. The aim of this section is twofold. On the one
hand, we describe how to define dominating mixed smoothness properties
of functions by classical means, i.e., by derivatives and differences, and we
give precise definitions of the corresponding spaces. On the other hand, we
introduce related topics which provide the motivation to study such a type
of function spaces and which will be discussed in later sections.

Let N be the collection of all natural numbers and N0 = N ∪ {0}. Let
Rd be the Euclidean d-space, where d ∈ N. Put R = R1, whereas C is the
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146 HANS-JÜRGEN SCHMEISSER

complex plane. As usual, Lp(Rd), with 0 < p ≤ ∞, is the quasi-Banach
space with respect to the Lebesgue measure, quasi-normed by

‖f | Lp(Rd)‖ =
(∫

Rd

| f(x)|p dx
)1/p

with the obvious modification if p = ∞.
Let Nd0 be the set of all multi-indices

α = (α1, . . . , αd) with αi ∈ N0 and |α| =
d∑

i=1

αi.

Let S(Rd) be the Schwartz space of all complex-valued, rapidly decreasing,
infinitely differentiable functions on Rd. By S′(Rd) we denote its topological
dual, the space of all tempered distributions on Rd. If α ∈ Nd0 and f ∈
S′(Rd), we put

Dαf =
∂|α|

∂xα1
1 · · · ∂xαd

d

f,

where the derivatives are understood in the distributional sense.

Definition 1.1 (Sobolev spaces). Let 1 < p <∞ and let (r1, . . . , rd) ∈ Nd.
We put

W r1,...,rd
p (Rd) =

{
f ∈ Lp(Rd) : Dαf ∈ Lp(Rd) for all α ∈ Nd0,

d∑

i=1

αi
ri
≤ 1

}

and
‖f |W r1,...,rd

p (Rd)‖ =
∑

0≤α1
r1

+···+ αd
rd
≤1

‖Dαf | Lp(Rd)‖.

These are the anisotropic Sobolev spaces extensively studied by the Rus-
sian school of function spaces (see, for example, [51]). If r1 = · · · = rd = r ∈
N then we obtain the standard isotropic Sobolev spaces on Rd, denoted by
W r
p (Rd) in the following.
Next, let αj ∈ Nnj , where j = 1, . . . , d and nj ∈ N. We put

α = (α1, . . . , αd) ∈ Nn1
0 × · · · × Nnd

0

and split
Rn1+···+nd = Rn1 × · · · × Rnd .
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Definition 1.2 (Sobolev spaces with dominating mixed derivatives). Let
1 < p <∞ and let (r1, . . . , rd) ∈ Nd. We put

Sr1,...,rd
p W (Rn1 × · · · × Rnd) = {f ∈ Lp(Rn1 × · · · × Rnd) :

Dαf ∈ Lp(Rn1 × · · · × Rnd) for all α, |αj | ≤ rj , j = 1, . . . , d} (1.1)

and

‖f | Sr1,...,rd
p W (Rn1 × · · · × Rnd)‖ =

∑

|αj |≤rj ,
j=1,...,d

‖Dα | Lp(Rn1 × · · · × Rnd)‖.

Remark 1.3. Note that

f1 ⊗ · · · ⊗ fd ∈ Sr1,...,rd
p W (Rn1 × · · · × Rnd)

if fj ∈W rj
p (Rnj ) for all j = 1, . . . , d, where f⊗g stands for the tensor product

of f and g. This means that the above Sobolev spaces with dominating mixed
derivatives are well adapted to tensor products of functions.

If n1 = · · · = nd = 1 then Definition 1.2 suggests that the properties of
the space should be determined by the mixed derivative

D(r1,...,rd)f ∈ Lp(Rd).

For example, in the case d = 2 it is well known (cf., e.g., [63]) that

‖f |W r1,r2
p (R2)‖ ∼ ‖f | Lp(R2)‖+ ‖D(r1,0)f | Lp(R2)‖

+ ‖D(0,r2)f | Lp(R2)‖
(1.2)

and

‖f | Sr1,r2p W (R2)‖ ∼ ‖f | Lp(R2)‖+ ‖D(r1,0)f | Lp(R2)‖
+ ‖D(0,r2)f | Lp(R2)‖+ ‖D(r1,r2)f | Lp(R2)‖

(1.3)

if 1 < p <∞. The situation is illustrated in Figures 1 and 2 below.
If n1 = · · · = nd = 1 and r1 = · · · = rd = r ∈ N then we shall write

SrpW (Rd) = Sr1,...,rd
p W (R× · · · × R)
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for shortness. Obviously, in this case the topological embeddings

W rd
p (Rd) →֒ SrpW (Rd) →֒W r

p (Rd)

hold true.
Similarly, spaces on the d-dimensional torus Td and on domains Ω ⊂ Rd

can be defined. The spaces SrpW (Td) have been introduced and used by
Babenko in 1960 (see [4]) in the context of multivariate approximation.
We shall comment upon that in Subsection 1.3.

(0, 0)

(0, r2)

∂
∂x2

∂
∂x1

(r1, 0)

(α1, α2)

(r1, r2)

Figure 1: Dominating mixed

(0, 0)

(0, r2)

∂
∂x2

∂
∂x1

(r1, 0)

(α1, α2)

Figure 2: Anisotropic

1.2. Fractional Sobolev spaces. We introduce some further notation. If
ϕ ∈ S(Rd) then

(Fϕ)(ξ) = (2π)−d/2
∫

Rd

e−ixξ ϕ(x) dx, ξ ∈ Rd, (1.4)

denotes the Fourier transform of ϕ. As usual, F−1 stands for the inverse
Fourier transform, given by the right-hand side of (1.4) with i in place of −i.
Here xξ denotes the scalar product in Rd. Both F and F−1 are extended
to S′(Rd) by duality. Occasionally we shall write Fd and F−1

d in place of F
and F−1, respectively, to indicate the dependence on the dimension of the
underlying Euclidean space. Moreover, if x ∈ Rd then we write

|x| = (x2
1 + · · ·+ x2

d)
1/2 and 〈x〉 = (1 + |x|2)1/2.

Definition 1.4 (Fractional Sobolev spaces). Let 1 < p <∞ and let r ∈ R.
We put

Hr
p(Rd) =

{
f ∈ S′(Rd) : F−1[〈ξ〉rFf ] ∈ Lp(Rd)

}

and
‖f | Hr

p(Rd)‖ = ‖F−1[〈ξ〉rFf ] | Lp(Rd)‖.
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The spacesHr
p(Rd) are called fractional Sobolev spaces or Bessel-potential

spaces. They coincide with W r
p (Rd) if r ∈ N. Here we concentrated on the

standard (isotropic) case. This will be sufficient for our later purposes. Next
we describe the dominating mixed variant. To this end, we recall the splitting

Rn1+···+nd = Rn1 × · · · × Rnd .

Hence, ξ ∈ Rn1+···+nd will be identified with (ξ1, . . . , ξd) where ξj ∈ Rnj for
j = 1, . . . , d.

Definition 1.5 (Fractional Sobolev spaces with dominating mixed smooth-
ness). Let 1 < p <∞ and let (r1, . . . , rd) ∈ Nd. We put

Sr1,...,rd
p H(Rn1 × · · · × Rnd) = {f ∈ S′(Rn1+···+nd) :

F−1[〈ξ1〉r1 . . . 〈ξd〉rdFf ] ∈ Lp(Rn1+···+nd)}
(1.5)

and

‖f | Sr1,...,rd
p H(Rn1 × · · · × Rnd)‖

= ‖F−1[〈ξ1〉r1 . . . 〈ξd〉rdFf ] | Lp(Rn1+···+nd)‖.

As above, if n1 = · · · = nd = 1 and r1 = · · · = rd = r ∈ R then we shall
write

SrpH(Rd) = Sr1,...,rd
p H(R× · · · × R)

for shortness. Spaces of this type have been introduced by Lizorkin and
Nikol’skii in 1965 (see [47]). We have (equivalent norms):

W r
p (Rd) = H r

p (Rd) if r ∈ N,

Sr1,...,rd
p W (Rn1 × · · · × Rnd) = Sr1,...,rd

p H(Rn1 × · · · × Rnd)

if (r1, . . . , rd) ∈ Nd,
(1.6)

SrpH(Rd) ⊂ Hr
p(Rd) ⊂ Sr/dp H(Rd) if r > 0. (1.7)

The proofs are based on Fourier multiplier theorems. We refer to [85], [42]
and the references given there.

In an analogous way we can define corresponding spaces on the d-dimen-
sional torus T. Details can be found in [63, Chap. 3] (the isotropic case).
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1.3. Multivariate approximation. We want to discuss how we can ben-
efit from dominating mixed smoothness. To this end, we shall consider an
example related to the multivariate (high-dimensional) approximation. We
deal with the periodic case and follow Temlyakov (cf. [79]).

Let 1 < q < ∞ and let F , F →֒ Lq(Td), be a normed space. If m ∈ N
then we denote by

ϕm(F,Lq) := inf
(uj)m

j=1⊂L∞(Td)
sup
f∈F

‖f |F‖≤1

∥∥f −
m∑

j=1

(f, uj)uj
∣∣ Lq(Td)

∥∥,

where the infimum is taken over all orthnormal systems (uj)mj=1, the so-called
orthowidth (or Fourier width) of order m of F in Lq. In other words, we ask
which approximation error for an arbitrary f ∈ F can be achieved in the
metric of Lq if we restrict ourselves to the approximation by partial sums of
order m with respect to orthonormal systems. Moreover, we are looking for
an optimal system.

Let us recall the well-known embedding theorems of Sobolev type for the
spaces Hr

p(Td) and SrpH(Td), respectively. We set a+ = max(a, 0) for a ∈ R.
If

1 < p, q <∞ and r > d
(1
p
− 1
q

)
+

(1.8)

then
Hr
p(Td) →֒ Lq(Td).

If
1 < p, q <∞ and r >

(1
p
− 1
q

)
+

(1.9)

then
SrpH(Td) →֒ Lq(Td).

Proofs can be found in [63, Chap. 2 and 3]. The following results are proved
in Temlyakov [79]. Assume (1.8). Then

ϕm(Hr
p(Td), Lq(Td)) ≍

( 1
m

) r
d +

(
1
p− 1

q

)
+
. (1.10)

Suppose (1.9). Then

ϕm(SrpH(Td), Lq(Td)) ≍
(

logd−1m

m

)r+
(

1
p− 1

q

)
+

. (1.11)



SPACES WITH DOMINATING MIXED SMOOTHNESS 151

On the other hand, if (1.8) is assumed then it follows from (1.11) that

ϕm(S r/dp H(Td), Lq(Td)) ≍
(

logd−1m

m

) r
d +

(
1
p− 1

q

)
+

.

Remark 1.6. One can ask how many Fourier coefficients have to be com-
puted to reconstruct f with accuracy O(ε). We consider the case p = q in
the above situations.

If f ∈ Hr
p(Td) then (1.10) shows that we need at least O( 1

ε )
d/r coefficients.

In particular, the number grows exponentially with respect to the dimension
(“the curse of dimension”). The situation is improved drastically if addi-
tional dominating mixed smoothness is assumed. If f ∈ Srp(Td) ⊂ Hr

p(Td)
then, as a consequence of (1.11), O( 1

ε )
(1+δ)/r coefficients (for some δ > 0)

are sufficient. This is nearly the one-dimensional situation. The problem of
high dimension is shifted to appropriate function spaces.
Remark 1.7. The optimal reconstruction by partial sums of orthonormal
systems can be realized by means of approximation with respect to hyper-
bolic crosses. If m = 2ℓℓd−1 and if (1.9) is assumed, then

∥∥∥f −
∑

k∈Hℓ

f̂(k)eikx
∣∣∣ Lq(Td)

∥∥∥ ≤ c

(
logd−1m

m

)r+
(

1
p− 1

q

)
+

‖f | SrpH(Td)‖

for all f ∈ SrpH(Td), where f̂(k) denote the Fourier coefficients with respect
to the d-dimensional trigonometric system and where

Hℓ =
{
k ∈ Zd : |k1| ≤ 2j1 , . . . , |kd| ≤ 2jd , j1 + · · ·+ jd = ℓ

}
(1.12)

stands for the dyadic hyperbolic cross of order ℓ. The interrelations of ap-
proximation with respect to hyperbolic crosses and function spaces with
dominating mixed smoothness are discussed in Section 3 in the bivariate
nonperiodic case.
Remark 1.8. The last two remarks apply also to further types of high-
dimensional approximation (hyperbolic spline and wavelet approximation,
approximation with respect to sparse grids) which arise from the numerical
solution of partial differential equations, data analysis and signal process-
ing. As a consequence, there is an increasing interest in function spaces
with dominating mixed smoothness in computational mathematics. Here, we
only refer to Bungartz, Griebel [15], DeVore, Konyagin, Temlyakov
[20], Donoho, Vetterli, DeVore, Daubechies [26], Griebel, Oswald,
Schiekofer [34], Kamont [38], Nitsche [52], [53], Sickel [65], [66],
Sickel, Ullrich [69], Ullrich [93], and Yserentant [97], [98]. See also
the comments in Section 3.
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Remark 1.9. Formulae (1.9) and (1.11) in particular show that the embed-
ding operator I : SrpH(Td) → Lq(Td) is compact. The Fourier widths can
be used to measure the degree of compactness of the embedding. There ex-
ist further quantities related to and measuring the compactness which have
been studied in the context of spaces with dominating mixed smoothness
and applications to the distribution of eigenvalues of operators and to sto-
chastic processes. The behaviour of entropy numbers will be discussed in
Subsection 5.3. We refer also to Belinsky [10], Dinh Dung [23], [24], [25],
Temlyakov [75]–[79], Tikhomirov [80], and Vyb́iral [96].

1
q

=
1
p
− r

d
=
d− rp

dp

̺ = r −
(1
p
− 1
q

)
= (d− 1)

(1
p
− 1
q

)Cr− d
p

1
p

1
p

1
q 1

1

Sr−
1
p C

S
r/d
p H

S̺qH

Hr
p

SrpH →֒ Hr
p →֒ S

r/d
p H

r = 1
p

r = d
pd

r

Figure 3: Sobolev embeddings

1.4. Sobolev embeddings. First let us recall well-known embeddings for
(fractional) Sobolev spaces of functions defined on Rd. Details can be found
in [85] (isotropic case) and [63] (dominating mixed case). We have

Hr
p(Rd) →֒ Lq(Rd) iff r ≥ d

(1
p
− 1
q

)
, 1 < p ≤ q <∞,



SPACES WITH DOMINATING MIXED SMOOTHNESS 153

Sr/dp H(Rd) →֒ Lq(Rd) iff r ≥ d
(1
p
− 1
q

)
, 1 < p ≤ q <∞,

SrpH(Rd) →֒ S̺qH(Rd) →֒ Sr−1/p
q C(Rd) if r− ̺ =

1
p
− 1
q
, 1 < p ≤ q <∞.

Here, Sr−1/p
q C(Rd) denotes the Hölder-Zygmund space with dominating

mixed smoothness which will be defined in Subsection 1.6. The situation
is illustrated in the (r, 1/p)-diagram below (see Figure 3).

These embeddings can be extended to the more general spaces introduced
in (1.1), (1.5) (cf. also (1.6)). This is proved in [60] (see also [61]). In
particular, if

rj ≥ nj

(1
p
− 1
q

)
, j = 1, . . . , d, 1 < p ≤ q <∞

then

S r1,...,rd
p H(Rn1 × · · · × Rnd) →֒ Lq(Rn1 × · · · × Rnd). (1.13)

We have a second look at Sobolev embeddings. As already indicated in
formula (1.2) (an)isotropic Sobolev spaces can be completely characterized
by the properties of pure derivatives. Indeed, we have the equivalence

‖f |Wm
p (Rd)‖ ∼ ‖f | Lp(Rd)‖+

d∑

j=1

∥∥∥∂
mf

∂xmj

∣∣∣ Lp(Rd)
∥∥∥, 1 < p <∞, m ∈ N.

In the paper [1] by Adams in the context of embeddings the problem has
been discussed whether or not a reduction to mixed derivatives of order m
is possible. More precisely, let us consider the set

M(m, d) :=
{
α ∈ Nd0 : αj = 0, 1, j = 1, . . . , d, |α| = m

}
.

If M⊂M(m, d) and 1 < p <∞ then we put

WM
p (Rd) =

{ ∑

α∈M

∑

β≤α
‖Dβf | Lp(Rd)‖ <∞

}
. (1.14)

It means that we admit at most one derivative with respect to each direc-
tion. Of course, the space is much larger than the Sobolev space Wm

p (Rd).
Nevertheless, one has (cf. e.g. [1]) the embedding

WM
p (Rd) →֒ Lq(Rd) if m ≥ d

(1
p
− 1
q

)
, 1 < p ≤ q <∞

and M = M(m, d).
(1.15)
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Let us mention that this result is a special case of embeddings for general
Sobolev spaces as they can be found, for example, in the book [11] by Besov,
Il’in and Nikol’skii. We discussed reduced Sobolev embeddings of the type
(1.15), in particular, also in the limiting cases m = d/p and m = d/p+ 1 in
[42], [43], and [44] in the context of spaces with dominating mixed smooth-
ness. For example, in the above situation of (1.14) we even have

WM
p (Rd) →֒ Sm/dp H(Rd) →֒ Lq(Rd) if m ≥ d

(1
p
− 1
q

)
, 1 < p ≤ q <∞

and M = M(m, d).

See Figure 4 for an illustration.

1
q

1
p︸ ︷︷ ︸

m
d

m
d

m

r

1
p

S
m/d
p H(Rd)

Wm
p (Rd) →֒WM

p (Rd) →֒ Lq(Rd)

Figure 4

Moreover, further reductions to proper subsetsM⊂M(m, d) are allowed.
We give an example in the case d = 4.
Example 1.10. Let

M = {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)}.

Then
‖f |WM

p (R4)‖ ∼ ‖f | S1,1
p W (R2 × R2)‖

and (1.13) implies

W 2
p (R4) →֒WM

p (R4) = S1,1
p H(R2 × R2) →֒ Lq(R4),

where 1
2 = 1

p − 1
q , 1 < p < q <∞.
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1.5. Traces. A new aspect in the theory of function spaces with dominating
mixed smoothness concerns a trace problem. To be more precise, let us
consider an example. Given a function f belonging to some function space
on R2 we are interested in the trace

tr f := f(x, x)

on the diagonal. It is well-known ([85]) that in the isotropic case

tr(Hr
p(R2)) = Br−1/p

p p (R) if r >
1
p
.

Here B
r− 1

p
p p (R) stands for the Besov space on R (see the next subsection).

Moreover the trace does not exist if r ≤ 1
p . The same holds true for the trace

on any one-dimensional affine subspace of R2 because of translation and
rotation invariance. New effects arise if we consider spaces with dominating
mixed smoothness. This was first observed by Triebel in [86] and later
studied in detail by Rodriguez (cf. [59]), Vyb́iral and Sickel (cf. [70]
and [95]). We describe a partial result. A more detailed discussion will be
given in Subsection 5.1. If

1
2p

< r <
1
p

then

tr(SrpH(R2)) = B2r−1/p
p p (R) = tr(H2r

p (R2)).

The following interpretation seems to be natural. The additional dominating
mixed smoothness leads to the existence of the trace, whereas the trace of
Hr
p(R2) does not exist. Moreover, the trace space of SrpH(R2) is the same as

for the smaller space H2r
p (R2) (cf. the embeddings (1.7)) and we may expect

that for a certain range of parameters dominating mixed smoothness will
replace higher isotropic smoothness. Recall also Subsection 1.3 for a similar
effect.

1.6. Nikol’skii-Besov spaces. Dominating mixed smoothness properties
can also be described in a classical way using mixed differences or mixed
moduli of continuity. Starting point was the paper [50] by Nikol’skii. For
simplicity and for transparency we restrict ourselves to the two-dimensional
case.
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First we define differences

∆t,1f = ∆1
t,1f = f(x1 + t, x2)− f(x1, x2), t ∈ R,

∆t,2f = ∆1
t,2f = f(x1, x2 + t)− f(x1, x2),

∆m
t,if = ∆1

t,i(∆
m−1
t,i f), m = 2, . . . , i = 1, 2,

∆m
h f = ∆m1

h1,1
(∆m2

h2,2
f), m = (m1,m2) ∈ N2, h ∈ R2.

Definition 1.11 (Nikol’skii spaces with dominating mixed smoothness).
Let 1 ≤ p ≤ ∞, ri > 0 (i = 1, 2) and let mi ∈ N, mi > ri (i = 1, 2). We put

‖f | Sr1,r2p∞ B(R2)‖∆,m = ‖f | Lp(R2)‖

+
2∑

i=1

sup
|t|≤1

|t|−ri‖∆mi
t,i f | Lp(R2)‖

+ sup
|h1|≤1
|h2|≤1

|h1|−r1h2|−r1‖∆m1
h1,1

(∆m2
h2,2

)f | Lp(R2)‖
(1.16)

and
Sr1,r2p∞ B(R2) = {f ∈ Lp(R2) : ‖f | Sr1,r2p∞ B(R2)‖∆,m <∞}

Formula (1.16) can be rewritten as

‖f | Sr1,r2p∞ B(R2)‖∆,m = ‖f | Br1,r2p∞ (R2)‖∆,m
+ sup
|h1|≤1
|h2|≤1

|h1|−r1h2|−r1‖∆m1
h1,1

(∆m2
h2,2

)f | Lp(R2)‖.

Here ‖f | Br1,r2p∞ (R2)‖∆,m stands for a norm in the anisotropic Nikol’skii
space Br1,r2p∞ (R2). It means that we have added a mixed Hölder condition
to describe a new type of dominating mixed smoothness. This is of course
in analogy to Sobolev spaces (see also (1.2) and (1.3). If p = ∞ this means
that we additionally require the existence of a constant c such that

|∆m1
h1,1

(∆m2
h2,2

)f(x)| ≤ c|h1|r1 |h2|r2

for all x ∈ R2 and all h ∈ [−1, 1]2. The spaces Sr1,r2C(R2) := Srp∞B(R2)
are called Hölder-Zygmund spaces with dominating mixed smoothness. Note
that the definition does not depend on the size of m (equivalent norms).
If r1 = r2 = r > 0 then we write Srp∞B(R2) in place of Sr1,r2p∞ B(R2).
Analogously SrC(R2) is defined.

The above scale of spaces has been extended in the sense of Besov by
Amanov [2] in 1965 (see also his book [3]).
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Definition 1.12 (Besov spaces with dominating mixed smoothness). Let
1 ≤ p ≤ ∞, 1 ≤ q <∞, ri > 0 (i = 1, 2) and let mi ∈ N, mi > ri (i = 1, 2).
We put

‖f | Sr1,r2p q B(R2)‖∆,m = ‖f | Lp(R2)‖

+
2∑

i=1

(∫ 1

−1

‖ |t|−ri∆mi
t,i f | Lp‖q

dt

|t|

)1/q

+
(∫ 1

−1

∫ 1

−1

‖ |h1|−r1 |h2|−r2∆m1
h1,1

(∆m2
h2,2

)f | Lp‖q
dh1

|h1|
dh2

|h2|

)1/q

.

(1.17)

As above we shall write Srp qB(R2) if r1 = r2 = r > 0. Clearly, by
definition the embedding

Sr1,r2p q B(R2) →֒ Br1,r2p q (R2)

holds. All spaces can be extended to functions defined on Rn1 ×· · ·×Rnd in
the spirit of Definition 1.2. This is more or less a matter of clever notation.
If we put mi = ri = 1 in (1.16) and (1.17), respectively, then the result-
ing spaces are called spaces of bounded mixed variation. These spaces are
widely used in high-dimensional approximation and computational mathe-
matics (cf., e.g., the paper [74] by Strömberg).

2. Littlewood-Paley analysis – Fourier analytical approach

2.1. Littlewood-Paley theorems. The aim of this section is to give
a unified Fourier analytical approach to the various spaces with dominating
mixed smoothness introduced in Section 1. Moreover, all these spaces can be
extended in a natural way to parameters p and q which are less than 1. This
describes the state of art of the eighties. Our general reference is Chapter 2
of the book [63] (for isotropic spaces see [85]).

Starting point is the Littlewood-Paley analysis of functions and distri-
butions. First we recall Littlewood-Paley decompositions of Lp-spaces for
1 < p <∞. We use standard notation introduced in Section 1.

Let χ0 : Rm 7→ R (m ∈ N) be the characteristic function of [−1, 1]m. We
put

χ(ξ) = χ0(ξ)−χ0(2ξ) and χj(ξ) = χ(2−jξ), j ∈ N, ξ ∈ Rm. (2.1)
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Then (χj)j∈N0 represents a dyadic resolution of unity of Rm satisfying

∞∑

j=0

χj(ξ) = 1, ξ ∈ Rm,

suppχj = {ξ : 2j−1 ≤ max
i
|ξi| ≤ 2j}, j ∈ N.

Let (χ̃k)k∈N0 be the corresponding dyadic resolution of unity of Rn (n ∈ N).
Taking the tensor products χj ⊗ χ̃k (j, k ∈ N0) we get a dyadic resolution of
unity of Rm × Rn, i.e. we have

∞∑

j=0

∞∑

k=0

χj(ξ)χ̃k(η) = 1, (ξ, η) ∈ Rm × Rn,

suppχj ⊗ χ̃k = suppχj × supp χ̃k.

(2.2)

See Figure 5 below.

Q4,4 Q5,4

Q4,3 Q5,3

Q4,3 Q5,3

Q4,4 Q5,4

Q4,5 Q5,5

Figure 5: Dyadic partition of Rm × Rn , Qj, k = suppχj ⊗ χ̃k
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We put
fχj = F−1

m [χjFmf ], j ∈ N0,

fχeχ
j,k = F−1

m+n[χj ⊗ χ̃kFm+nf ], (j, k) ∈ N2
0. (2.3)

These are well-defined smooth functions if f ∈ S′(Rm) and f ∈ S′(Rm+n),
respectively. For functions belonging to Lp (1 < p <∞) we use the standard
limiting argument.

Proposition 2.1 (Littlewood-Paley theorem). Let 1 < p <∞. Then

‖f | Lp(Rm)‖ ∼
∥∥∥
( ∞∑

j=0

|fχj (·)|2
)1/2 ∣∣∣ Lp(Rm)

∥∥∥

and

‖f | Lp(Rm+n)‖ ∼
∥∥∥
( ∞∑

j=0

∞∑

k=0

|fχ,eχj,k (·, ·)|2
)1/2 ∣∣∣ Lp(Rm+n)

∥∥∥. (2.4)

In the same way as above we construct smooth dyadic resolutions of unity
starting with a real-valued function ϕ ∈ S(Rm) which has the properties

ϕ0(ξ) = 1 if |ξ| ≤ 1 and ϕ0(ξ) = 0 if |ξ| ≥ 3/2.

We put

ϕ(ξ) = ϕ0(ξ)− ϕ0(2ξ) and ϕj(ξ) = ϕ(2−jξ), j ∈ N. (2.5)

Then ∞∑

j=0

ϕj(ξ) = 1, ξ ∈ Rm, (2.6)

and
suppϕj ⊂

{
ξ ∈ Rm : 2j−1 ≤ |ξ| ≤ 3

22j
}
, j ∈ N (2.7)

(see Figure 6).

−2− 3
2 −1 0 1 3

2 2 3 4 5 6

ϕ0 ϕ1 ϕ2

Figure 6: Smooth dyadic resolution of unity
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We shall write Φ(Rm) for the set of all such resolutions of unity on Rm.
If (ϕj)j ∈ Φ(Rm) and (ϕ̃k)k ∈ Φ(Rn) then

∞∑

j=0

∞∑

k=0

ϕj(ξ)ϕ̃k(η) = 1, (ξ, η) ∈ Rm × Rn.

Again we have a product type resolution of unity of Rm × Rn with some
overlapping in contrast to (2.2). We define

fϕj := F−1
m [ϕjFmf ], f ∈ S ′(Rm), (2.8)

fϕ,eϕj,k := F−1
m+n[ϕj ⊗ ϕ̃Fm+nf ], f ∈ S ′(Rm+n). (2.9)

By the Paley-Wiener-Schwartz theorem these functions are well-defined en-
tire analytic functions of exponential type for all f ∈ S′(Rm) and f ∈
S′(Rm+n), respectively. Hence they make sense pointwise.

Proposition 2.2 (Littlewood-Paley theorem). Let 1 < p <∞. Then

‖f | Lp(Rm)‖ ∼
∥∥∥
( ∞∑

j=0

|fϕj (·)|2
)1/2 ∣∣∣ Lp(Rm)

∥∥∥, (2.10)

‖f | Lp(Rm+n)‖ ∼
∥∥∥
( ∞∑

j=0

∞∑

k=0

|fϕ,eϕj,k (·, ·)|2
)1/2 ∣∣∣ Lp(Rm+n)

∥∥∥. (2.11)

For simplicity we restricted ourselves to the splitting Rm×Rn. However,
the above statements are also valid for the general splitting Rn1 × · · · ×Rnd

(d ∈ N, d > 2), too.
Remark 2.3. As a consequence the norms on the right-hand sides of (2.10)
and (2.11) are equivalent to each other for different ϕ and ϕ̃, respectively.
An alternative proof of this statement can be given using Fourier multipliers
for vector-valued Lp(ℓ2)-spaces of entire analytic functions. Most important
is that we used smooth dyadic resolutions. Moreover, the equivalence can
be extended to values p, 0 < p ≤ 1. This is due to Peetre ([55]) and leads
to characterizations of non-homogeneous Hardy spaces. We refer also to [85]
and [63]. We comment on this also in Subsection 2.3.

2.2. Dominating mixed derivatives and differences. Recall that we
have introduced (fractional) Sobolev spaces and Nikol’skii-Besov spaces
Sr1,r2p H(Rm × Rn) and Sr1,r2p q B(R2) with dominating mixed smoothness in
Subsections 1.2 and 1.6, respectively. Next we shall give a characterization
of these spaces by means of dyadic decompositions in the sense of the pre-
vious subsection. This leads us to the so-called Littlewood-Paley analysis of
functions (distributions) belonging to such spaces.
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Theorem2.4 (Littlewood-Paley analysis – Sobolev spaces). Let 1 < p <∞,
(r1, r2) ∈ R2, and let fχ,eχj,k and fϕ,eϕj,k be as in (2.3) and (2.9). Then,

‖f | Sr1,r2p H(Rm × Rn)‖ ∼
∥∥∥
( ∞∑

j=0

∞∑

k=0

|2jr1+kr2fχ,eχj,k (·, ·)|2
)1/2 ∣∣∣ Lp(Rm+n)

∥∥∥

∼
∥∥∥
( ∞∑

j=0

∞∑

k=0

|2jr1+kr2fϕ,eϕj,k (·, ·)|2
)1/2 ∣∣∣ Lp(Rm+n)

∥∥∥.

Characterizations of this type for p 6= 2 and (an)isotropic Sobolev spaces
are due to papers by Lizorkin (characteristic functions) and Triebel
(smooth functions) in 1972 (see [45], [46] and [81]). Moreover they in-
troduced new spaces replacing the ℓ2-norm on the right-hand side by the
ℓq-norm with 1 < q <∞. We refer to [83] for details. In the above context
of spaces with dominating mixed smoothness one may look at [63] and the
references given there. The proof is based on Propositions 2.1 and 2.2 and
on vector-valued Fourier multipliers.

Theorem2.5 (Littlewood-Paley analysis– Besov spaces). Let fχ,eχj,k and fϕ,eϕj,k

be as in (2.3) and (2.9) and let 0 < q ≤ ∞, 0 < r1 < m1, 0 < r2 < m2.
(i) If 1 < p <∞, then

‖f | Sr1,r2p q B(R2)‖∆,m ∼
( ∞∑

j=0

∞∑

k=0

‖2jr1+kr2fχ,eχj,k | Lp(R2)‖q
)1/q

. (2.12)

(ii) If 1 ≤ p ≤ ∞, then

‖f | Sr1,r2p q B(R2)‖∆,m ∼
( ∞∑

j=0

∞∑

k=0

‖2jr1+kr2fϕ,eϕj,k | Lp(R2)‖q
)1/q

(with supj,k . . . in place of
(∑

j,k(. . . )
q
)1/q if q = ∞).

The proof can be found in [63]. The idea to use dyadic decompositions
by characteristic functions to characterize Nikol’skii-Besov spaces is due to
Lizorkin (1965). Equivalence (2.12) is sometimes called the Lizorkin repre-
sentation. Nikol’skii (1966) observed that the cases p = 1 and p = ∞ can
be characterized similarly using dyadic decompositions generated by smooth
functions (he used differences of de La Vallée-Poussin means). We refer to
Nikol’skii’s book [51]. Besov spaces with dominating mixed smoothness, in
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particular embedding theorems, have been studied based on the approxima-
tion by entire analytic functions by Nikol’skii (1963, q = ∞, see [50]) and
Amanov (1965, 1 ≤ q <∞, see [2]). We refer also to Amanov’s book [3] in
this respect. The decomposition technique allowed also to extend the spaces
to negative (non-positive) smoothness as in the case of fractional Sobolev
spaces. Peetre (1973) discovered how to extend the theory of Besov spaces
to parameters 0 < p < 1 in a natural way. The main tools are (scalar)
Fourier multipliers and inequalities of Plancherel-Pólya-Nikol’skii type for
Lp-spaces of entire analytic functions (see [54] and his book [56]).

2.3. Besov and Lizorkin-Triebel spaces. In the previous subsections
we indicated how to measure smoothness via decomposition techniques and
Fourier analysis and how to include concrete classical (both Sobolev and
Besov) spaces. Now we are prepared to present a unified approach. Al-
though we tacitly assume that the reader is familiar with the theory of
isotropic spaces, for convenience and for later purposes we shall describe
both the isotropic and the dominating mixed case. In the latter one we fol-
low [63], Chapter 2 and restrict ourselves to the splitting Rm+n = Rm ×Rn
for simplicity. The isotropic theory, which always was the forerunner, is
treated in [85].

Definition 2.6 (Besov and Lizorkin-Triebel spaces). Let {ϕj}∞j=0 ∈ Φ(Rn)
be a smooth dyadic resolution of unity according to (2.5)–(2.7) and let fϕj
be as in (2.8).

(i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, r ∈ R,

‖f | Brp q(Rn)‖ϕ =
( ∞∑

j=0

2jrq‖fϕj | Lp(Rn)‖q
)1/q

(2.13)

if 0 < q <∞ and

‖f | Brp∞(Rn)‖ϕ = sup
j=0,1,...

2jr‖fϕj | Lp(Rn)‖. (2.14)

Then
Brp q(Rn) := {f ∈ S ′(Rn) : ‖f | Brp q(Rn)‖ϕ <∞}. (2.15)

(ii) Let 0 < p <∞, 0 < q ≤ ∞, r ∈ R and

‖f | F rp q(Rn)‖ϕ =
∥∥∥
( ∞∑

j=0

2jrq|fϕj (·)|q
)1/q ∣∣∣ Lp(Rn)

∥∥∥ (2.16)
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(with the modification as in (i) if q = ∞). Then

F rp q(Rn) := {f ∈ S ′(Rn) : ‖f | F rp q(Rn)‖ϕ <∞}. (2.17)

We refer to [85], [87], [89], [90] for a systematic treatment of these spaces.
Due to the papers [45], [46] and [81] the spaces F rp q(Rn) are called Lizorkin-
Triebel spaces. The extension to p < 1 is due to Peetre 1975 (see [55] and
his book [56] as well as Triebel [82], [84]).

Next we give the definitions of the spaces with dominating mixed smooth-
ness.

Definition 2.7 (Besov and Lizorkin-Triebel spaces – dominating mixed
smoothness). Let {ϕj}∞j=0 ∈ Φ(Rm) and {ϕ̃j}∞j=0 ∈ Φ(Rn) be smooth dyadic
resolutions of unity according to (2.5)–(2.7) and let fϕ,eϕj,k be as in (2.9).

(i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, (r1, r2) ∈ R2 and

‖f | Sr1,r2p q B(Rm × Rn)‖ϕ,eϕ

=
( ∞∑

k=0

∞∑

j=0

2(jr1+kr2)q‖fϕ,eϕj,k | Lp(Rm+n)‖q
)1/q (2.18)

(with the modification as in Definition 2.6 if q = ∞). Then

Sr1,r2p q B(Rm × Rn)
:= {f ∈ S ′(Rm+n) : ‖f | Sr1,r2p q B(Rm × Rn)‖ϕ,eϕ <∞}. (2.19)

(ii) Let 0 < p <∞, 0 < q ≤ ∞, (r1, r2) ∈ R2 and

‖f | Sr1,r2p q F (Rm × Rn)‖ϕ,eϕ

=
∥∥∥
( ∞∑

k=0

∞∑

j=0

2(jr1+kr2)q|fϕ,eϕj,k (·, ·)|q
)1/q ∣∣∣ Lp(Rm+n)

∥∥∥

(with the modification as in Definition 2.6 if q = ∞). Then

Sr1,r2p q F (Rm × Rn)
:= {f ∈ S ′(Rm+n) : ‖f | Sr1,r2p q F (Rm × Rn)‖ϕ,eϕ <∞}.

All spaces introduced in Definition 2.6 and and Definition 2.7 are quasi-
Banach spaces equipped with the corresponding quasi-norms and indepen-
dent of the underlying resolutions of unity in the sense of equivalent quasi-
norms. We refer to [85] and [63] for the details. It is easy to see that

‖f ⊗ g | Sr1,r2p q A(Rm × Rn)‖ϕ,eϕ = ‖f | Ar1p q(Rm)‖ϕ ‖g | Ar2p q(Rn)‖eϕ, (2.20)
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where A stands for B or F and ⊗ denotes the tensor product of distributions
f ∈ S ′(Rm) and g ∈ S ′(Rn). For brevity we shall write Srp qA(Rm × Rn) if
r1 = r2 = r. The extension of Definition 2.7 to the splitting Rn1 ×· · ·×Rnd ,
d > 2, suggests itself.

There exist several attempts to deal with the basic properties of the above
spaces and further (anisotropic, generalized smoothness) spaces from a uni-
fied (decomposition) point of view. We refer to Triebel [82], Stöckert,
Triebel [72] and Gol’dman [33].
Remark 2.8. The investigation of the above spaces for the full range of
parameters p and q is based on pointwise estimates and scalar as well as
vector-valued inequalities for Peetre and Hardy-Littlewood maximal func-
tions. We roughly sketch an example adapted to the case of spaces with
dominating mixed smoothness. Let ϕ, ϕ̃, ψ, ψ̃, ϕ0, ϕ̃0, ψ0, ψ̃0 be (suf-
ficiently) smooth functions. Let ϕj = ϕ(2−j ·) and let ϕ̃k, ψj and ψ̃k be
defined analogously. We use the notation fϕ,eϕj,k as in (2.9) and define the
Peetre maximal functions as

(
fϕ,eϕj,k

)⋆
a,b

(x, y) := sup
u∈Rm

v∈Rn

|(fϕ,eϕj,k )(x− u, y − v)|
(1 + |2ju|)a(1 + |2kv|)b

for (j, k) ∈ N2
0 and (a, b) ∈ R2. Then we have the pointwise estimates

(
fψ,

eψ
j,k

)⋆
a,b

(x, y) ≤ c
(
M2(M1|fϕ,eϕj,k |µ)(x, y)

)1/µ

for appropriate ϕ, ϕ̃, ψ, ψ̃, a > m/µ, b > n/µ, 0 < µ < ∞. Here M1 and
M2 denote the Hardy-Littlewood maximal function with respect to the first
and second variable, respectively. Choosing max(ma ,

n
b ) < µ < min(p, q) and

applying the vector-valued maximal inequality by Feffermann, Stein [29]
as well as its extended version by Bagby [5] we obtain

∥∥(
fψ,

eψ
j,k

)⋆
a,b

(x, y)
∣∣ Lp(ℓq)

∥∥ ≤ c
∥∥(
fϕ,eϕj,k

)⋆
a,b

(x, y)
∣∣ Lp(ℓq)

∥∥

for 0 < p <∞, 0 < q ≤ ∞, a > m
min(p,q) , b >

n
min(p,q) . We refer to Vyb́iral

[94], [96]. For extensions to mixed Lp-quasinorms see also [60], [62], [63] and
Bazarkhanov [6].
Remark 2.9. Fractional Sobolev spaces are special cases of Lizorkin-Triebel
spaces. As a consequence of Theorem 2.4, we have

Sr1,r2p 2 F (Rm × Rn) = Sr1,r2p H(Rn × Rn)
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for 1 < p <∞ and (r1, r2) ∈ R2. Recall also that in the isotropic case

F rp 2(Rn) = Hr
p(Rn), 1 < p <∞, r ∈ R.

Remark 2.10. We have defined Nikol’skii-Besov spaces with dominating
mixed smoothness in Definitions 1.11 and 1.12 by means of iterated mixed
differences. Theorem 2.5 shows that these spaces coincide with the spaces
introduced in Definition 2.7(i). It is possible to give characterizations of the
spaces Sr1,r2p q B(Rm×Rn) and also of the spaces Sr1,r2p q F (Rm×Rn) by means
of differences for a larger range of parameters (r1, r2), p, q, in particular, for
p < 1. We refer to [63] and to the recent results by Ullrich [92]. In the
case of Besov spaces (for simplicity we choose r1 = r2 = r, n = m) the range
of admissible parameters is r > σp, 0 < q ≤ ∞, (see Figure 7 below).

1 1
p

r r = n
p

r = σp = n
(

1
p − 1

)
+

Srp qB(Rn × Rn) →֒ Lmax(1,p)(R2n) ∩ Lp(R2n)

Srp qB(Rn × Rn) →֒ C(R2n)

Figure 7

Remark 2.11. The following elementary embeddings can be proved easily
(see [63]):

Sr1,r2p q B(Rm × Rn) →֒ Sr1,r2p u B(Rm × Rn),
Sr1,r2p q F (Rm × Rn) →֒ Sr1,r2p u F (Rm × Rn),

if 0 < q ≤ ∞,

Sr1,r2p min(p,q)B(Rm × Rn) →֒ Sr1,r2p q B(Rm × Rn) →֒ Sr1,r2p max(p,q)B(Rm × Rn),

and
S̺1,̺2p q B(Rm × Rn) →֒ Sr1,r2p v B(Rm × Rn),
S̺1,̺2p q F (Rm × Rn) →֒ Sr1,r2p v F (Rm × Rn),

if r1 < ̺1, r2 < ̺2 and 0 < v ≤ ∞.
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3. Approximation with respect to hyperbolic crosses

3.1. Approximation spaces. We follow [64]. We restrict ourselves to the
case d = 2. With respect to the notation in the previous section this means
n = m = 1, r1 = r2 = r and F2 = F , F−1

2 = F−1. Let χ have the meaning
of (2.1). As in (2.3) we define

fχj,k(x, y) = F−1[χj ⊗ χkFf ](x, y), (j, k) ∈ N2
0.

The results of this section are mainly based on the following Lizorkin-type
characterization of the spaces with dominating mixed smoothness which can
be found in [63, Chap. 2] (cf. also Theorem 2.4 and 2.5).

Proposition 3.1 (Lizorkin representation). Let −∞<r<∞ and 1<p <∞.
(i) If 0 ≤ q ≤ ∞, then

Srp qB(R2) =
{
f ∈ S ′(R2) :

‖f | Srp qB(R2)‖χ =
( ∞∑

j=0

∞∑

k=0

2(j+k)rq ‖fχj,k | Lp(R2)‖q
)1/q

<∞
}
.

(ii) If 1 < q <∞, then

Srp qF (R2) =
{
f ∈ S ′(R2) :

‖f | Srp qF (R2)‖χ =
∥∥∥
( ∞∑

j=0

∞∑

k=0

2(j+k)rq|fχj,k|q
)1/q ∣∣∣ Lp(R2)

∥∥∥ <∞
}
.

(3.1)

We are led to the approximation with respect to the hyperbolic cross in
a natural way by the observation

f =
∞∑

j=0

∞∑

k=0

fχj,k = lim
ℓ→∞

∑

j+k≤ℓ
fχj,k

= lim
ℓ→∞

F−1
[( ∑

j+k≤ℓ
χj ⊗ χk

)
Ff

]
= lim
ℓ→∞

F−1[χHℓ
Ff ],

where

χHℓ
(ξ, η) =

{
1 (ξ, η) ∈ Hℓ,

0 otherwise
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is the characteristic function of the dyadic hyperbolic cross of order ℓ in R2

defined in (1.12) (see Figure 8).

H4

H5

Figure 8: Dyadic hyperbolic cross

Definition 3.2. Let ℓ ∈ N0. The function

SHℓ f(x, y) =
∑

0≤j+k≤ℓ
fχj,k(x, y)

is called partial sum with respect to the dyadic hyperbolic cross of order ℓ.

The interrelations with spaces of dominating smoothness are revealed by
the following propositions. For the sake of simplicity we shall abbreviate
Lp = Lp(R2), Srp qB = Srp qB(R2) and Srp qF = Srp qF (R2) in this section.
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Proposition 3.3. Let 1 < p < ∞, r > 0. Then there exists a constant cp
such that

‖f − SHℓ f | Lp‖ ≤ cp2−ℓr‖f | Srp 2F‖χ
holds for all f ∈ Srp 2F .

Proof. The proof is a consequence of the the Lizorkin-type representation
in Proposition 3.1, the Littlewood-Paley characterization in Proposition 2.1
and the estimates

2ℓr‖f − SHℓ f | Lp‖ ≤
∥∥∥

∑

j+k>ℓ

2(j+k)rfχj,k

︸ ︷︷ ︸
fℓ

∣∣∣ Lp
∥∥∥

L.P.
≤ cp

∥∥∥
( ∞∑

µ=0

∞∑

ν=0

∣∣F−1[χµ ⊗ χνFf ℓ]
∣∣2

)1/2 ∣∣∣ Lp
∥∥∥

≤ cp

∥∥∥
( ∑

µ+ν>ℓ

|2(µ+ν)rfχµ,ν |2
)1/2 ∣∣∣ Lp

∥∥∥

≤ cp‖f | Srp,2F‖χ.

Proposition 3.4. Let 1 < p < ∞, r > 0. Then there exists a constant Cp
such that

‖f | Srp,∞B‖χ ≤ Cp
(
sup
ℓ∈N0

2ℓr‖f − SHℓ f | Lp‖+ ‖f | Lp‖
)
.

Proof. Let 0 < ℓ = j + k. By similar arguments as in the previous proof
we get

2(j+k)r‖fχj,k | Lp‖ ≤ 2ℓr
∥∥∥
( ∑

j+k≥ℓ
|fχj,k|2

)1/2 ∣∣∣ Lp
∥∥∥

L.-P.
≤ Cp2ℓr

∥∥∥
∑

j+k≥ℓ
fχj,k

∣∣∣ Lp
∥∥∥

≤ Cp2ℓr‖f − SHℓ f | Lp‖.

�
It will turn out later on that one cannot achieve better estimates within

these two scales of spaces with dominating mixed smoothness. Next we
introduce approximation spaces with respect to hyperbolic crosses.
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Definition 3.5. Let ℓ ∈ N0, 1 < p <∞.

EH(2ℓ, f, Lp) := inf{‖f − g | Lp‖ : g ∈ Lp and suppFg ⊂ Hℓ}

is called best approximation of f by entire analytic functions with spectrum
in the dyadic hyperbolic cross of order ℓ.

The corresponding approximation spaces are given as follows.

Definition 3.6 (Approximation spaces). Let 1 < p <∞, 1 ≤ q ≤ ∞, r > 0.

Arp q :=
{
f ∈ Lp :

∞∑

ℓ=0

2ℓrqEH(2ℓ, f, Lp)q <∞
}
,

‖f | Arp q‖ = ‖f | Lp‖+
( ∞∑

ℓ=0

2ℓrqEH(2ℓ, f, Lp)q
)1/q

(sup
ℓ
. . . if q = ∞).

Our aim is to give equivalent characterizations of these approximation
spaces by means of decomposition and by means of real interpolation.

Theorem 3.7. Let 1 < p <∞, 1 ≤ q ≤ ∞ and r > 0. Then

‖f | Arp q‖ ∼ ‖f | Lp‖+
( ∞∑

ℓ=0

2ℓrq‖f − SHℓ f | Lp‖q
)1/q

∼ ‖SH0 f | Lp‖+
( ∞∑

ℓ=1

2ℓrq
∥∥∥

∑

j+k=ℓ

fχj.k

∣∣∣ Lp
∥∥∥
q)1/q

.

Remark 3.8. The theorem is due to Lizorkin, Nikol’skii 1989 [48]. Note
that

suppF
( ∑

j+k=ℓ

fχj.k

)
= Hℓ\Hℓ−1.

It means that our approximation spaces are characterized as decomposition
spaces with respect to dyadic hyperbolic annuli. For the latter see Figure 9.
Moreover, best approximation can be realized asymptotically by correspond-
ing partial sums. Combining this with Proposition 3.3 and Proposition 3.4
we obtain the embeddings

SrpH = Srp 2F ⊂ Arp∞ ⊂ Srp∞B.
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H4

H5

hyperbolic annulus

Figure 9: Hyperbolic annulus

In the following (·, ·)Θ, q denotes the real interpolation space (for details
we refer to Triebel [83]). Recall that Srp 2F = SrpH if 1 < p <∞.

Theorem 3.9. Let 1 < p <∞, 1 ≤ q ≤ ∞ and r0, r1 ≥ 0 such that r0 6= r1.
Let 0 < Θ < 1. We put r = (1−Θ)r0 + Θr1. Then

(
Sr0p 2F, S

r1
p 2F

)
Θ,q

= Arp q.

Remark 3.10. The proof can be reduced to Jackson and Bernstein-type in-
equalities which allow to apply the abstract scheme of approximation spaces
due to DeVore and Popov (see [21]). Let us sketch this reduction. By the
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lift property of the spaces Arp q and Srp 2F it is sufficient to consider the case
r0 = 0 and r1 = r. We define X0 = {0} and

Xℓ = {f ∈ Lp : suppFf ⊂ Hℓ}, ℓ = 1, 2, . . . .

Using the Lizorkin representation (3.1) and the Littlewood-Paley theorem
(2.4) we deduce the Jackson-type inequality:

‖f − SHℓ f | Lp‖ ≤ c1

∥∥∥
( ∑

j+k>m

|fχj,k|2
)1/2 ∣∣∣ Lp

∥∥∥

≤ c22−ℓr‖f | Srp 2F‖.

Similar arguments lead to the Bernstein-type inequality:

‖f | Srp 2F‖ ≤ c2mr‖f | Lp‖

which is valid for all f ∈ Xm. It is sufficient to apply the abstract scheme
of approximation spaces.

The next theorem shows that the approximation spaces are stable with
respect to real interpolation.

Theorem 3.11. Let 1 < p <∞, 1 ≤ q, q1 ≤ ∞ and 0 < r1. Let 0 < Θ < 1.
(i) We put r = Θr1. Then

(Lp, Ar1p q1)Θ,q = Arp q.

(ii) Let 1 ≤ q0 ≤ ∞ and 0 < r0 < r1. We put r = (1−Θ)r0 + Θr1. Then

(Ar0p q0 , A
r1
p q1)Θ,q = Arp q.

Remark 3.12. As a consequence of real interpolation and Theorem 3.9 we
find that Srp 2F = Arp 2. In all other cases the spaces Arp q do not coincide
with spaces belonging to the two scales Srp qB and Srp qF , respectively. This
will follow from the results in the next subsection.

3.2. Comparison theorems. Our aim is to give a detailed comparison
of approximation spaces with respect to hyperbolic crosses and spaces of
Besov-Lizorkin-Triebel type with dominating mixed smoothness in the sense
of sharp embeddings. We follow [64].
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Theorem 3.13 (F -spaces). Suppose 1 < p <∞, 1 ≤ q, u ≤ ∞ and r > 0.
(i) Let q < p. Then

Srp 1F 6⊂ Arp q.

(ii) Let q ≥ p.
Srp uF →֒ Arp q

holds if and only if u ≤ min(2, q).
(iii) Let q > p. Then

Arp q 6⊂ Srp∞F.

(iv) The embedding
Arp q →֒ Srp uF

holds if and only if q ≤ p and u ≥ max(2, q).

The situation is illustrated by Figure 10.

1
2

1

1
q

1
2 1 1

p

Srp 2F →֒ Arp q

Srp qF →֒ Arp q
Srp 1F 6 →֒ Arp q

1
2

1

1
q

1
2 1 1

p

Arp q 6 →֒ Srp 2F

Arp q →֒ Srp∞F

Arp q →֒ Srp qF

Figure 10: Comparison, F -spaces

Theorem 3.14 (B-spaces). Suppose 1 < p <∞, 1 ≤ q, u ≤ ∞ and r > 0.
(i) The embedding

Srp uB →֒ Arp q

holds if and only if u ≤ min(2, q, p).
(ii) The embedding

Arp q →֒ Srp uB

holds if and only if u ≥ max(2, q, p).

The situation is illustrated by Figure 11.
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1
2

1

1
q

1
2 1 1

p

Srp qB →֒ Arp q

Srp pB →֒ Arp q

Srp 2B →֒ Arp q

1
2

1

1
q

1
2 1 1

p

Arp q →֒ Srp pB

Arp q →֒ Srp 2B

Arp q →֒ Srp qB

Figure 11: Comparison, B-spaces

Corollary 3.15. Suppose 1 < p <∞, 1 ≤ q, u ≤ ∞ and r > 0.
(i) The embedding

Srp uB →֒ Arp∞

holds if and only if u ≤ min(2, p).
(ii) The embedding

Srp uF →֒ Arp∞

holds if and only if u ≤ 2.
(iii) Whenever

Srp uB →֒ Arp∞,

then
Srp uB →֒ Srp 2F.

Remark 3.16. Hence, within the scales of Besov and Lizorkin-Triebel
classes the optimal embeddings for Arp∞(R2) are:

Srp 2F →֒ Arp∞ →֒ Srp∞B

(cf. also Remark 3.8). The right-hand side in this formula can be found
in Lizorkin, Nikol’skii [48]. The “if-parts” have been known in different
contexts, cf. Temlyakov [79], Kamont [38] and DeVore, Konyagin and
Temlyakov [20].
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Corollary 3.17. Suppose 1 < p <∞, 1 ≤ q, u ≤ ∞ and r > 0.
(i) The embedding

Arp 1 →֒ Srp uB

holds if and only if u ≥ max(2, p).
(ii) The embedding

Arp 1 →֒ Srp uF

holds if and only if u ≥ 2.
(iii) Whenever

Arp 1 →֒ Srp uB,

then
Arp 1 →֒ Srp 2F →֒ Srp uB.

Remark 3.18. The only Besov space which is a subspace of Arp 1 is given
by Srp 1B, cf. Theorem 3.14. Hence, within the scales of Besov and Lizorkin-
Triebel classes the optimal embeddings for Arp 1 are:

Srp 1B →֒ Arp 1 →֒ Srp 2F.

Suppose 1 < p0, p1 < ∞, 1 ≤ q0, q1 ≤ ∞, r0 > 0 and r1, r2 ∈ R. The
classes Ar0p0 q0 and Sr1p1 q1B coincide if and only if r0 = r1, p0 = p1 = 2 and
q0 = q1 = 2.

The classes Ar0p0 q0 and Sr1p1 q1F coincide if and only if r0 = r1, p0 = p1 = 2
and q0 = q1 = 2.

Remark 3.19 (Sobolev-type embeddings). We finish this subsection pre-
senting some particular results on diagonal embeddings which are related
to Sobolev-type embeddings. We concentrate on embeddings of Arp q into
Lp1(R2) and C(R2), respectively.

Let 1 < p < p1 <∞ and 1 ≤ q ≤ ∞.
(i) The embedding Arp q →֒ Lp1 holds if and only if either r > 1

p − 1
p1

and
q is arbitrary or r = 1

p − 1
p1

and q ≤ p1.
(ii) The embedding Arp q →֒ C holds if and only if r > 1

p .

In particular, A1/p
p 1 contains unbounded functions and is quite different

from S
1/p
p 1 B.

3.3. Aproximation by partial sums. Next we investigate the norm of
the operators

I − SHm
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(I = id = identity) considered as a mapping from Srp qF into Lp and from
Srp qB into Lp. Because of Corollary 3.15 this is of interest only if q > 2 in the
case of the F -spaces and q > min(p, 2) in case of the B-spaces. Otherwise
the above spaces are embedded into Arp∞(R2) and it follows that

‖f − SHmf | Lp‖ ≤ c(f)2−mr.

We can even show that

‖I − SHm : Srp qF → Lp‖ ∼ 2−mr if q ≤ 2,

‖I − SHm : Srp qB → Lp‖ ∼ 2−mr if q ≤ min(p, 2).

Theorem 3.20. Suppose 1 < p <∞, 2 < q ≤ ∞ and r > 0. Then

‖I − SHm : Srp qF 7→ Lp‖ ∼ m
1
2− 1

q 2−rm.

For illustration see Figure 12.

Theorem 3.21. Let r > 0.
(i) Suppose 1 < p ≤ 2 and p ≤ q ≤ ∞. Then

‖I − SHm : Srp qB 7→ Lp‖ ∼ m
1
p− 1

q 2−rm.

(ii) Suppose 2 < p <∞ and q > 2. Then

‖I − SHm : Srp qB 7→ Lp‖ ∼ m
1
2− 1

q 2−rm.

For illustration see Figure 13.

1
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1

1
q

1
2 1 1

p

2−mr

2−mrm
1
2− 1

q

Figure 12: F -spaces

1
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1
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1
2 1 1

p

2−mr

2−mrm
1
2− 1

q

2−mrm
1
p− 1

q

Figure 13: B-spaces
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Remark 3.22. For q = ∞ the assertion of Theorem 3.20 was known, cf.
Lizorkin and Nikol’skii [48]. In the periodic setting it has been known
even for a longer time, cf. Bugrov [14] (p = 2), Nikol’skaya [49] and
Temlyakov [77].

For related results we refer to DeVore, Petrushev, Temlyakov [22]
(periodic setting), Kamont [38] (unit cube, hyperbolic spline approxima-
tion) and DeVore, Konyagin, Temlyakov [20] (hyperbolic wavelet ap-
proximation).
Remark 3.23. There exist further approximation processes related to hy-
perbolic crosses and spaces with dominating mixed smoothness (cf. also Re-
mark 1.8). Let us mention here the so-called Smolyak algorithm (due to [71]).
Application of the Smolyak algorithm to one-dimensional sampling opera-
tors leads to sampling on sparse grids (on Rd or Td or the unit cube). This
has close connection to the problem of optimal reconstruction of functions of
several variables by means of a set of discrete function values. A lot of work
has been done in this direction. We refer to the papers by Temlyakov [76],
[79], Dinh Dung [23], Sickel, Sprengel [67], [65], [66] and, in particular,
to the recent works of Sickel and Ullrich [69], [93]).

4. New instruments

4.1. Local means. Note that we have used Lizorkin-type representations
and Littlewood-Paley decompositions based on characteristic functions as
main tools in the previous section. As a consequence our results are re-
stricted to spaces Srp qB and Srp qF with 1 < p < ∞. Recent developments
in the theory of function spaces are characterized by the use of new in-
struments such as local means, atoms and wavelets, which are successfully
applied to tackle key problems as limiting embeddings, traces, extensions,
entropy numbers or sampling numbers. Moreover, far-reaching applications
to fractals and to spectral theory have been achieved. We refer to the books
by Triebel [87], [88], [89], [90] and Haroske [36]. The aim of this section is
to develop these new tools for spaces with dominating mixed smoothness. It
yields the basis for applications which will be described in the next section.

Recall the definition of spaces Sr1, r2p q B(Rm×Rn) and Sr1, r2p q F (Rm×Rn) in
Subsection 2.3 (Definition 2.7). To avoid technicalities we restrict ourselves
to the case m = n. Rewriting formula (2.9) we get (choosing ϕ̃ = ϕ and
using well-known properties of the Fourier transform)

fϕ,eϕj,k = F−1
2n (ϕj ⊗ ϕ̃kF2nf) = c(ψj ⊗ ψk) ∗ f,

where c is a constant (depending on the definition of F2n), ∗ denotes the
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convolution in S ′(R2n) and

ψ0 = F−1
n ϕ0, ψj(·) = 2jnψ(2j ·) for ψ = F−1

n ϕ, j ∈ N.

Formally we have

[(ψj ⊗ ψk) ∗ f ](x, y) = 2(j+k)n

∫

R2n

(ψ ⊗ ψ)(2ju, 2kv)f(x− u, y − v) d(u, v).

The functions ψj do not have compact support by the Paley-Wiener theorem.
As a consequence we would need all values f(u, v) for computation of this
quantity for fixed (x, y). This is in contrast to the calculation of higher
order differences of f which can be used for an equivalent characterization
of our spaces for a certain restricted range of parameters r1, r2, p, q as we
have pointed out in Subsections 1.6, 2.2 and Remark 2.6. To see this let
m > max(r1, r2) be sufficiently large, and |h1| = 2−j , |h2| = 2−k. We can
reformulate

∆m
h1,1(∆

m
h2,2f) = F−1

2 [(ei2
−jξ − 1)m(ei2

−kη − 1)mF2f ]

= F−1
2 [ϕj ⊗ ϕkF2f ],

where
ϕj(ξ) = ϕ(2−jξ), ϕ(ξ) = (eiξ − 1)m.

Hence, to compute the differences

F−1
2 [ϕj ⊗ ϕkF2f ](x, y) = ∆m

2−j ,1(∆
m
2−k,2f)(x, y)

at the point (x, y) we only need values f(u, v) with |x−u| ≤ m2−j , |y−v| ≤
m2−k. Moreover, observe that

suppϕ = R,
Dαϕ(0) = 0 for 0 ≤ α < m,

|ϕ(ξ)| = O(|ξ|m), |ξ| → 0.

It turns out that we can modify the assumptions with respect to the proper-
ties of ϕ0 and ϕ to get equivalent descriptions of the spaces under considera-
tion by local means. We choose ϕ0 and ϕ such that ψ0 = F−1

n ϕ0, ψ = F−1
n ϕ

have compact support. Assume ψ0, ψ ∈ S(Rn) and let

suppψ0, suppψ compact, (4.1)

(Fnψ0)(0) 6= 0, (4.2)

(Fnψ0)(ξ) 6= 0 if 0 < |ξ| < ε (4.3)

(DαFnψ)(0) = 0 for |α| ≤ r, r ≥ 0, (4.4)
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be satisfied for some ε > 0. The condition (4.4) is empty if r < 0. Observe
that (4.4) can be reformulated as

∫

Rn

uαψ(u) du = 0 for |α| ≤ r.

Example 4.1. It is not difficult to find functions satisfying the above con-
ditions (4.1)–(4.2). For example, choose ψ0 ∈ S(Rn) with support in the
unit ball such that Fnψ0(0) 6= 0 and put ψ := ∆Nψ0, 2N > r.

Given functions ψ0 and ψ satisfying conditions (4.1)–(4.4) we define
ψj(u) := 2jnψ(2ju), j ∈ N, and

Ψj,kf(x, y) := (ψj ⊗ ψk) ∗ f(x, y), j, k ∈ N0

= 2(j+k)n

∫

R2n

(ψ ⊗ ψ)(2ju, 2kv)f(x− u, y − v) d(u, v), j, k ∈ N

(4.5)
(modification if j ·k = 0). Hence, to calculate the value of Ψj,kf at the point
(x, y) we need only the restriction of f to the set

{(u, v) : |x− u| < 2−j , |y − v| < 2−k}.

The next theorem shows that we can replace in the definitions of
Srp qB(Rn×Rn) and Srp qF (Rn×Rn) (cf. (2.18) and (2.19) the building blocks
fϕ,eϕj,k (cf. (2.9) by the local means defined in (4.5). In contrast to the char-
acterization by differences this works for the full range of parameters p, q
and r.

Theorem 4.2 (Characterization by local means). Let 0<p≤∞, 0<q ≤∞,
(r1, r2) ∈ R2 and let ψ0, ψ be as in (4.1)–(4.4) with r = max(r1, r2). Let
Ψj,kf have the meaning of (4.5).

(i) Then

‖f | Sr,r2
p q B(Rn × Rn)‖ ∼ ‖2(jr1+kr2)Ψj,kf(x, y) | Lp(R2n)|ℓq(N2

0)‖. (4.6)

(ii) If additionally p <∞ then

‖f | Sr1,r2p q F (Rn × Rn)‖ ∼ ‖2(jr1+kr2)Ψj,kf(x, y) | ℓq(N2
0) | Lp(R2n)‖. (4.7)

Remark 4.3. The proof of the theorem can be found in Vyb́iral [96] (see
also [94]). There are also more general results weakening the smoothness
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assumptions of ψ0 and ψ. Moreover, it is shown that the local means Ψj,kf
in (4.6) and (4.7) can be replaced by Peetre’s maximal function

(Ψj,kf)⋆a(x, y) := sup
u,v

|(ψj ⊗ ψk) ∗ f |(x− u, y − v)
(1 + |2ju|)a(1 + |2kv|a)

if a is large enough. Similar results have been obtained by Bazarkhanov
[6]. The idea to use local means is due to Triebel [87] in the isotropic
case, see also [90] for an updated essentially improved version. The case of
Besov spaces with dominating mixed smoothness has been investigated by
Rodriguez [59]. The key inequalities in the proof presented in [96] read as
(for a large enough)

‖ sup
|u|≤c2−j

sup
|v|≤c2−k

(ψj ⊗ ψk) ∗ f(x− u, y − v) | Lp(ℓq)‖

≤
∥∥∥sup
u,v

|(ψj ⊗ ψk) ∗ f |(x− u, y − v)
(1 + |2ju|)a(1 + |2kv|a)

∣∣∣ Lp(ℓq)
∥∥∥

∼ ‖f | S0
p qF‖.

4.2. Atoms. A crucial step in the modern theory of function spaces has
been made by the development of atomic and molecular characterizations.
In the case of Besov and Lizorkin-Triebel spaces this is due to Frazier,
Jawerth [30], [31] and Frazier, Jawerth, Weiss [32]. Sub-atomic
(quarkonial) decompositions have been introduced by Triebel (cf. [88]).
The use of (sub)atomic decompositions has lead to essential progress in ap-
plications to singular integrals and pseudodifferential operators. It paved
the way to new approaches in fractal analysis and spectral theory. More-
over, quarks, atoms and molecules are closely connected with wavelet bases
and frames in function spaces with far-reaching consequences in applications
to computational mathematics, signal and image processing. The adaption
to spaces with dominating mixed smoothness has been investigated by Ro-
driguez [59], Hochmuth [37], Bazarkhanov [6], [7] and Vyb́iral [94],
[96]. Here we follow [96] and concentrate on the splitting R2n = Rn × Rn.
Based on the Fourier-analytical approach and the characterization by local
means we are able to localize and discretize the spaces Sr1,r2p q B(Rn × Rn)
and Sr1,r2p q F (Rn × Rn). We deal with representations by atoms and com-
pactly supported wavelets (next subsection) but we do not touch quarkonial
decompositions and wavelet frames (see [96] for the latter topics). Roughly
speaking any function (distribution) f belongs to such a space if and only if
it can be represented as

f =
∑

(j,k)∈N2
0

∑

(µ,ν)∈Z2

bµ,νj,k a
µ,ν
j,k
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(convergence in an appropriate sense, in particular in S ′(R2n)), with coeffi-
cients bµ,νj,k ∈ C and distinguished (smooth) functions aµ,νj,k having compact
support in a neighborhood of the lattice point (2−jµ, 2−kν). Moreover, the
sequence {bµ,νj,k } of coefficients has to belong to a corresponding weighted
sequence space which depends on the parameters r, p and q. We consider
two cases:
• the atomic decomposition, where the building blocks aµ,νj,k have to fulfil

qualitative properties, the representation is not unique but leads to some
flexibility;

• (next subsection) the wavelet decomposition, where the building blocks
aµ,νj,k are constructed as tensor products of compactly supported one-
dimensional wavelets, the representation is unique, and the coefficients
can be calculated explicitly.

In the latter case we shall have an isomorphism between function and
sequence spaces. To be more precise we need some notation.

In the following we assume (x, y) ∈ R2n = Rn × Rn, (µ, ν) ∈ Z2n =
Zn×Zn, (j, k) ∈ N0×N0. Let us denote by Qµj ⊂ Rn a cube with centre 2−jµ
and sides parallel to the coordinate axes of length 2−j+1. Let dQνj be the
cube with the same centre and side-length d2−j+1. We put Qµ,νj,k = Qµj ×Qνk.

Definition 4.4 (Atoms). Let K = (K1,K2), L = (L1, L2) ∈ N2
0, d ≥ 1.

A function aµ,νj,k : Rn × Rn → C is called a (K,L)-atom if and only if

supp aµ,νj,k ⊂ dQµ,νj,k ,

|D(α,β)aµ,νj,k (x, y)| ≤ 2|α|j+|β|k, |α| ≤ K1, |β| ≤ K2,∫

Rn

xαaµ,νj,k (x, y) dx = 0, |α| < L1, j ∈ N, (4.8)
∫

Rn

yβaµ,νj,k (x, y) dy = 0, |β| < L2, j ∈ N (4.9)

((4.8) is empty if j = 0 and L1 = 0, (4.9) is empty if k = 0 and L2 = 0).

Definition 4.5 (Sequence spaces). Suppose 0 < p ≤ ∞, 0 < q ≤ ∞,
(r1, r2) ∈ R2 and let λ = (λµ,νj,k ) be a sequence of complex numbers. We
denote by χµ,νj,k the characteristic function of the cube Qµ,νj,k and put

gj,k(x, y) :=
∑

µ,ν

λµ,νj,k χ
µ,ν
j,k .
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(i) A sequence λ belongs to the space sr1,r2p q b if and only if

‖λ | sr1,r2p q b‖ := ‖2jr1+kr2gj,k | Lp(R2n) | ℓq(N2
0)‖ <∞. (4.10)

(ii) A sequence λ belongs to the space sr1,r2p q f if and only if

‖λ | sr1,r2p q f‖ := ‖2jr1+kr2gj,k | ℓq(N2
0) | Lp(R2n)‖ <∞.

Note that (4.10) can be reformulated. We have

‖λ | sr1,r2p q b‖ ∼
∥∥∥2(j−n/p)r1+(k−n/p)r2

(∑

µ,ν

|λµ,νj,k |p
)1/p ∣∣∣ ℓq(N2

0)
∥∥∥.

Next we want to sketch the ideas how to derive atomic characterizations
from local means described in the previous subsection. Starting point is a
representation formula due to Triebel [88]. It was shown that there exist
smooth kernels ψ0, ψ, |ψ(x)| = O(|x|N ) near to 0 (N large) such that

f =
∑

j,k

(ψj ⊗ ψk) ∗ f.

The next step is a localization at the scale (2−j , 2−k). To this end we choose
a smooth function ̺ with

supp ̺ ⊂ {x : |x| ≤ d} and
∑

µ∈Zn

̺(x− µ) = 1.

Setting
̺µ,νj,k (x, y) := ̺(2jx− ν)̺(2ky − ν)

we obtain ∑

µ,ν

̺µ,νj,k (x, y) = 1, supp ̺µ,νj,k ⊂ dQµ,νj,k

and the decomposition

f =
∑

j,k

∑

µ,ν

̺µ,νj,k (x, y) · (ψj ⊗ ψk) ∗ f(x, y)
︸ ︷︷ ︸

=:bµ,ν
j,k (x,y)

.
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If |α| ≤ K1, |β| ≤ K2, (x, y) ∈ supp bµ,νj,k then there exist constants c, C
independent of j, k, µ, ν such that

|D(α,β)bµ,νj,k (x, y)| ≤ 2j|α|+k|β| C
∑

|α|≤K1, |β|≤K2

sup
cQµ,ν

j,k

|(Dαψ)j ⊗ (Dβψ)k ∗ f
︸ ︷︷ ︸

=:λµ,ν
j,k

.

Consequently, the functions

aµ,νj,k (x, y) := (λµ,νj,k )−1bµ,νj,k (x, y)

are (K, 0)-atoms. (Moment conditions are not satisfied.) Moreover, using
Peetre’s maximal function, the estimates

‖λ | sr1,r2p q f‖ ≤ C1

∑

|α|,|β|

∥∥2jr1+kr2
(
(Dαψ)j ⊗ (Dβψ)k ∗ f

)⋆
a

∣∣ Lp(ℓq)
∥∥

≤ C2‖f | Sr1,r2p q F‖
can be proved. Altogether this leads to atomic decompositions for large r1,
r2 in the sense of the following theorem.

Theorem 4.6 (Atomic decomposition). Let 0 < p ≤ ∞, 0 < q ≤ ∞,
(r1, r2) ∈ R2 and let

σp := n(1/p− 1)+, σpq := n(1/min(p, q)− 1)+.

(i) Let Ki > ri, Li > σp − ri (i = 1, 2). Then

f ∈ Sr1,r2p q B(Rn × Rn) ⇐⇒ f =
∑

j,k

∑

µ,ν

λµ,νj,k a
µ,ν
j,k , (4.11)

(convergence in S ′(R2n)) where aµ,νj,k are (K,L)-atoms and ‖λ | sr1,r2p q b‖ <∞.
Moreover,

‖f | Sr1,r2p q B‖ ∼ inf ‖λ | sr1,r2p q b‖,
where the infimum is taken over all admissible representations (4.11).

(ii) Let p <∞, Ki > ri, Li > σpq − ri, i = 1, 2. Then

f ∈ Sr1,r2p q F (Rn × Rn) ⇐⇒ f =
∑

j,k

∑

µ,ν

λµ,νj,k a
µ,ν
j,k , (4.12)

(convergence in S ′(R2n)) where aµ,νj,k are (K,L)-atoms and ‖λ | sr1,r2p q f‖ <∞.
Moreover,

‖f | Sr1,r2p q F‖ ∼ inf ‖λ | sr1,r2p q f‖, (4.22)

where the infimum is taken over all admissible representations (4.12).
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4.3. Wavelet bases. We do not comment on the history of wavelets. There
is a huge list of books and papers which appeared in the last 25 years. Were
we are interested in wavelets with compact support (so-called Daubechies
wavelets) and corresponding bases and refer to Daubechies [18], [19] for
basic concepts. We consider the one-dimensional case. Let ψ0, ψ be real-
valued functions defined on R. We put

ψµ0 (x) := ψ0(x− µ), µ ∈ Z, x ∈ R,

and
ψµj (x) := 2j/2ψ(2jx− µ), j ∈ N, µ ∈ Z, x ∈ R.

It means that the system (ψµj )j,µ is generated from two functions by means
of L2-norm preserving dyadic dilation and translation with respect to uni-
form grid of mesh-size 2−j . The task is to construct (smooth) functions
ψ0 and ψ such that the corresponding system is an orthonormal basis in
L2(R) and an unconditional bases in (quasi) Banach spaces of functions
such as Besov-Lizorkin-Triebel spaces. The following proposition is due to
Daubechies [19].

Proposition 4.7 (Daubechies wavelets). Let κ ∈ N.
(i) There exist functions ψ0, ψ ∈ Cκ(R) with compact support and satis-

fying
∫ ∞

−∞
ψ0(x) dx = 1,

∫ ∞

−∞
xαψ(x) dx = 0 for α = 0, . . . ,κ

such that (ψµj )j,µ is an orthonormal basis in L2(R).
(ii) Let ψ0, ψ be as in (i). Then (ψµj ⊗ ψνk)j,k;µ,ν is an orthonormal basis

in L2(R2).

Remark 4.8. The relations to atoms and local means considered in the
previous subsections can be seen from the following. Let (ψµj )j;µ be as in
Proposition 4.7. Then

aµ,νj,k := 2−(j+k/2)ψµj ⊗ ψνk

are atoms in the sense of Definition 4.4 with vanishing moments up to
order κ. On the other hand (putting ψ̃(x) = ψ(−x)) we see that the wavelet
coefficients

(f, ψµj ⊗ ψνk) = 2−(j+k/2)(ψ̃j ⊗ ψ̃k) ∗ f(2−jµ, 2−kν)
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are building blocks in the sense of (4.5) up to a factor (local means). Using
the results of Subsections 4.1 and 4.2 wavelet bases in spaces with dominating
mixed smoothness are constructed in [96].

Theorem 4.9 (Wavelet decomposition). Let (ψµj )j;µ be as in Proposition
4.7, where κ is a sufficiently large natural number (depending on r1, r2,
p, q). Let us further agree that A = B or A = F , a = b or a = f . Let
0 < p, q ≤ ∞ (p <∞) if A = F and let (r1, r2) ∈ R2.

(i) We have

f ∈ Sr1,r2p q A(R2) ⇐⇒ f =
∑

j,k

∑

µ,ν

(f, ψµj ⊗ ψνk)ψ
µ
j ⊗ ψνk , (4.13)

where
λ(f) =

(
2(j+k)/2(f, ψµj ⊗ ψνk)

)µ,ν
j,k

∈ sr1,r2p q a,

(ii) The representation (4.13) is unique and the mapping f → λ(f) is an
isomorphism from Sr1,r2p q A(R2) onto sr1,r2p q a.

Remark 4.10. Similar results on the isomorphism of spaces with dominat-
ing mixed smoothness and corresponding sequence spaces have been obtained
by Hochmuth [37] and Bazarkhanov [7]. Let us emphasize that we did
not take care about the best possible smoothness κ in the above theorem.
Recently, Triebel (unpublished notes) has obtained sharp estimates for κ
in the isotropic case of spaces Brp q(Rn) and F rp q(Rn). Following his method
should lead to κ > max(ri, σp−r1) for Sr1, r2p q B and to κ > max(ri, σpq−ri)
for Sr1, r2p q F as optimal conditions.

5. Applications

Atomic and wavelet decompositions have been successfully applied to the
study of embeddings and traces. We shall present a survey of recent results
concerning
• the investigation of traces on the diagonal {(x, y) ∈ R2 : x = y} (see

[59], [86], [95] and [70] for an analogous problem in R3),
• critical embeddings establishing sharp estimates for growth envelope

functions based on multivariate rearrangements in the spirit of [36] and
[89] (see [42], [43], [44]),

• the asymptotic behavior of entropy numbers of compact embeddings in
spaces on domains where the problem is reduced to sequence spaces via
wavelet decompositions (see [96]).
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5.1. Traces. Let us consider the trace problem for the spaces Sr1,r2p q B(R2)
and Sr1,r2p q F (R2) with dominating mixed smoothness described in Subsec-
tion 1.5. If a function f belongs to such a space we formally define

tr f := f(x, x), x ∈ R

(the so-called trace on the diagonal). If r1 and r2 are sufficiently large then
tr f can be rigorously defined. This will be the case in the results which
will be presented below. A space B(R) is called the trace on the diagonal of
a space A(R2) (trA(R2) = B(R) for short notation) if

tr : A(R2) → B(R)

is linear and bounded and if there exists an extension operator

ext : B(R) → A(R2)

which is a linear and bounded such that

tr ◦ ext = id : B(R) → B(R).

The problem was first studied by Triebel [86] in the special case A(R2) =
Sr1,r2p 1 B(R2), 1 ≤ p ≤ ∞. Using atomic decompositions Rodriguez [59]
was able to extend his results to the general case of spaces Sr1,r2p q B(R2),
where some borderline cases remained open. A nearly final solution has
been achieved by Vyb́iral [95] for both Sr1,r2p q B(R2) and Sr1,r2p q F (R2). Here
we shall present these results.

Theorem 5.1 (Traces, B-spaces). Let 0 < p, q ≤ ∞, r1, r2 > 0, σp :=
(1/p− 1)+.

(i) If r2 ≥ r1 > σp and r2 > 1/p then

trSr1,r2p q B(R2) = Br1p q(R).

(ii) If r1 ≥ r2 > σp and r1 > 1/p then

trSr1,r2p q B(R2) = Br2p q(R).

(iii) If σp < r1 < 1/p, σp < r2 < 1/p and r1 + r2 − 1/p > σp then

trSr1,r2p q B(R2) = Br1+r2−1/p
p q (R).

Remark 5.2. Whereas in part (i) and (ii) the trace coincides with the
trace on the coordinate axes (x1, 0) and (0, x2), respectively something new
happens in part (iii). In particular, if r1 = r2 = r it means r1 = r2 = r
that the trace of Srp qB(R2) on the diagonal coincides with the trace of the
(smaller) isotropic Besov space B2r

p q(R2). For an illustration of the above
three cases see Figure 14 and 15.
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Figure 15: p < 1

Remark 5.3. We discuss the borderline cases (see [95] for the details). We
restrict ourselves to the case r1 < r2. In the converse case one has to change
the roles of r1 and r2 in an obvious way.

If r2 = 1/p, σp < r1 < 1/p and q ≤ min(1, p) then we have

trSr1,r2p q B(R2) = Br1p q(R)

(the same result as in part (i)).
If r2 = 1/p, σp < r1 < 1/p, p ≥ 1 and q ≥ 1 then we get

trSr1,r2p q B(R2) = B(r1,α)
p q (R),

where α = 1/q − 1 ≤ 0 and where B(r1,α)
p q (R) denotes a Besov space with

generalized smoothness which is defined as in Definition 2.6, formulas (2.13)–
(2.15) with 2jr1(j + 1)α in place of 2jr1 . We refer to [28] for a systematic
treatment in the spirit of sections 2 and 3. Plainly, it is a larger space because
of α < 0.

If r2 = 1/p, σp < r1 < 1/p, p ≤ 1 and p ≤ q then we have the embedding

trSr1,r2p q B(R2) →֒ B(r1,β)
p q (R),

where β = 1/q − 1/p ≤ q. It is not known whether the result is optimal or
not.

As an example let us compare the traces of H1
2 (R2) and S

1/2,1/2
2 H(R2).

We have
trH1

2 (R2) = B
1/2
2 2 B(R) = H

1/2
2 (R),

whereas
trS1/2,1/2

2 H(R2) = B
(1/2,−1/2)
2 2 B(R) ⊃ H

1/2
2 (R).
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Theorem 5.4 (Traces, F -spaces). Let 0 < p < ∞, q ≤ ∞, r1, r2 > 0 and
σp q := (1/min(p, q)− 1)+.

(i) If r2 ≥ r1 > σp q and r2 > 1/p then

trSr1,r2p q F (R2) = F r1p q(R).

(ii) If r1 ≥ r2 > σp q and r1 > 1/p then

trSr1,r2p q F (R2) = F r2p q(R).

(iii) If σp q < r1 < 1/p, σp q < r2 < 1/p and r1 + r2 − 1/p > σp q then

trSr1,r2p q F (R2) = Br1+r2−1/p
p p (R).

Remark 5.5. Remark 5.2 and Figures 13 and 14 apply also to the results
of Theorem 5.4 with F in place of B and with σp q in place of σp.

Again we want to discuss the borderline cases. Let r2 = 1/p and σp q <
r1 < 1/p. If p ≤ 1 and p ≤ q <∞ then we have

trSr1,r2p q F (R2) = F r1p q(R).

If q ≤ p ≤ 1 then we get

trSr1,r2p q F (R2) = Br1p p(R).

If 1 < p ≤ q then we get the embedding

trSr1,r2p q F (R2) →֒ F (r1,α)
p q (R),

where α = 1/q−1 < 0 and where F (r1,α)
p q (R) denotes a Lizorkin-Triebel space

with generalized smoothness which is defined as in Definition 2.6, formula
(2.16) and (2.17) with 2jr1(j + 1)α in place of 2jr1 . Plainly, it is a larger
space because of α < 0.

If p > 1 and q < p <∞ then we get the embedding

trSr1,r2p q F (R2) →֒ B(r1,γ)
p p (R),

where γ = 1/p− 1 < 0.
As an example we compare the trace of S1,1

1 2 F (R2) on the diagonal and
the trace of F 2

1 2(R2). We have

trS1,1
1 2 F (R2) = F 1

1 2(R)

whereas
trF 2

1 2(R2) = B1
1 1(R) ⊂ F 1

1 2(R).
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5.2. Critical embeddings. Recall our introductory remarks in Subsec-
tion 1.4. As we have pointed out in [42] and [43] Besov and Lizorkin-Triebel
spaces with dominating mixed smoothness properties are are of great use to
establish reduced Sobolev embeddings. We do not repeat the details given
there. Here we concentrate on the so-called critical case and describe a new
aspect related to multivariate rearrangements of functions. We consider the
case d = 2, r1 = r2 and m = n. First we state sharp embeddings of Sobolev
type within the scales of spaces Srp qB and Srp qF .

Proposition 5.6 (Sharp embeddings). Let 0 < p < p0 ≤ ∞, r0 < r and
r − n

p = r0 − n
p0

.
(i) If 0 < q ≤ q0 ≤ ∞ then

Srp qB(Rm × Rn) →֒ Sr0p0 q0B(Rm × Rn). (5.1)

(ii) If p0 <∞, 0 < q ≤ ∞ and 0 < q0 ≤ ∞ then

Srp qF (Rm × Rn) →֒ Sr0p0 q0F (Rm × Rn). (5.2)

(iii) If p <∞ and 0 < q ≤ ∞ then

Srp qF (Rm × Rn) →֒ Sr0p0 pB(Rm × Rn). (5.3)

A proof of (5.1) and (5.2) can be found in [63] (see also [60], [61]). For (5.3)
we refer to [43] and [64]. The sharpness of these embeddings can be obtained
combining the isotropic case (see [68]) and (2.20). Of peculiar interest here
is the case r0 = 0. Taking into account Proposition 2.2 and choosing r0 = 0,
q0 = 2 and p0 > 1 in (5.2) we obtain the Sobolev embedding

S rp qF (Rm×Rn) →֒ S 0
p0 2F (Rm×Rn) = Lp0(R2n) for r = n

(1
p
− 1
p0

)
. (5.4)

In this case p0 corresponds to Sobolev’s critical index for the embedding of
isotropic Lizorkin-Triebel spaces (which include the classical Sobolev spaces)
on R2n with smoothness 2r. Namely, we have also

F 2r
p q(R2n) →֒ F 0

p0 2(R2n) = Lp0(R2n) for r = n
(1
p
− 1
p0

)
. (5.5)

The question of interest here is what happens in the limiting case p0 = ∞
which is not covered by (5.4) and (5.5), respectively. In this so-called critical
case r = n/p the following embeddings hold true:

Sn/pp q B(Rm × Rn) →֒ L∞(R2n) iff 0 < p ≤ ∞, q ≤ 1, (5.6)

Sn/pp q F (Rm × Rn) →֒ L∞(R2n) iff 0 < p ≤ 1, 0 < q ≤ ∞. (5.7)
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Again, the same result holds true for B2n/p
p q (R2n) and F 2n/p

p q (R2n). The “if-
parts” of (5.6) and (5.7) follow from (5.1) with q ≤ 1 and (5.3) with p ≤ 1
as well as the embeddings

S0
∞ 1B(Rm × Rn) →֒ C(R2n) →֒ L∞(R2n)

which can be deduced from Definition 2.7, formula (2.18). The sharpness
is again a consequence of the isotropic case (see [68]) and (2.20). In all
other cases the spaces Sn/pp q B(Rm ×Rn), Sn/pp q F (Rm ×Rn), B2n/p

p q (R2n) and
F

2n/p
p q (R2n) contain unbounded functions. The task is to characterize the

unboundedness of functions belonging to the spaces on the line r = n/p in
the (r, 1/p)-diagram (see Figure 7, Remark 2.6) for 1 < q ≤ ∞ in case of
S
n/p
p q B(Rm × Rn) and 1 < p <∞ in case of Sn/pp q F (Rm × Rn), respectively.
The same situation appears for isotropic spaces B2n/p

p q (R2n) if 1 < q ≤ ∞
and F

2n/p
p q (R2n) if 1 < p < ∞. The question of optimal target spaces for

embeddings for isotropic (fractional) Sobolev spaces has been intensively
studied. First results have been proved by Yudovich [99], Pohozaev [58]
and Trudinger [91]. Later on the results have been extended and improved
by Strichartz [73], Hansson [35] and Brezis, Wainger [13]. In particu-
lar, we are lead to exponential Orlicz spaces and (Lorentz-)Zygmund spaces
as target spaces. A survey of these results can be found in Triebel [89,
Section 11]. A final solution in terms of growth envelopes has been found
by Haroske and Triebel (see [89, Section 12] and [36]). The idea is to
measure the unboundedness of functions by means of the behaviour of its
non-increasing rearrangement near to zero. In contrast to (5.4) and (5.5)
where we have the same target spaces (we did not consider more refined
Sobolev embeddings into Lorentz spaces as it has been done in Kolyada
[40] or in [36] and [89] in the (an)isotropic case) the situation will turn out
to be different in the limiting case. This has been observed in [42]. In the
following we present new results from [44] where it is shown that multivariate
rearrangements are in fact better adapted to spaces with dominating mixed
smoothness. Let us introduce some notation. For a measurable function
f : RN → C the non-increasing rearrangement of f is the function

f∗(t) = inf{λ > 0 : µf (λ) ≤ t}, t ∈ (0,∞),

where
µf (λ) = |{x ∈ RN : |f(x)| > λ}|, λ > 0.

If f : Rn × Rn → C is a measurable function we put

(R1f)(s, y) = [f(·, y)]∗(s), s > 0, y ∈ Rn,
(R2f)(x, t) = [f(x, ·)]∗(t), x ∈ Rn, t > 0,
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and define the bivariate (iterated) non-increasing rearrangement of f by

(R12)f(s, t) = (R2 ◦R1f)(s, t) = [(R1f)(s, ·)]∗(t), s, t > 0.

For basic properties of f∗ and (R12)f we refer to Bennett, Sharpley [9] or
Ziemer [100] and Blozinski [12], respectively. The utility of multivariate
rearrangements in connection with embeddings of Sobolev type has been
discovered by Kolyada [41]. He studied embeddings of anisotropic Sobolev
and Besov spaces in the non-limiting situation as in (5.5) to get refinements
in terms of multivariate Lorentz spaces. Because of the lack of subadditivity
of the above operators it is sometimes more convenient to work with their
averages. Let

(A1f)(s, y) =
1
s

∫ s

0

(R1f)(u, y) du, s > 0, y ∈ Rn,

(A2f)(x, t) =
1
t

∫ t

0

(R2f)(x, v) dv, x ∈ Rn, t > 0,

and define the mulivariate average of f by

(A12f)(s, t) = (A2 ◦A1f)(s, t)

=
1
st

∫ t

0

R2

(∫ s

0

(R1f)(u, ·) du
)
(v) dv, s, t > 0.

Plainly, we have (R12f)(s, t) ≤ (A12f)(s, t) for all s, t. Our main result reads
as follows.

Theorem 5.6. (i) Let 0 < p <∞ and 1 < q <∞. Then

∫ 1

0

∫ 1

0

[ (A12f)(s, t)
(log e/s)(log e/t)

]q ds
s

dt

t
≤ c‖f | Sn/pp q B(Rm × Rn)‖q (5.8)

and if 1 < q ≤ ∞

sup
0<s≤1

sup
0<t≤1

(A12f)(s, t)
[(log e/s)(log e/t)]1/q′

≤ c‖f | Sn/pp q B(Rm × Rn)‖. (5.9)

(ii) Let 1 < p <∞ and 0 < q ≤ ∞. Then

∫ 1

0

∫ 1

0

( (A12f)(s, t)
(log e/s)(log e/t)

)p ds
s

dt

t
≤ ‖f | Sn/pp q F (Rm × Rn)‖p. (5.10)
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Note that part (ii) can be reduced to part (i) using the sharp embeddings
(5.3). The proof of inequality (5.9) is based on atomic the characteriza-
tion established in Theorem 4.6 which permits a reduction of the integral
inequalities to corresponding problems in sequence spaces which are easier
to handle. This approach has been elaborated in the isotropic setting by
Triebel [89] and Haroske [36]. Let us discuss the sharpness of estimates
(5.8)–(5.10). Here the concept of growth envelopes introduced in [89] and
studied in detail in [36] turns out to be very useful. We are interested in the
quantities

sup{(R12)f(s, t) : ‖f | Sn/pp q A(Rn × Rn)‖ ≤ 1}
and

sup{f∗(t) : ‖f | Sn/pp q A(Rn × Rn)‖ ≤ 1},
where A stands for B or F . The latter one coincides with the growth en-
velope function as defined in [89], Section 12, and [36]. The first one is its
multivariate (bivariate) counterpart.

Corollary 5.8. Let 0 < p <∞, 1 < q <∞ and 1/q + 1/q′ = 1. Then

sup{(R12)f(s, t) : ‖f | Sn/pp q B(Rm × Rn)‖ ≤ 1}
≍ [(log e/s)(log e/t)]1/q

′
, 0 < s, t < 1.

(5.11)

An analogous result holds true for Sn/pp q F (Rm × Rn) in the case 1 < p <∞
and 0 < q ≤ ∞ with p′ in place of q′ on the right-hand side.

Moreover, we cannot improve the estimates (5.9) and (5.11) with respect
to the exponent q and p in the integrals on the left-hand sides in the following
sense.

Proposition 5.9. (i) Let 0 < p <∞ and 1 < q ≤ ∞. If there exists c > 0
such that
∫ 1

0

∫ 1

0

[ (R12f)(s, t)
(log e

s )
1/q′(log e

t )
1/q′

]u ds

s log e
s

dt

t log e
t

≤ c‖f | Sn/pp q B(Rm × Rn)‖u

for all f ∈ Sn/pp q B(Rm × Rn), then q ≤ u.
(ii) Let 1 < p <∞ and 0 < q ≤ ∞. If there exists c > 0 such that

∫ 1

0

∫ 1

0

[ (R12f)(s, t)
(log e

s )
1/p′(log e

t )
1/p′

]u ds

s log e
s

dt

t log e
t

≤ c‖f | Sn/pp q F (Rm × Rn)‖u

for all f ∈ Sn/pp q F (Rm × Rn), then p ≤ u.
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It means that in Theorem 5.7 we have established the local multivariate
growth envelopes for the spaces Sn/pp q B(Rm × Rn) and S

n/p
p q F (Rm × Rn),

respectively. More information about the concept of growth envelopes can
be found in [89] and [36]. It is natural to ask what can be said about the
growth envelope with respect to the usual non-increasing rearrangement f∗.

Theorem 5.10. (i) Let 1 ≤ p <∞, 1 < q <∞ and let f ∈ Sn/pp q B(Rm×Rn)
be supported in Ω1 × Ω2 ⊂ Rn × Rn, |Ω1| = |Ω2| = 1. Then

sup{f∗(t) : ‖f | Sn/pp q B(Rm × Rn)‖ ≤ 1} ≍
(
log

e

t

)2/q′

(5.12)

for all t, 0 < t ≤ 1, and
∫ 1

0

[ f∗(t)
(log e/t)2

]q dt
t
≤ c‖f | Sn/pp q B(Rm × Rn)‖q. (5.13)

(ii) Let 1 < p <∞ and let f ∈ Sn/pp q F (Rm×Rn) be supported in Ω1×Ω2 ⊂
Rn × Rn, |Ω1| = |Ω2| = 1. Then

sup{f∗(t) : ‖f | Sn/pp q F (Rm × Rn)‖ ≤ 1} ≍
(
log

e

t

)2/p′

(5.14)

for all t, 0 < t ≤ 1, and
∫ 1

0

[ f∗(t)
(log e/t)2

]p dt
t
≤ c‖f | Sn/pp q F (Rm × Rn)‖p. (5.15)

Remark 5.11. Recall the non-limiting Sobolev embeddings (5.4) and (5.6)
for F -spaces (the same holds true for B-spaces) and the coincidence of the
target spaces in isotropic and the related dominating mixed case. The re-
sults of Theorem 5.10 allow us to compare the measure of unboundedness
for functions in the spaces B2n/p

p (R2n) and S
n/p
p q B(Rm × Rn) as well as in

F
2n/p
p (R2n) and S

n/p
p q F (Rm × Rn). This turns out to be different in these

cases. The following sharp results for isotropic spaces are known from the
theory of the growth envelopes (see [36], [89]). If 1 < p <∞ and 0 < q ≤ ∞
then for small ε,

sup{f∗(t) : ‖f | F 2n/p
p q (R2n)‖ ≤ 1} ≍ | log t|1/p′ , 0 < t < ε, (5.16)

and ∫ ε

0

[ f∗(t)
| log t|

]p dt
t
≤ c‖f | F 2n/p

p (R2N )‖p. (5.17)
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Moreover, if 0 < p <∞ and 1 < q ≤ ∞, then

sup{f∗(t) : ‖f | B2n/p
p,q (R2n)‖ ≤ 1} ≍ | log t|1/q′ (5.18)

and ∫ ε

0

[ f∗(t)
| log t|

]q dt
t
≤ c‖f | B2n/p

p, q (R2n)‖q. (5.19)

We point out the interesting appearance of different exponents: 2/p′ and
2/q′ in (5.12), (5.14), and 1/p′ and 1/q′ in (5.16), (5.18). As well we have
(log e/t)2 on the left-hand of (5.13), (5.15) in place of | log t| in (5.17) and
(5.19), respectively. Taking into account the embedding B

2n/p
p,q (R2n) →֒

S
n/p
p q B(Rm×Rn) (similarly for F -spaces) we see that the behaviour of func-

tions near to singularities might be worse in the larger spaces. In other words
we have a larger Lorentz-Orlicz space as target space for the related spaces
with dominating mixed smoothness.

The above results enable us to study limiting cases of reduced Sobolev
embeddings as discussed in Subsection 1.4. We give an example. The re-
duced Sobolev space WM

p (R4) introduced in Example 1.10 coincides with
S1
pH(R2 × R2) = S1

p 2F (R2 × R2). The limiting case is achieved at p = 2.
Then, for example,

sup{f∗(t) : ‖f |WM
2 (R4)‖ ≤ 1} ≍

(
log

e

t

)2

in contrast to
sup{f∗(t) : ‖f |W 2

2 (R4)‖ ≤ 1} ≍ log
e

t
.

5.3. Entropy numbers. Recall our discussions in Subsection 1.3 with
respect to high-dimensional approximations and phenomena. Now, we con-
sider the general case of spaces of functions defined on Rd, d > 1 and the
splitting Rd = R×· · ·×R. The spaces Srp qB(Rd) and Srp qF (Rd) are defined
as in Definition 2.7 for r1 = · · · = rd, where the extension from d = 2 to
arbitrary d is obvious. The spaces Srp 2F (Rd) coincide with the fractional
Sobolev spaces with dominating mixed derivatives SrpH(Rd) introduced in
Definition 1.5 if 1 < p <∞. Of course, the remarks in Subsection 1.6 apply
also to the general d-dimensional case. We deal with spaces on domains and
study the asymptotic behaviour of entropy numbers of compact embeddings
within these spaces with respect to the interrelations of dimension and domi-
nating mixed smoothness. We follow Vyb́iral [96] where a unified approach
is elaborated which reduces the problem to the investigation of compact



194 HANS-JÜRGEN SCHMEISSER

embeddings of sequence spaces. Recall that we have discussed the corre-
spondence of function spaces with dominating mixed smoothness of Besov-
Lizorkin-Triebel spaces and sequence spaces in Subsections 4.2 and 4.3.

First we define function spaces on domains by restriction of functions
defined on Rd.

Definition 5.12 (Spaces on domains). Let Ω be an arbitrary bounded do-
main in Rd. Let A stand for B or F . Then we put

Srp qA(Ω) = {f ∈ D′(Ω) : ∃g ∈ Srp qA(Rd) with g
∣∣
Ω

= f}

and
‖f | Srp qA(Ω)‖ = inf ‖g | Srp qA(Rd)‖,

where the infimum is taken over all g ∈ Srp qA(Rd) such that its restriction
g
∣∣
Ω

to Ω coincides with f in the space of distributions D′(Ω).

Proposition 5.13 (Compactness of embeddings). Let Ω ⊂ Rd, d ≥ 2, be
a bounded domain. Let 0 < p1, p2, q1, q2 ≤ ∞ with p1, p2 <∞ in the F -case,
and let r1, r2 ∈ R. If A ∈ {B,F} and Ã ∈ {B,F} then the embedding

id : Sr1p1 q1A(Ω) → Sr2p2 q2Ã(Ω)

is compact if and only if

r1 − r2 −
( 1
p1
− 1
p2

)
+
> 0. (5.20)

If (5.20) is satisfied it makes sense to study the degree of compactness by
the asymptotic behaviour of entropy numbers.

Definition 5.14 (Entropy numbers). Let m ∈ N and let E, G be quasi
Banach spaces. Let us denote the unit balls in E and G by UE and UG,
respectively. If T : E → G is a linear and bounded operator then we put

em(T ) := inf
{
ε : ∃g1, . . . , g2m−1 ∈ G, T (UF ) ⊂

2m−1⋃

j=1

(gj + εUG)
}
.

It is well-known that the operator T is compact if an only if lim
m→∞

em = 0.
For more information on entropy numbers and related quantities such as
approximation numbers and different kinds of s-numbers we refer to Pietsch
[57], Carl, Stephani [17] and Edmunds, Triebel [27].
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Remark 5.15. There is a close connection between entropy numbers and
eigenvalues. This has been discovered by Carl [16]. If T : E → E is
a compact operator and if λm(T ), |λ1(T )| ≥ |λ2(T )| ≥ · · · > 0 are its
eigenvalues, then Carl’s inequality

|λm(T )| ≤
√

2 em(T ), m ∈ N

holds. For the use of entropy numbers and related quantities in spectral
theory we refer also to König [39]. Moreover, there is a strong connection
of compactness of embeddings in different types of function spaces and the
compactness of related operators. In this respect we refer to Edmunds,
Triebel [27] and Triebel [88], [89]. Let us also mention (see also Sub-
section 1.3) the close connection to multivariate approximation and optimal
reconstruction of functions from a finite number of values. In the context of
isotropic Besov-Lizorkin-Triebel spaces this has been studied recently in the
framework of so-called sampling numbers (see [90] and the references given
there).

The main result concerning entropy numbers of embeddings in spaces
with dominating mixed smoothness reads as follows ([96, Theorem 4.11]).

Theorem 5.16 (Entropy numbers of compact embeddings). Let pi, qi, ri,
i = 1, 2, and Ω be as in Proposition 5.13. Suppose that (5.20) is satisfied.

(i) If A ∈ {B,F} and Ã ∈ {B,F} then

em
(
id : Sr1p1 q1A(Ω) → Sr2p2 q2Ã(Ω)

)
≥ cmr2−r1(logm)(d−1)

(
r1−r2+ 1

q2
− 1

q1

)
+

for m ≥ 2 with a constant c independent of m.
(ii) If A = B or if A = F and if

r1 − r2 +
( 1
q2
− 1
q1

)
> 0 (5.21)

then

em
(
id : Sr1p1 q1A(Ω) → Sr2p2 q2A(Ω)

)
≤ c

( logd−1m

m

)r1−r2
(logm)(d−1)

(
1

q2
− 1

q1

)

for m ≥ 2 with a constant c independent of m.
(iii) If A = B or if A = F and if

r1 − r2 +
( 1
q2
− 1
q1

)
≤ 0 (5.22)
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then
em

(
id : Sr1p1 q1A(Ω) → Sr2p2 q2A(Ω)

)
≤ cεm

−(r1−r2)(logm)ε

for m ≥ 2 and ε > 0 with a constant cε independent of m.
(iv) If A ∈ {B,F} and Ã ∈ {B,F} and if

r1 − r2 +
( 1
p1
− 1
p2

)
+
>

( 1
q1
− 1

min(p1, p2)

)
+

+
( 1
p2
− 1
q2

)
+

(5.23)

then

em
(
id : Sr1p1 q1A(Ω) → Sr2p2 q2Ã(Ω)

)
≤ c

( logd−1m

m

)r1−r2
(logm)(d−1)

(
1

q2
− 1

q1

)

for m ≥ 2 with a constant c independent of m.

A new and somewhat surprising effect is the dependence of the interrela-
tion of parameters ri and qi as we can find in (5.21) and (5.22).

Corollary 5.17. (i) Assume that (5.20) and (5.21) hold. Then we have

em
(
id : Sr1p1 q1A(Ω) → Sr2p2 q2A(Ω)

)
≍

( logd−1m

m

)r1−r2
(logm)(d−1)

(
1

q2
− 1

q1

)
.

(ii) Assume that (5.20) and (5.22) hold. Then we have

cm−(r1−r2) ≤ em
(
id : Sr1p1 q1A(Ω) → Sr2p2 q2A(Ω)

)
≤ cεm

−(r1−r2)(logm)ε

for m ≥ 2 and ε > 0 with constants c and cε independent of m.

Remark 5.18. Part (ii) of Corollary 5.17 is less satisfactory. It is not
clear whether the logarithmic factor on the left-hand side can be removed in
general.

Moreover, condition (5.23) part (iv) of Theorem 5.16 does not seem to be
natural.

Finally, let us state state two results for embeddings of fractional Sobolev
spaces and Nikol’skii spaces with dominating mixed smoothness which can
be deduced as special cases if we choose r2 = 0 and put p1 = p, p2 = q. Let
0 < p, q <∞, r >

(
1
p − 1

q

)
+
. Then

em
(
id : Srp 2F (Ω) → S0

q 2F (Ω)
)
≍

(
logd−1m

m

)r
,
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in particular,

em
(
id : SrpH(Ω) → Lq(Ω)

)
≍

(
logd−1m

m

)r
, 1 < p, q <∞.

Let 0 < p <∞, 2 ≤ q <∞, r >
(

1
p − 1

2

)
+
. Then

em
(
id : Srp∞B(Ω) → Lq(Ω)

)
≍

(
logd−1m

m

)r
(logd−1m)1/2.

Let us compare these results with the behaviour and the dependence on the
dimension d for classical isotropic spaces with smoothness r. In that case
we have

em
(
id : F rp 2(Ω) → Lq(Ω)

)
≍ em

(
id : Brp∞(Ω) → Lq(Ω)

)
≍ m−r/d

if r > d
(

1
p − 1

q

)
+
.

Note that we do not get satisfying results for embeddings into L1(Ω)and
L∞(Ω). A detailed discussion and a comparison with results obtained by
Belinsky [10], Dinh Dung [24], [25], and Temlyakov [78] by different
methods in the periodic case can be found in [96], Subsection 4.6.

Acknowledgement: I am greatly indebted to Dorothee D. Haroske for
producing all the figures.
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häuser Verlag, Basel, 1992. Zbl 0763.46025, MR 93f:46029.

[88] H. Triebel: Fractals and Spectra. Related to Fourier analysis and function spaces.
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