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Abstract. Despite the popularity of storing mathematical objects on the
web, searching for mathematical expressions is extremely limited. Con-
ventional retrieval systems are inadequate for mathematical expressions,
because they are not tuned for text with complex structures that include
only a few distinct terms. Surprisingly current approaches to the problem
of retrieving mathematical information do not include a formal definition
of the similarity between two expressions, and thus fail to find many
relevant documents.

In this paper, we present steps to advance mathematics retrieval to
incorporate best practices from modern information retrieval. We first
review encodings of mathematical expressions currently found on the web,
and present the results of our efforts to create an experimental testbed. We
formally define the similarity between two mathematical expressions and
present the problem of searching for similar mathematical expressions.

1 Introduction

Two text documents are distinguished primarily by the words they contain.
Therefore conventional text retrieval systems emphasize their ability to find
documents that include certain words and consider the structures in which
the words are used secondarily or as a filter. On the other hand, mathematical
expressions are objects with complex structures consisting of few distinct
mathematical symbols, and they are distinguished at least as much by their
structures as by the choices of symbols. As a result, current text retrieval
systems cannot effectively search for mathematical expressions. Even the few
existing mathematical search systems either completely ignore the structure of
expressions, or perform very simple searches only.

To publish, process, and retrieve mathematical expressions, their structure
should be encoded as well as their symbolic content. Despite the existence
of standards for encoding mathematical expressions, e.g. MathML, our
experiments show they are still rarely used to publish mathematical knowledge
on the web. Other techniques, e.g. putting the image of an expression in a web
page, are still widely used. As a result, recognizing, processing, and retrieving
them is a nontrivial task.

In part because of the above difficulties, the problem of mathematical
expression retrieval is not effectively addressed. The research in this field is
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still in the preliminary stage. Even the basic concept of similarity between two
mathematical expressions is not formally defined.

In this paper we first describe various encoding schemes for mathematical
expressions in Section 2. Then, we present our experience in gathering expres-
sions from the web, with some statistics about the published mathematical data.
In Section 4 we formally define the similarity between two mathematical ex-
pressions. Based on our definition, we review and classify current mathematical
search systems and propose a new approach.

2 Encoding mathematical expressions

Encoding mathematical expressions is a crucial precursor for designing
a framework for mathematics retrieval. In order to collect and process
mathematical expressions on the web, detailed knowledge about all possible
encoding schemes is required. Naturally we prefer an encoding scheme that
allows more efficient retrieval. In this section we briefly describe some encoding
schemes for mathematical expressions.

2.1 Interchange Formats

Interchange formats are encoding schemes with the capability to create, convert,
and manage data on the web.

MathML Mathematical Markup Language (MathML) [8] is a W3C recom-
mended XML application for describing mathematical notations. Since MathML
is an application of XML, its syntax is governed by XML syntax rules. A ma-
thematical expression has two different, though related, aspects: the visual
appearance and the mathematical content. Based on this observation, MathML
defines two standard markup frameworks for representing mathematical ex-
pressions: presentation markup and content markup. In Presentation MathML,
the two dimensional visual appearance of an expression is encoded. Content
markup deals with the functional structure of mathematical expressions.

OpenMath: OpenMath [7] is a standard for representing mathematical
expressions, allowing them to be exchanged, stored in databases, or published
on the World Wide Web. OpenMath was proposed to provide a standard
way of communication between mathematical applications, so unlike MathML,
OpenMath is solely concerned with the content of mathematical expressions
and not its presentation form.

2.2 Typesetting formats

Typesetting formats, such as I£IEX, are the encoding schemes used by
typesetting systems to express mathematical expression. They are not able
to encode the meaning of an expression, but instead they offer a set of symbols
and provide ways to put them together in an expression.
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2.3 Syntactic computation formats

Symbolic computation software packages, e.g. Maple [4] and Mathematica [5],
define languages that offer a syntax for encoding mathematical expressions.
These formats are mostly designed to encode the semantics of algebraic
equations and are limited to a set of predefined algebraic symbols.

3 Mathematics on the Web

In this section we present the results of searching for some samples from the
Web. Starting from Wikipedia [2] and Wolfram [3] root pages, we crawled a set
of web pages totaling 60 GB in size.

We extracted only 4,000 mathematical expressions encoded with MathML
(content and presentation), 3000 of them from the MathML test suite by W3C.
We conclude that although MathML is considered as a standard for publishing
mathematical information on the web, it is still not popular.

Some main publishers of mathematical information including Wikipedia
and Wolfram, present mathematical expressions as images. They also describe
the expressions with pieces of TgX, but since these pieces are used just to
describe the expressions, there are many TgX errors in them. We could collect a
set of 300,000 expressions encoded this way [1]. After refining the expressions
to fix their TgX errors, using a TgX to presentation MathML translator [10], we
translated the collected expressions into MathML.

To get an estimate of the average size of mathematical expressions, we
counted the number of nodes in each MathML tree. In Figure 1 the number of
expressions for each size from 1 to 250 is shown. In Figure 2, the cumulative
distribution function of expressions’s sizes is shown. It seems that the size of
mathematical expressions on the Web follows an exponential distribution.
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Fig.1: The number of expressions of size n.
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Cumulative frequency

Fig.2: The percentage of expressions with size at most n.

As the figures show, about 30% of the collected samples have very small
sizes (smaller than 10 nodes). They are usually very simple expressions like x?,
and 1 + 2. The majority of the expressions have sizes between 10 and 130 nodes.
These are some examples:

5 n_ Jeéib @b/, if di(b) > ei(b’),
gi(lbebd’) = {b @ &b, if pi(b) < ei(b’),

and
VY =YY, ay =y, oyt = pyta, oot 4 pyty = afa+ p lyty =1,

Expressions with sizes larger than 150 nodes are very rare. Examples of such
large expressions include:

t= 1,383 _ga a4 _1_ i3\ 3/ _a_ /a4 P
(2"’12 TV Tty tl—2—13 2 o
_1_3¥3) 3/ _a a4 1,583 _a_ /4> P
(2 12) R Vi il v o S 2 r T
and
b + x2 _  ax? 4+ _az xy _ _axy xz _ __ax
1 T 3 r(r42)? r(r+z) 3 (r+z)? 3 r(r+z)
o= yx _ _ayx byu _ _ay? | _az yz_ _ay
ik v 3 r(r+2)? T 3 r(r+2z)? r(r+z) 13 r(r+z)
zx | _ax zy 4 _ay b4 z2
T3 r(r+z) T3 T(r+z) T T3

Our observations show that large expressions are usually composed of
several smaller expressions in the form of matrices or arrays.
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4 Similar expressions and mathematics retrieval

The definition of similarity between two mathematical expressions is a key
concept that significantly affects a mathematical information retrieval system,
but a formal definition of similarity is missing in the literature. Here we formally
define the similarity between two mathematical expressions.

We mentioned earlier that a mathematical expression can be viewed from
two perspectives, its content, i.e. the meaning, and its presentation, i.e. the
appearance. A fundamental question is whether the content or the presentation
should be considered while searching for a set of similar expressions to a
mathematical expression.

Usually there are many different ways to represent a mathematical concept.
In different fields of math, different symbols might have the same meaning.
Often numbers and names of variables are less important or irrelevant to
meaning. If two expressions have different appearance but the same meaning
(i.e. synonymy), they should be treated the same. In this way the search results
are more comprehensive, yielding a high recall factor. On the other hand,
occasionally different expressions with the same appearance have different
meanings (i.e. polysemy), which can yield low precision. These factors favour
content-based retrieval over retrieval based on presentation form.

Despite these advantages, however, the content based approach has
two severe shortcomings. First, as different fields of science evolve, new
mathematical concepts and symbols are defined. Thus creators and users
of mathematical expressions must agree on a common dictionary of terms.
Updating such a dictionary to include definitions of new symbols or new
definitions of existing symbols is a nontrivial task and will almost certainly
need manual management. Second, most mathematical resources on the Web
(including presentation MathML, TgX, PostScript files, and image-in-HTML) are
presentation-based encodings of mathematical expressions and provide little
information about meaning. In this approach there is no need to specify (or
even understand) the meaning of each symbol, and document authors will be
loathe to spend the time needed to add the extra semantics required for better
retrieval.

Based on the above discussion, we conclude that presentation-based search
is more robust for dealing with today’s information on the Web. So by default
we assume no information about the content of an expression is provided.
Since MathML is widely accepted as a standard for publishing mathematical
information, we base our definitions on the assumption that all expressions are
encoded with presentation MathML.

Definition 1. For an expression X, Tx(V, E) is the XML tree corresponding to the
presentation MathML encoding of X. V and E represent the sets of nodes and edges of
Tx respectively.

In the remainder of this paper, we assume an expression, X, and its
corresponding tree, Tx, are the same entities, and we use X and Tx inter-
changeably. The terms “expression” and “tree” (also “subexpression” and
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“subtree”) are also used interchangeably. We also assume the root of a MathML
tree has a unique label which is the same for all trees.

Definition 2. Given a tree, T(V, ), to each node v € V we assign a weight, w(v),

which is by default 1. We also define a weight function w(T) = Y_ w(v).
vev

The above naive weighting scheme, i.e. assigning a weight of 1 to each node,
can be optimized, e.g. be replaced with a heuristic waiting scheme, to achieve
better results.

Definition 3. Given a labeled ordered tree, T(V, E), a part of T is a connected labeled
ordered tree comprising a node in T and some of its descendants in T. A complete part
of T is a subtree comprising a node in T and all of its descendants.

Definition 4. Two trees match if they have the same structure and the corresponding
nodes have the same labels. Given two trees, T and U, U <« T means U matches one or
more parts of T.

Definition 5. Given two labeled ordered trees, T, (V1, 1) and T,(V>, E>), a common
part, C, is a tree such that C <« Ty and C < Tp. A common part of Ty and T, is a
common subtree if it matches a complete part of Ty and a complete part of To. The
common part set is a set composed of all common parts and is denoted T, () T,.
We define the weight of Ty (\ Tz to be the maximum of the weights of its members,
w(MNT) =max{w(c),c € TN T2}

Definition 6. To each node in an expression, depending on its type, a set of attributes
is assigned, e.g. the name of an operator or the value of a number. An attribute can
be significant or insignificant. A significant attribute, e.g. the name of an operator,
contributes in the overall meaning of an expression, but an insignificant attribute, e.g.
a variable’s name, does not. Normalization is the process of removing insignificant
attributes from an expression. An expression is normalized if all insignificant attributes
are removed from it, Figure 3.

To normalize an expression, a set of rules must be defined to specify which
attributes are insignificant. We assume, for example, that by default names of
variables is insignificant. Alternatively, a feature can be added to an encoding
scheme, like MathML, that allows indicating the significance of an attribute
at publication time. Normalization can also be broadened to include some
standardization of mathematical expressions based on equivalence. For example,
we might replace x +y - 0 by x.

Definition 7. For two expressions By and Ey, Sim(Eq, Ey) quantifies their similarity:

w(E1NE2)

Sim(Eq, E2) = m

@

Given two expressions, E; and E,, several possible similarity patterns
between them can be defined:
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<mrow> <mrow>

<VARNAME> + <NUMVAL>

Fig.3: The MathML tree of x + 1 on the left and the normalized tree on the
right.

- Mathematical equivalence: E; and E; are mathematically equivalent if it
could be mathematically proven that they are the same, e.g. x +y, y + x
and x~1, 1.

— Identical: E; and E; are identical if they are exactly the same, down to the
same variable names and numbers.

— Syntactic equivalence: E; and E, are syntactically equivalent if they are
identical after normalization, e.g. sin(x) and sin(y).

— N-similarity: Normalized expressions E; and E; are n-similar if
sim(Ey, Ez) > n, where n is a parametric value that determines a threshold
on the similarity between two expression. N-similarity can be classified into
three categories:

1. Subexpression n-similarity: There is subexpression n-similarity between
E; and Ey, if they are n-similar and a subtree (i.e., a complete common
part) S € Eq[)Ez exists such that w(S) = w(Ei1(Ey), e.g. there is
subexpression similarity between sin(x)? and y/sin(x) for any value of
n < 29—4, Figure 4.

<mrow> <mrow>

<mn>

<NUMVAL>

sin  ( <VARNAME> ) sin ( <VARNAME> )

Fig.4: Normalized MathML trees of /sin(x) and sin(x)>.



44 Shahab Kamali and Frank Wm. Tompa

2. Structural n-similarity: There is structural n-similarity between E;
and E, if they are n-similar and a common part, C, exists such that
Label(root(C)) = Label(root(E;)) = Label(root(E;)) and w(C) =

w(E1 N E2), e.g. there is structural similarity between vx + x? and v2x

for any value of n < 3, Figure 5.

<mrow> <mrow>

<mi>

<VARNAME> : + <NUMVAL>: <VARNAME>

" <VARNAME> <NUMVAL>

Fig.5: Normalized MathML trees of v/x + xZ and v/2x.

3. Irregular n-similarity: There is irregular n-similarity between E; and
E; if there is n-similarity but neither structural nor subexpression n-

similarity between them, e.g. (sin(x) + 1)? and +/(sin(x) + y)

Note that regarding Equation 1, the similarity between two expressions is
highest when they are identical or syntactically equivalent.

Definition 8. Given a mathematical expression, Q, and a set of mathematical
expressions, S, the search problem is to find the k most similar, i.e. regarding Equation 1,
expressions to Q, where k is a parameter that is specified by the user.

5 Current mathematics retrieval systems

In this section we review the architecture of the mathematics retrieval systems
proposed so far and explain the shortcomings of each approach.

5.1 MathWebSearch

MathWebSearch [13] is a search engine for mathematical expressions based
on semantics, i.e. it does not consider the visual appearance of expressions. In
this scheme mathematical expressions are interpreted as prefix forms, i.e. first
the name of a function is presented and then its arguments, e.g. f(x,y). A set
of mathematical expressions is stored in a tree-based data structure, called a
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substitution tree, in a way that the common parts of the expressions are shared.
Each node of this data structure is called a substitution that corresponds
to a function. A substituition also serves as an argument of its parent’s
corresponding function. A mathematical expression could be represented as
paths starting from the root in the tree. The advantage of this approach is that
parts that are in common among multiple expressions are stored only once.
The search for an expression could be performed simply by traversing the
substitution tree, i.e. starting from the root and trying to find the sub-terms of
the queried expression.

MathWebSearch can process and index expressions encoded with content
MathML or OpenMath. The schemes that encode the appearance of expressions,
e.g. presentation MathML and TgX, are not well suited for use by MathWeb-
Search. This is a major drawback because the majority of the mathematical
expressions on the web are encoded based on their appearance. The other
shortcoming of MathWebSearch is that it only supports exact matching between
expressions. It is suggested that while adding an expression to the substitution
tree, all its sub-expressions should also be added as independent expressions.
This can partially address the problem but the number of expressions will grow
exponentially and still there are other similarity patterns that are not covered.

5.2 Searching for integral tables

Einwohner and Fatman [9] propose a data structure and an algorithm for
storing and retrieving symbolic indefinite or definite integrals. In this approach,
many pre-calculated integrals are stored in a table. A requested integral matches
an entry in the table if its integrand agrees with that of the table entry up to a
choice of parameters (e.g. X%H would match X%H, leﬁ, and ﬁ). A match
is sought through a sequence of successive approximate matches, which is
controlled by a set of keys associated with the integrand. Each key is related to
a fragment of the integrand, and is determined on insertion of the integrand
in the table and matched when the table is searched for a given integrand. On
searching, the first key of the queried integrand is looked up in the appropriate
hash-table, yielding a list of acquisition numbers (each acquisition number
uniquely represents an integrand). If the list is empty, the integral is not in the
table. Otherwise, the list of acquisition numbers corresponding to the second
key is intersected with the list of acquisition numbers of the first key. If the
intersection is empty, the integrand is not in the table, otherwise the algorithm
continues similarly with successive keys. The above search strategy is based on
many assumptions about structures of expressions that make its application
limited to specific cases. This is especially a drawback for a mathematical search
engine that is supposed to retrieve recent mathematical information on the web.

5.3 DLMEF search system

The search system for the Digital Library of Mathematical Functions, DLMF [14],
follows two different approaches. In the first approach [16], a textual language,
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TexSN, is defined to normalize queries and the math content of the digital
libraries into canonical forms. After that a search is performed to find the
mathematical expressions that exactly match a query.

In the other approach [17], a mathematical expression is regarded as a
set of mathematical terms, e.g. operators. Following an algorithm based on
the vector space model as used in text information retrieval, the objects are
ranked regarding a given query. The only difference is that instead of term
frequency (tf) and inverted document frequency (idf), other weighting schemes
are considered. This approach treats a mathematical expression as a document
consisting of a set of mathematical symbols and does not take into account its
structure.

5.4 MathFind

MathFind [15] is a math-aware search engine developed at Design Science
Incorporation. The general idea is to encode mathematical expressions as text
objects and use the same techniques for ranking text documents. In MathFind,
a layer is added to a typical text search engine to analyze expressions in
MathML and decomposes each expression into a sequence of text encoded
math fragments that are analogous to words in text documents. No further
details about this search engine and its performance are published.

5.5 Formal math search

The proposals for formal math search [11,6] mostly focus on very detailed and
formal query languages. Each expression is a set of symbols and the expressions
containing a symbol are selected and then intersected using relational database
operations. The structure of mathematical expressions is not considered in this
approach.

6 Challenges in mathematics retrieval

In none of the work to date is the problem of mathematics retrieval clearly
defined. Also none of the proposed approaches cover all the defined similarity
patterns. Many do exact matching only and others do not consider the structure
of mathematical expressions.

Like any information retrieval system, a mathematics retrieval system should
collect mathematical expressions that appear on the Web, it should process and
store them in a data structure, and finally it should process queries and retrieve
and rank expressions based on similarity to a given query.

To collect mathematical expressions, we must harvest them from Web
pages. Detecting mathematical expressions in some cases in a nontrivial task,
e.g. mathematical expressions may be hidden in PostScripti files. To process
collected mathematical expressions, we should translate them into an encoding
scheme that facilitates the indexing and ranking algorithms, e.g. presentation
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MathML. This translation is another challenging task in cases where limited
information about published expressions is provided and there are many
ambiguities, e.g. images of expressions are difficult to process. We also wish to
capture semantic information wherever possible so that the system can perform
better by applying content-based search.

After this step, an indexing algorithm stores the expressions in a data
structure. This data structure should allow fast and accurate retrieval of similar
expressions to a given query. It should also preserve the structure of the
expressions. There is a tradeoff between the size of the index, the speed of the
ranking, and the accuracy of the search, which in part depends on how much of
the structure is preserved. The complexity of directly comparing the structure
of two trees is quite high [12]. Therefore, storing whole trees in the index and
comparing them one by one to a given query is inefficient. On the other hand,
breaking the structure into parts and indexing the parts has the risk of loosing
some structural information. Cases in between that allow fast retrieval and
conserve all structural information result in very large indexes. Considering
these facts, designing the indexing scheme is a critical and nontrivial step.

The performance of a mathematics retrieval engine must be measured not
only with respect to efficiency, but also with respect to effectiveness. Thus an
important part of this research is to design and evaluate ranking algorithms.
The definitions we provide for n-similarity reflect the notion of matching
expressions, but they must be tested to see if they capture humans’ perception
of relevancy in practice. Experiments also need to be conducted to decide how
to weight components of expressions (e.g., should variable names be weighted
less than numbers? should simple operands be weighted less than operators?
does the inclusion of inverse document frequencyi (idf) improve mathematics
retrieval?). Such evaluations requires the creation of a testbed of expressions
together with a widely accepted set of relevancy judgments. Our initial crawling
of the Web is a starting point for such a testbed.

There are other problems to address: dealing with polysemy and synonymy,
allowing embedded text in mathematical expressions (e.g. text comments in an
expression), and supporting more sophisticated query languages (e.g. allowing
a mixture of text and math).
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