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Received 30. March 2008 

A step-function is any real-valued function whose range is (at most) countable. We 
discuss some measurability properties of step-functions formulated in terms of extensions 
of measures. The case of invariant (quasiinvariant) measures is considered especially. 
We show that this case essentially differs from the case of ordinary measures. 

Let £ be a nonempty set and let f be a function acting from E into the real line 
R. 

We recall that f is a step-function if the range of / is (at most) countable. 
Clearly, every step-function / : E -» R produces a countable partition 

{Xt:iel}= {rl(t):teran(f)} 

of E. Conversely, let {X : i e 1} be an arbitrary countable partition of E. We shall 
say that a step-function / : E -> R is associated with this partition if the following 
relations are satisfied: 

(a) the restriction of / to any set X\ is constant; 
(b) the restriction of / to any selector of {X : i e 1} is an injection. 
It is well known that step-functions with additional properties play an important 

role in many topics of mathematical analysis, especially, in those ones which are 
connected with various kinds of approximations. For instance, if E is equipped 
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with a n-finite measure /!, then /^-measurable step-functions are necessary for 
introducing the class of /i-integrable real-valued functions. Also, step-functions are 
essentially used in some questions concerning the sup-measurability of functions 
of two variables, and so on. 

Below, the symbol / j * (respectively, /i*) denotes the outer measure (respectively, 
the inner measure) associated with a n-finite measure /i given on E. 

Let / : E -> R be a /i-measurable step-function. It can easily be verified that, for 
any subset T of R, the pre-image f~](T) is a /i-measurable subset of E. It is 
natural to conjecture that this property is tightly connected with the notion of 
a step-function. Indeed, in the sequel it will be shown that a similar measurability 
property enables to characterize step-functions in terms of extensions of measures. 

We shall say that a function / : E -> R is strongly measurable with respect to 
\i if, for any T c R , the pre-image f " 1 (T) is a //-measurable subset of E. 

One can readily check that, for any step-function / : E -* R, the following three 
relations are equivalent: 

(c) / is measurable with respect to \i\ 
(d) / is strongly measurable with respect to /x; 
(e) for each t e R, the pre-image f~x (t) is measurable with respect to JI 
For our further purposes, we need two auxiliary propositions. 

Lemma 1. Let \i he a ofinite measure on E and let [Xt: i e I) be an arbitrary 
disjoint family of subsets of E. Then there exists a measure jif on E extending \i and 
satisfying the relation 

{Xt :ie I) a dom(//). 

In particular, if [Xt: ie I) is a countable partition of E, then every step-function 
associated with {Xt: ie I) becomes measurable with respect to fif. 

For a simple proof of this lemma, see [1], 
We recall that a subset T of R is universal measure zero if, for any nonzero 

n-finite diffused Borel measure v on R, we have v*(T) -= 0, where v* denotes the 
outer measure associated with v. The next classical result is well known in 
descriptive set theory. 

Lemma 2. There are uncountable universal measure zero subsets of R. 

Note that constructions of uncountable universal measure zero subsets of R were 
presented by various authors and different ideas were used in those constructions 
(the existence of a canonical decomposition of a proper analytic set into its Borel 
components, Marczewski's characteristic function, Ulam's transfinite matrix, Fu-
bini type argument etc.). For more details, see, e.g., [2], [7], [10], [11], [15]. 

Theorem 1. Let E be an uncountable set and let f: E -> R be a function. The 
following two assertions are equivalent: 
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(1) f is a step-function; 
(2) for any a-finite measure ft on Ey there exists a measure jif on E extending 

/i and such that f is strongly measurable with respect to p!. 

Proof, (1) => (2). Assume that (1) is valid and consider an arbitrary a-finite 
measure fi on E. Let {if: i e /} denote the countable partition of E produced by / 
According to Lemma 1, there exists an extension /nf of /! such that 

{¥: iel} cz dom(/if). 

Obviously, / is strongly measurable with respect to // , so (2) is true. 
(2) => (1). Assume that (2) is valid and let us show that / is a step-function. 

Suppose otherwise, i.e. card(f) > cou Clearly, we can find a set X cz E such that 
f\X is an injection and card (ran (f\X)) = cou Consider a complete diffused 
probability measure ft on E which is concentrated on X (the existence of \i is 
obvious). By virtue of (2), there exists an extension // of /i such that / becomes 
strongly measurable with respect to // . Now, for any set Z cz ran(f\X)9 let us put 
v(Z) = J U ' ( / _ 1 ( Z ) ) . So we get a diffused probability measure v which is defined 
on the family of all subsets of ran(f\X). From the existence of v we easily 
conclude that there is no universal measure zero subset of R whose cardinality 
equals card (ran (f\X)) = cou But this contradicts Lemma 2. 

Under some additional set-theoretical assumptions, Theorem 1 can be strengthe­
ned. For instance, let us consider the following set-theoretical assertion: 

(*) Any uncountable subset of R contains an uncountable universal measure 
zero set. 

It can easily be seen that (*) is implied by the conjunction of Martin's Axiom 
with the negation of the Continuum Hypothesis, so (*) is consistent with ZFC 
theory. On the other hand, the existence of a Sierpiriski subset of R readily implies 
that (*) is false. So, (*) is independent of Z F C 

The next statement is valid. 

Theorem 2, Suppose (*). Let E be an uncountable set and let f: E —> R be 
a function. The following two assertions are equivalent: 

(1) f is a step-function; 
(2) for any o~finite measure ft on E, there exists a measure fif on E extending 

\i and such that f is measurable with respect to fif. 

Proof. The argument is very similar to the proof of Theorem 1. The implication 
(1)=>(2) does not need an additional set-theoretical assumption and can be 
established in the same manner as above. Assume now that (2) is satisfied and 
show that / is a step-function. Again, suppose otherwise, i.e. card (ran (f)) > cou 
According to (*), there exists an uncountable universal measure zero set 
Y cz ran(f). Clearly, we can find a set X cz E such that ran(f\X) = Y and the 
restriction f\X is an injection. Consider in E an arbitrary complete diffused 
probability measure \i which is concentrated on the set X. By virtue of (2), there 
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exists an extension \JL of [i such that / becomes //-measurable. Now, for every 
Borel subset Z of Y9 let us put v(Z) = fi'(f~~l (Z)). A straightforward verification 
shows that v turns out to be a Borel diffused probability measure on Y9 so we obtain 
a contradiction with the fact that Y is a universal measure zero subset of R. This 
ends thti proof of the theorem. 

In particular, Theorem 2 implies that it is impossible to define, within ZFC 
theory, a non-step-function / : E -> R having the measurability property (2). 

Now, let us consider step-functions for those nonzero ci-finite measures on E9 

which are invariant (or, more generally, quasiinvariant) with respect to an 
uncountable group of transformations of E9 which acts freely in E. Here the 
situation is absolutely different. To see this, take an arbitrary uncountable set 
E with cf(card(E)) = co. Let G be a group of transformations of E acting freely 
in E and such that card(E) = card(G). Fix a countable partition {X : iel) of 
E satisfying the relations card(Xi) < card(E) for all iel. Let f:E -» R be 
a step-function associated with this partition. It is easy to verify that / cannot be 
measurable with respect to a nonzero a-finite G-quasiinvariant measure on E. 

To give more deep examples of this kind, let us introduce two definitions. 
Let £ be a set and let G be a group of transformations of E. 
We say that a set X cz E is G-absolutely nonmeasurable if, for any nonzero 

n-finite G-quasiinvariant measure \i on E9 we have X <£ dom (//). 
We say that a set Y cz E is G-absolutely negligible if, for every cr-finite 

G-invariant (G-quasiinvariant) measure \i on £, there exists a G-invariant (G-qua­
siinvariant) extension \JL of \i such that / / (Y) = 0. 

Some properties of G-absolutely nonmeasurable and G-absolutely negligible 
subsets of E are discussed in [5] and [6]. 

In a particular case, where E is an uncountable commutative group (identified 
with the group G of all its translations), the following statement is valid. 

Lemma 3. If (G, + ) is an uncountable commutative group (or, more generally, 
an uncountable solvable group), then there exists a G-absolutely nonmeasurable 
subset of G and there exists a countable partition of G into G-absolutely negligible 
sets. 

For the proof of Lemma 3, see [5] and [6], From this lemma we get two 
examples. 

Example 1, Let X be a G-absolutely nonmeasurable subset of an uncountable 
commutative group (G, + ) and let fx be its characteristic function (which trivially 
is a step-function). Then/x is nonmeasurable with respect to any nonzero a-finite 
G-quasiinvariant measure on G. 

In other words, Example 1 states that there are two-valued functions absolutely 
nonmeasurable with respect to the class of all nonzero n-finite G-quasiinvariant 
measures on G. 
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Example 2. For any uncountable commutative group (G, +) , consider its 
countable partition {Y:iel} into G-absolutely negligible sets. Let f:G~»R 
denote any step-function associated with this partition. Then: 

(1) f is nonmeasurable with respect to every nonzero n-finite G-quasiinvariant 
measure on G; 

(2) for each t e R, the set f~~x (t) is G-absoluieiy negligible. 
Indeed, (2) is obvious. To see (1), let us suppose that / is measurable with 

respect to some nonzero a-finite G-quasiinvariant measure p. Then all sets Yu 

being the pre-images of certain singletons, must be ^-measurable. Since all of them 
are also G-absolutely negligible, we must have p(Ytj = 0 whence it follows that 

fi(G) = fi(u{Y:i e /})= I { ^ ) : i e / } - - 0 , 

which yields a contradiction. 
In other words, Example 2 states that there exist step-functions / on an 

uncountable commutative group (G, +) , which are absolutely nonmeasurable with 
respect to the class of all nonzero n-finite G-quasiinvariant measures on G, but 
each of the pre-images f~] (t) (t e R) is good for extending any r/-finite G-invariant 
(G-quasiinvariant) measure p on G. 

However, there are certain types of step-functions which are good for obtaining 
invariant (quasiinvariant) extensions of invariant (quasiinvariant) measures. To 
describe such functions, return to the general situation when a set E is given with 
some group G of its transformations. For our purpose, the notion of an almost 
G-invariant subset of E turns out to be helpful. This notion was first considered by 
E. Marczewski [13] (see also [9]). It plays an important role in various topics of 
the theory of invariant and quasiinvariant measures (see, e.g., [3], [4], [5], [12], 
[13]). There are two definitions of almost invariant sets, which are rather similar 
to each other. 

A set Z cz E is called to be almost G-invariant in E (in the set-theoretical sense) 
if card(g (Z) A Z ) < card(E) for each g e G. 

If p is a measure on £, then a set Z cz E is called to be almost G-invariant with 
respect to fi if p* (g (Z) /\Z) = 0 for each g e G. 

Notice that if a set Z cz E is almost G-invariant with respect to p, then any 
measurable hull of Z is also almost G-invariant with respect to p. 

The next lemma is probably well known (cf. [3], [4], [12]) but, for the sake of 
completeness, we present its short proof here. 

Lemma 4. Let E be an uncountable set, G be a group of transformations of 
E with card(G) < card(E), and let I be a nonempty countable set. Then there 
exists a partition {Xt :iel)ofE consisting of almost G-invariant subsets of E such 
that card(Xi) = card (E) for all i e I. 

Proof. We may assume, without loss of generality, that card(G) = card(E) and 
G acts transitively in E. Let a denote the least ordinal for which card(a) = card(E) 
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and jet x be a fixed point of E. An increasing (by inclusion) transfinite sequence 
(G*: £ < a} of subgroups of G can easily be constructed satisfying the following 
conditions: 

(1) u {Q : £ < a} = G; 
(2) vard(G$) < card(£) + co for any £ < a; 
(3) G* (x)\u {Gr(x): £ < £} # 0 for any £ < a. 
Now, let { 5 : i e /} be a partition of a such that card (St) = card (a) for each 

i e J. Putting 

X / = u { ( Q ( x ) \ u { G c ( x ) : C < f } ) : { e a } ( ieJ) , 

we come to the required partition {A"/: i e /} of £. 

Lemma 5. Let /i be a o-finite G-quasiinvariant measure on E and let f: E -> R 
be a step-function such that, for any t e R, trie set / _ 1( t) is almost G-invariant 
with respect to \i. Then, for any g e G, t/ze functions f and f Q g are equivalent 
with respect to \iy i.e. the equality 

fi*{{xeE:f{x)^{fog){x)})=0 

holds true. 

Proof, Denote by [Xi :ie /} the countable partition of E associated with / It is 
clear that 

{xeE:f{x)^{fog){x)}czKj{Xing-x{X^:i€fjeI,i^i}. 

Since the relations 

li* (g~x {Xj) AXj) = 0, Xi n Xj = 0 (i # j) 

are satisfied, we must have 

H*{Xtng-l{Xj)) = 0. 

From this, taking into account the countability of /, we immediately obtain the 
required result. 

Theorem 3* Let E be a set with cf(card(E)) > a), let G be a group of 
transformations of E which acts freely in E and whose cardinality is equal to 
card(E), and let [Xt: i e 1} be a countable partition of E into almost G-invariant 
sets. Denote by f: E -> R any step-function associated with this partition. Then, 
for every a-finite G-invariant (G-quasiinvariant) measure \i on E, there exists 
a G-invariant (G-quasiinvariant) measure pi' on E such that: 

(1) ft' extends \i; 
(2) f is measurable with respect to \JL . 

Proof, Since / is countable, we may suppose that either / = {1,2,..., w} or 
1 = 0). For any i e I, denote by tt the value of / at some point of Xt. 
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Let \i be an arbitrary cr-finite G-invariant (G-quasiinvariant) measure on E. Since 
cf(card(E)) > OJ, we may assume, without loss of generality, that any set Z c £ 
with card(Z) < card(E) belongs to the domain of \i and, consequently, \i{Z) = 0. 
Therefore, all sets Xx (i e I) become almost G-invariant with respect to /L 

For each index i e J, denote by Yt a /x-measurable hull of Xt and define 

Z , = Yi\u{^:j<i}. 

Notice that all sets Zt are pairwise disjoint, /i-measurable and almost G-invariant 
with respect to /L Moreover, we have E = u(Zt:iel}. Let / : E -> R be 
a step-function whose value on every nonempty set Zt is equal to tt. As established 
in paper [1], 

H.{{xeE:f{x)¥:f'{x)})=0. 

But here we need a much stronger property of the set 

V={xeE:f{x)*f'{x)}. 

Namely, we must show that, for any countable family {gk: k < co) <= G, the 
equality 

^(u{gk(V):k < co})- 0 

holds true. Indeed, the inclusion 

u {gk(V): k < co} c Ku {{xe E:(fo g^)(x) * f(x)} :k<co} 

u {{xe E:(fo g£l)(x) ± f'(x)}:k < co} 

is easily verified. Taking into account the relation n*(V) = 0 and applying 
Lemma 5, we claim that /^(u {gfe(^): k < (I)}) = 0. 

Thus, the set V generates a G-invariant cr-ideal of subsets of E9 all whose 
members are of inner /^-measure zero. This circumstance enables us to extend the 
given measure fi to a G-invariant (G-quasiinvariant) measure \i on E such that 
\JL (V) = 0 (cf. [13]). Since the function / is /^-measurable, it is also ^'-measurab­
le. In view of the equality V= {xeE:f(x) # / ' (x )} 5 we conclude that / is 
//-measurable, too. 

Remark 1. Actually, the preceding argument shows that if we have a a-finite 
G-invariant (G-quasiinvariant) measure \i on E and a step-function / : E -» R such 
that all pre-images f~] (t)(t eR) are almost G-invariant with respect to \i9 then 
there exists a G-invariant (G-quasiinvariant) extension // of \i for which / becomes 
//-measurable. 

In connection with Theorems 1 and 2, the following question naturally arises: 
does there exist a real-valued function / , : £ - > R with card (ran (f)) > co such 
that every a-finite G-invariant (G-quasiinvariant) measure \i on E admits a G-in­
variant (G-quasiinvariant) extension for which / becomes measurable? 
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To answer positively to this question, we need the next auxiliary proposition. 

Lemma 6. Let E be a set and let G be an uncountable group of transformations 
of E acting freely in E. Then there exists an uncountable G-absolutely negligible 
subset X of E. 

Proof* If card(G) > coi9 then any set X a E with card(X) = CO] is G-absolu­
tely negligible in E. Suppose now that card(G) = cox and fix a point xeE. Let 
{Gf: £ < cox} be an increasing (by inclusion) <orsequence of subgroups of 
G satisfying the following relations: 

(a) u ( G { : ^ < a ) 1 } = G ; 
(b) card(G^) < co for each £ < co\9 

(c) Gf(x) \u {Gc(x): C < c;} # 0 for each £ < a>,. 
Let X be a selector of the family of nonempty sets 

{ ( G , ( x ) \ u { G c ( x ) : C < ^ } ) : ^ < c o 1 } . 

Then it is not difficult to verify that X is a G-absolutely negligible subset of E (cf. 
[5], [6]). Since X is also uncountable, we get the required result. 

The next statement readily follows from Lemma 6. 

Theorem 4, Under the assumptions of Lemma 6, there exists a function 
f : E -> R such that: 

(1) card(ran(f\)) = coh
m 

(2) for any a-finite G-invariant (G-quasiinvariant) measure ft on E, there exists 
a G-invariant (G-quasiinvariant) extension of \i for which f becomes equivalent 
to zero and, consequently, becomes measurable. 

Proof* Using Lemma 6, we can find a G-absolutely negligible subset X of 
E with card(X) = cox. Let f : E -> R be a function defined as follows: f\ \X is 
injective and fx\{E\X) is equal to zero. A straightforward verification shows that 
f satisfies relations (1) and (2) of Theorem 4. 

Comparing Theorem 2 with Theorem 4, we see that the case of ordinary 
measures essentially differs from the case of invariant (quasiinvariant) measures. 
Moreover, in view of Theorem 3, the following natural question arises: how to 
characterize those step-functions f on E which have the measurability property in 
the sense that, for any d-finite G-invariant (G-quasiinvariant) measure /i on E9 

there exists a G-invariant (G-quasiinvariant) extension /u' of /i such that / becomes 
^'-measurable. 

Example 3. Let f be a step-function of Theorem 3 such that ran (f) n {0} = 0 
and let f be a function of Theorem 4. We put f2 = / + / , . Then, for any nonzero 
cr-finite G-invariant (G-quasiinvariant) measure fi on E9 there exists a G-invariant 
(G-quasiinvariant) extension fif of ji such that f2 is //'-measurable and, at the same 
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time, f2 never becomes equivalent to zero (with respect to //'). In addition to this, 
if card(E) = CDX and the Continuum Hypothesis holds, then the set ran (f2) cz R can 
be as bad as possible. 

Remark 2. If we deal with finitely additive G-invariant normalized measures 
on £, then it is reasonable to call a step-function any function / : E -» R whose 
range is finite. In this case, measurability properties of f essentially depend on the 
algebraic structure of G. For instance, if G is amenable and \i is an arbitrary finitely 
additive G-invariant normalized measure pi on E9 then, according to von Neu­
mann's extension theorem, every step-function on E becomes measurable with 
respect to an appropriate universal finitely additive G-invariant extension /J! of /L 
On the other hand, if E = G and G admits paradoxical decompositions, then it is 
obvious that there exist step-functions on E which are absolutely nonmeasurable 
with respect to the class of all finitely additive left G-invariant normalized 
measures on E (cf. Example 1). For more details about paradoxical decomposi­
tions, see e.g. [8] and [14]. 
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