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The aim of this paper is to investigate some natural conditions on a partial orderings 
(conditions on a family of sets) and their consequences. It will be proved that the special 
kind of families having binary property, inclusion property (I) and so on, contains 
independent subfamilies. A Ramsey-type theorem will be used as a main tool in proofs 
of theorems included in this paper. 

The problem concerning mappings onto generalized Cantor discontinua was 
studied by several authors. We can equivalently think about the Boolean algebra 
of clopen subsets in zero-dimensional compact space. For such a space there exists 
a continuous function onto generalized Cantor discontinua of weight T if and only 
if Boolean algebra of clopen subsets of the space contains an independent subset 
of cardinality T. 

Partial positive solutions under additional set-theoretical assumptions where 
done, among others, by Efimov [3], Koppelberg [5], Monk [8], and Blaszczyk [2]. 
A short historical survey of this problem can be found in [2]. 

The fundamental paper for this theory was published in 1982 by Balcar and 
Franek, (see [1]). They presented a proof (without any set-theoretical assumptions), 
that in each infinite complete Boolean algebra B there is an independent family 
J c B such that |/iT| - |fl|. 
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The aim of this paper is to investigate some natural conditions on a partial 
orderings (conditions on a family of sets) and their consequences. It will be proved 
that the special kind of families having binary property, inclusion property (I) and 
so on, contains independent subfamilies. We will prove (without any set-theoretical 
assumptions) that compact zero-dimensional space can be mapped onto the Cantor 
cube DK if and only if it possesses a binary family of clopen subsets £f9 (where 
\^\ > K > c(9*)) closed with respect to the complements and inclusion property 
(I). A Ramsey-type theorem will be used as a main tool in proofs of theorems 
included in this paper. The most general version of Ramsey-type theorem is 
presented below 

Theorem ([6]) For each family of sets of cardinality greater than or equal 
to (2 ;)+, closed under finite intersections, either there exists a subfamily of 
X+ pairwise disjoint subsets or there exists a centered subfamily of cardinality 

(_y. 
Let (_ ,̂ =^) be a partially ordered set. 
We say that a.beSP are compatible if there exists ce0> such that 

c =̂  a and c =̂  b. 

By a _L b we will denote that a and b are not compatible (are incompatible). 
We say that A cz 0> is linked if each of two elements in A are compatible. 

Definition 1 We say that A cz 0> fulfills condition (I) if for all a0,aua2 e A, if 
a0 _L a\ and a0 JL a2 then either a{ _L a2 or ax =̂  a2 or a2^ a{. 

is 

Definition 2 We say that A cz 0 fulfills condition (T(K)) if for each ae A there 

\{xe A : x ^ a}\ < K. 

The following Ramsey-type theorem will be proved. 

Theorem 1 Let K be a regular uncountable cardinal number. Let (0>, = )̂ be 
a partially ordered set of cardinality K and let A cz 0 be a set of cardinality 
K which fulfills conditions (I) and (T(K)). Then either there exists a linked set 
Z cz A of cardinality K or there exists a set Z cz A of cardinality K consisting of 
pairwise incompatible elements. 

Proof. If there exists a linked subset Z cz A of cardinality JC, then the proof is 
complete. Suppose that each linked subset Z cz A has cardinality less than K. Let 
H t cz A be an arbitrary maximal linked subset of A. Then \H{\ < K. Let zx e Hx 

be an arbitrary element. Then the set {zx} u H, is linked. Let us choose an arbitrary 
element z2e A\HX. According to maximality of Hx we have that {z?} u H{ is not 
linked. Let us choose an arbitrary maximal linked subset H2 cz A\HX such that 
z2 e H2. Then the set {z?} u H2 is linked. 
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Suppose that for some a < K sequences ({z/})y<a and (Hy)y<a and have been 
defined. Since K is regular and oc < K hence 

A\{J{Hy:y < a}^0 . 

Let zaeA\\J {Hy: y < a} be an arbitrary element. Obviously for each y < a the 
set {za} u Hy is not linked. Let us choose an arbitrary maximal linked subset 
Ha cz A\[j{Hy:y < a} such that zaeHa. Thus the sequences ({za})a<K and 
(Ha)a<K have been defined. According to above construction the sets {zy} u Hx are 
not linked for each 7 < re, i.e. there exists an element ay e Hx such that ay 1 zr 

According to our assumption \HX\ < K. Since K is regular, there exists an element 
ay0 e Hi such that the set 

W = {zy: zy 1 ay0} 

has cardinality re. Since A fulfills condition (I) and W cz A hence W fulfills 
condition (I) too, (i.e. for each zv z6 e W we have zy _L ay0, and from this it follows 
zy J_ z6 or zy ^ z;) or z6 ^ zy). Each linked set in A has cardinality less than K, thus 
each chain in A, as a special kind of a linked set, has cardinality less than re. Let 
z(0) be an arbitrary element in W Let JS?0 be a maximal chain in W such that 
z (0) G j£?0. Consider a set 

C0 = {se IV: there exists z e ^ 0 such that s =̂  z}. 

According to condition (T(K)) and assumption that |JS?0| < K there is |^0| < K 

and I IV\ C0| = K. For each z e IV\ C0 there exists se C0 such that z _L s. Let us 
choose an arbitrary element s0 e S£0. Let us observe that z _L s0 for each z e W\ C0. 

If not, then according to condition (I) there is z =̂  s0 or s0 =̂  z. If z =̂  s0, then 
z e C0. Contradiction. If s0 =̂  z, then z G JSf0 and then z e C0. Contradiction. Denote 
the set W\C0 by W0. 

Suppose that for some a < K the sets (Cy)y<a, (Wy)y<a9 (-Sfy)y<a and elements 
(sv)T<a such that 

(2) i?y cz MK,? 

(3) S , G J S ^ ' 

(4) z !_ sy for each zeWy 

have been defined. 
Obviously, lU-.<aCr| < K (because |CT| < K for each y < a). 

Hence |W^\(Jy<lcy| - K. 
Let z(a) be an arbitrary element in KV\(JT<aCr Let us observe that z(a) JL sy for 

each y < [i. Let ££a be a maximal chain in W\\]y<aCy such that z(a)G^ a . 
Consider a set 

Ca = {se W\ (J Cy: there exists ze 5£a such that s ^ z}. 
- 7<a 
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According to condition (T(K)) and assumption that |JS?a| < K there is |Ca| < K. 

Hence |W\C a | = K. For each z e W \ C a there exists se Ca such that z _L s. 
Let us choose an arbitrary element sa e Sfa. Let us observe that z _L sa for each 
ze W\\Jy<aCy 

If not, then according to condition (I) there is z =̂  sa or sa =̂  z. If z =̂  :sa, then 
z e Ca. Contradiction. If sa ^ z, then z G i ? a and then z e Ca. Contradiction. 

This way we defined 

Z = {sa: a < K} 

such that sa J_ ŝ  for all a, j8 < K with a # /?. • 

Definition 3 We 8ay 1/iat a family of sets Sf is linked if for all A9B e Sf there 
is AnB # 0. 

Definition 4 We 8a^ t/xat a family of sets Sf fulfills condition (I) if for all 
S0, Su S2 e Sf, if S0r\ Sx = 0 and S0 n S2 = 0 t/zen elt/zer St n S2 = 0 or S^ a S2 

or S2 c= Sj. 

Definition 5 We say that a family of sets Sf fulfills condition (T (K) ) if for each 

set U e Sf there is 

\{VeSf: V cz U}\< K 

Denote by A Sf a family consisting of all finite intersections of subfamilies in Sf. 

Theorem 2 Let K be an uncountable regular cardinal number. Let Sf be 
a family of sets of cardinality greater than or equal to K which fulfills conditions 
(I) and (T(K)). Then either there exists a linked family Z a Sf of cardinality K or 
there exists a family Z a Sf of cardinality K consisting of pairwise disjoint sets. 

Proof, Let Sf be a family of sets which fulfills assumptions of our theorem. 
Without the loss of generality we can assume that \Sf\ = K. 
Let {A,: y < K} well-order A Sf. 
Since each of two sets are disjoint or have nonempty intersection we can define 
a partial ordering on a set 

& = {y < K:A7E /\Sf}. 

by inclusion between elements of A Sf. Then 

y and /J are compatible iff Ay r\ Ap ^ 0 

and by analogy 

y and /? are not compatible iff Ay n Ap = 0. 

Let 

A = {ye0>:AyeSf}. 

Since the family Sf fulfills conditions (I) and (T(K)) hence A fulfills conditions (I) 
and (T(K)) too. According to theorem 1 we receive our claim. • 
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Let ^ b e a family of sets. Then 

c(Sf) = 8uF{|v4|: A is a cellular family in Sf} + co. 

Corollary 1 Let K he an uncountable regular cardinal number. Let Sf be 
a family of sets of cardinality greater than or equal to K which fulfills conditions 
(I) and (T(K)). If c(/\Sf) < K, then for each family si c Sf of regular cardinality 
\A\ > c( A Sf) there exists S£ cz si which is linked and \S£\ = \si\. 

Proof. Let Sf be a family of sets which fulfills conditions (I) and (T(K)) and let 
si cz Sf be a subfamily of Sf. Then si fulfills conditions (I) and (T(K)) too. Hence 
by theorem 2 there exists a linked subfamily Sf cz si such that \Sf\ = \si\. • 

Now we will be considering weakly independent families (compare [7]). Their 
existence is determined by a mapping from topological space onto the Cantor 
cube. 

Definition 6 A family {[^,A\): £ < a} of ordered pairs of subsets of X such 
that A\ n A\ = 0 for £ < a is called a weakly independent family (of length a) if 
for each d;, ( < a with £ ^ £ we have A[ n A{ •=£ 0, where ij e {0,1}. 

Theorem 3 Let Sf be a family of sets which has the following properties: 
(i) Sf fulfills condition (I); 

(ii) Sf fulfills condition (T(K)); 
(Hi) for each U e Sf there is X\U e Sf. 
Then for each regular cardinal number K such that \Sf\ > K > c(Sf) there exists 
a weakly independent family in Sf of cardinality K. 

Proof, (compare [9]). Let ^ be a family of sets which has the properties 
(i)-(iii). According to theorem 2 there exists a linked family Si cz Sf such that 
\3&\ = K. Consider a family 

r£ = {X\BeSf:Be^). 

Notice that the family c€ has cardinality K (because | ^ | = K). According to 
theorem 2 there exists a linked subfamily <€' cz c€ of cardinality K. Denote six = 
= {Be Si : X\B e <#'} and $x == # ' . Let order the family ^x. This way the family 

^ , is ordered and 
(1) Ay n By = 0 for all Ay e six and By e Mx\ 
(2) By = AAA. for all y < K. 

Let (A],BX) be the first pair of a weakly independent family. 
Consider the sets 

Ux = {Ba e ^x : Ax n Ba = 0 and a # 1} - {Ba e &x : Ba a X\AX and a ^ 1} 

and 

Vx = {Aa e^x:AanBx=0 and a ^ 1} = {Aa e six : Aa cz X\B{ and a ^ 1}. 
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Denote U\ = {a < K : Ba e [/,} and V[ = {a < K : Aa e Vx}. According to condi
tion (T(K)) there is \U{\ < K and 1̂ 1 < K. Thus \U\\ < K and \V[\ < re. 

Suppose that for some /? < K a weakly independent family 

{(A9Ba):a< P} 

and the families s/a9 Ma have been defined. For each a < [1 and for each selector 
ia defined on the weakly independent family {(A%9 B%): £ < a} families 

ia{(Az9Bz):£ < a} u ,<, 

and 

ia{(Az9Bz):£ <a}Kjma 

are linked. 
For each a < /? consider the sets 

Ua = {B^ e 3ta:AanB^ = (/i and £ # a} = {B, e^a:B^cz X\Aa and £ # a} 

and 

F a = { 4 e . « / « : X̂  n Ba = 0 and ^ ^ a} = {A^e sta: A^ a X\Ba and f # a}. 

Denote Ua = {£ < K : B^ e Ua} and Va = {£ < K : A% e Va}. 
Consider a set 

T=K\\J{WUV;:«<P}. 

Since | Ua\ < K and | Va] < K for each a < /;, hence 

lU{£/ auV-a <£}|</< 
and then 

|T| = | / c \ U { ^ u V - a < / , } | = K . 

Consider families 

stfp = {A,, e s$x : a e T} 

and 

Sip = {BaeMx :aeT}. 

Let take the smallest ae T; name it /?. Then the pair (Afh Bp) is the next pair of 
a weakly independent family. The proof is complete. • 

Definition 7 A family {(A%9 B%): £ < a} of ordered pairs of subsets of X, such 
that A{ n B^ = 0 for £ < a is called an independent family (of length a) if for 
each finite subset F a a and each function i: F -> {— 1, + 1} we have 

n{^)A4:^eF}#0 
(where (+1)A( = A£,(--T)A* = B^). (compare [7]). 
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Definition 8 A family of sets Sf is said to be binary if for each finite subfamily 
M cz Sf with f]M = 0 there exist A9B e M such that A n B = 0. (compare 
[4]). 

Corollary 2 Let X be a compact zero-dimensional space. Let Sf be a family 
consisting of clopen sets which has the following properties: 

(i) Sf is a binary family; 
(ii) Sf fulfills condition (I); 

(iii) S^ fulfills condition (T(K)); 
(iv) for each U e Sf the set X\U e Sf. 
Then for each regular cardinal number K such that \Sf\ > K > c(Sf) there exists 
an independent family in Sf of cardinality K. 

Proof. Let us notice that if in theorem 3 we assume that the family Sf is 
moreover binary we obtain a family of cardinality K which is independent family 
in the sense of definition 7. • 

Let {X^: ex e J} be a family of topological spaces with subbases S (Xa) c 0* (Xa); 
a e J. Then by 

X = '[\{Xa:aeJ} 

we denote the Cartesian product of topological spaces Xa; a e J. 
Let na: X -> Xa be a projection on a-axis. Let 

{n-](U): UeS(Xa); aeJ} 

be a canonical subbase of X. 
The proof of theorem below is obvious. 

Theorem 4 Let {Xa: a e J} be a family of topological spaces and let 
S(Xa) cz SP(X)j be subbases of X^ for oce J which fulfill conditions (I) and (T(K)). 
Then the canonical subbase 

S(X) = {^l(U):UeS(Xa);aeJ} 

of the Cartesian product X = [~] {Xa: a e J} fulfills conditions (I) and (T(K)). 
Let {0,1} be a two-point set with a subbase consisting of two one-point sets {0} 

and {1}.Obviously the subbase fulfills conditions (I) and (T(K)). 

Let Tbe an infinite set. Denote the Cantor cube by 

D' = {p:p:T-+ {0,1}}. 

For s cz T, i:s -* {0,1} we will use the following notation 

H[ = {peDT:p\s = i}. 

The family 

PI = {Hs: s c T, \s\ < a and i e {0,1}5} 
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is a canonical base for the Cantor cube and the family 

& = {Hfs: s c T, |8| = 1 and i e {0?1}S} 

is a canonical subbase for topology on the Cantor cube. 

Corollary 3 A canonical subbase of the Cantor cube DK fulfills conditions (I) 
and (T(K)). 

Proofc According to theorem 4 and previous remark we receive our claim. • 

Let observe that 

Theorem 5 Let X be a space for which there exists a surjection 

f:X -> DK 

where DK is the Cantor cube. Let SP be the canonical subbase of DK and let 

tf = {f-1 (Hi): Hi e&). 

Then the family Ji? fulfills conditions (I) and (T(K)). 

Moreover the family 34? has the following properties: 
(i) 34? is a binary family; 

(ii) for each U e 3f the set X\U e 34? 

Now the main theorem is an easy consequence of the previous theorems. 

Corollary 4 A compact zero-dimensional space X can be mapped onto the 
generalized Cantor discontinuum DK if and only if there exists a binary family £f, 
(where \Sf\ > K > c[if)) consisting of clop en subsets of X closed with respect to 
complements which fulfills conditions (I) and (T(K)). 
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