
DML 2009

Keisuke Yokoi; Akiko Aizawa
An Approach to Similarity Search for Mathematical Expressions using MathML

In: Petr Sojka (ed.): Towards a Digital Mathematics Library. Grand Bend, Ontario, Canada, July
8-9th, 2009. Masaryk University Press, Brno, 2009. pp. 27--35.

Persistent URL: http://dml.cz/dmlcz/702557

Terms of use:
© Masaryk University, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702557
http://project.dml.cz

i
i

“dml09” — 2009/6/30 — 0:11 — page 27 — #37 i
i

i
i

i
i

An Approach to Similarity Search
for Mathematical Expressions using MathML

Keisuke Yokoi1 and Akiko Aizawa2

1 Department of Computer Science, University of Tokyo
kei-yoko@nii.ac.jp

2 Department of Computer Science, University of Tokyo
National Institute of Informatics

aizawa@nii.ac.jp

Abstract. The recent global computerization and digitization trend
has helped to increase the numbers of documents with mathematical
expressions on the Web. These mathematical expressions have their own
unique structures, and therefore, it is not an easy task for traditional
search systems targeting natural languages to deal with them. We propose
a similarity search method for mathematical equations that is particularly
adapted to the tree structures expressed by MathML based on this
background. The similarity search system helps users acquire additional
knowledge, discover concealed relationships to different fields, and
compensate for some false recognition. Given an equation as a query, most
of the conventional mathematical search systems return corresponding
equations that exactly match the query. Contrarily, our proposed system
makes it possible to return similar equations by measuring the similarity
using tree-matching techniques and also by reforming the structure
of Content-based MathML. In this paper, we examine our proposed
techniques through preliminary experimentation using a prototype search
system, and show this techniques’ effectiveness based on some conditions
requested by the user.

1 Introduction

Search systems play an essential role in our daily lives because there are
a huge number of pages on the Web. However, we sometimes encounter
problems with how to search for or what to submit as a query when we
want to search for things that cannot be easily expressed in natural language.
Among them are mathematical expressions that have unique and complicated
tree structures. Therefore, a new search scheme is required that takes the
structures of mathematical expressions into account.

Many conventional studies on mathematical expression searching are based
on the Mathematical Markup Language (MathML), a worldwide standard
defined for describing mathematical contents on the Web. MathML is a kind of
XML and is suitable for expressing mathematical expressions with hierarchical

Petr Sojka (editor): DML 2009, Towards a Digital Mathematics Library, pp. 27–35.
© Masaryk University, 2009 ISBN 978-80-210-4781-5

i
i

“dml09” — 2009/6/30 — 0:11 — page 28 — #38 i
i

i
i

i
i

28 Keisuke Yokoi and Akiko Aizawa

structures. The existing approaches can be categorized into the following two
types: a translation-based approach and a structure-based approach.

With a translation-based approach, the mathematical expressions are parsed
and translated into a set of natural language keywords. Then, the generated
keywords are thrown to existing search engines. Munavalli et al. analyzed
mathematical expressions written in MathML and translated the feature
elements into text form in their search system; MathFind [1]. Youssef textualized,
serialized, scoped, and normalized mathematical expressions into queries. This
concept does not depend on the form of the expressions [2]. Adeel et al.
generated keywords by using regular expressions for the expressions written in
MathML, and threw them to search systems as queries [3]. A translation-based
approach is advantageous in that it can exploit the excellent and up-to-date
search capability of contemporary commercial search engines. On the other
hand, it is often difficult to create an effective natural language query.

With a structure-based approach, the XML-structures of mathematical
expressions are directly indexed and compared with the XML-structures of
the queries. Kohlhase et al. developed Content Markup MathML, and made
it possible to flexibly search for mathematical expressions in their search
system: MathWebSearch [4]. Asperti et al. used a logic-independent metadata
model for indexing mathematical expressions in their search system: Whelp [5].
Hashimoto and Hijikata constructed their search system by using XPath and
a DOM structure of the mathematical expressions written in MathML [7,8].
Otagiri et al. use their unique query languages and expressions written in
Content Markup MathML as targeted expressions [9]. A structure-based
approach is capable of taking the structures of mathematical expressions into
account. However, this approach has difficulty in ranking or ordering the search
results according to their semantic similarity. Most of the previous studies
simply enumerate the candidate expressions sharing a common sub-structure
with a given query and if not, order them as to rank as only basic methods,
and not much attention has been paid to the matching function to calculate
the similarity score between the mathematical expressions. However, similarity
calculation is particularly important in large scale mathematical search systems;
it helps users to acquire additional knowledge, discover concealed relationships
to different fields, and compensate for some false recognition.

Based on this background, we used a structure-based approach using
Content Markup MathML in this paper, and propose a similarity search system
that returns not only the expressions with exactly the same sub-structure, but
also the expressions with high similarity scores.

This paper is organized as follows. In the next section, we briefly introduce
MathML with its two variations: Presentation Markup and Content Markup.
Next, in Sec. 3, we introduce the definition and our adaptation of the similarity
measure that is based on the “Subpath Sets” of MathML Content Markup
expressions. In Sec. 4, we propose a transformation of the Content Markup
expressions to improve the search in both in efficiency and quality. In Sec. 5,
the results of preliminary experiments using our prototype search systems are

i
i

“dml09” — 2009/6/30 — 0:11 — page 29 — #39 i
i

i
i

i
i

An Approach to Similarity Search for Mathematical Expressions. . . 29

shown followed by discussions. Finally, our conclusion and future work are
presented in Sec. 6.

2 MathML

MathML [11] is a worldwide standard for describing mathematical contents. It
is a kind of XML, therefore it can be easily slotted onto Web pages. It is widely
used and is compatible with some applications, for example, Mathematica and
even some browsers. There are two ways of writing in MathML, Presentation
Markup and Content Markup.

The main purpose of Presentation Markup is to display mathematical
expressions on Web browsers. Presentation Markup is superior in formatting
and displaying mathematical expressions. However, there only about 30 kinds
of basic symbols, so it is not easy to search for expressions because this limited
number of symbols do not correspond to particular mathematical functions or
meanings.

On the other hand, Content Markup focuses on the semantic construction
of mathematical expressions, and it has over 100 kinds of semantic symbols
corresponding to mathematical functions. Therefore, it is relatively easy to
know the mathematical structures of the equations using Content Markup.
Since Content Markup is unsuitable for formatting and displaying, it is usually
used as an annotation of the expressions written in Presentation Markup.

3 Subpath Set

The definition of a similarity measure is crucial in similarity searching.
Understanding that mathematical expressions written in MathML have their
own tree structures, we use, in this paper, the degree of similarity between
these tree structures as a basic notion of similarity.

As a similarity measure, we use the Subpath Set originally proposed in [6]
to measure the distance between two syntactic trees. Here, Subpath is defined
as “the path from the root to the leaves and all the sub-paths of that”. Trees
whose Subpath Sets overlap each other are considered to be similar as well. An
example of a Subpath Set is shown in Fig. 1.

Fig. 1: Example of Subpath Set.

i
i

“dml09” — 2009/6/30 — 0:11 — page 30 — #40 i
i

i
i

i
i

30 Keisuke Yokoi and Akiko Aizawa

We used the following Jaccard coefficient in the experiments to score the
overlap of the Subpath Sets.

‖S(t1) ∩ S(t2)‖
‖S(t1) ∪ S(t2)‖

(1)

where ti is a tree and S(ti) is the Subpath Set of ti. The Jaccard coefficient
performed better than some of the other indicators, such as Dice coefficient,
Simpson coefficient, Cosine coefficient, and some other ways of ranking in our
preliminary study.

4 Transformation of Content-based MathML

In Content Markup, the “apply” symbol is the most frequently used of all
the symbols. In fact, about 40–50 percent of the symbols in mathematical
expressions written in Content Markup are for “apply”. The roles of the “apply”
symbol are mentioned as follows in the MathML specification by W3C [11].

The most fundamental way of building up a mathematical expres-
sion in MathML content markup is the apply construct. An apply
element typically applies an operator to its arguments. It corresponds
to a complete mathematical expression. Roughly speaking, this means
a piece of mathematics that could be surrounded by parentheses or
“logical brackets” without changing its meaning.

In MathML 2.0, the apply construct is used with all operators,
including logical operators.

An “apply” symbol is almost always used for applying an operator, which
is their first child, to the arguments, which are their other children. In addition,
it is used whenever any functions and operators are used. It is useful to know
the range a function or operator applies. However, in a search, they consume
memory and also disguise meaningful sequences of the function operators
on the sub-paths. In order to deal with this issue, we transform the original
Content Markup into our new definition of apply-free Content Markup where
the first children of the “apply” symbols take over their parents positions while
other children remain in the same position, for example, as in Fig. 2.

Fig. 2: Expression transformation.

i
i

“dml09” — 2009/6/30 — 0:11 — page 31 — #41 i
i

i
i

i
i

An Approach to Similarity Search for Mathematical Expressions. . . 31

However, there are some exceptional cases; a considerable number of
expressions have “apply” symbols whose first children are also “apply” symbols.
For example, in the target mathematical expressions we use in our experiments,
about 1,100 out of 155,607 expressions have those double-sequence “apply”
symbols. These are cases where the functions, i.e., the first children of the
“apply” symbols, are composed of more than one word or have additional
characters. In these cases, we keep the parent “apply” while removing the child
“apply”. That is, the “apply” symbols whose parents are also “apply” symbols
are translated as in Fig. 3.

Fig. 3: Transformation for double-sequence “apply” symbols.

5 Experiments

5.1 Targeted formulas

In the experiments, 155,607 mathematical expressions, which were collected
in Wolfram Functions Site [10], are used as targeted formulas. They are all
written in Presentation Markup and they have Content Markup as annotations.
We extracted three different representations for comparison: (i) Presentation
Markup, (ii) the original Content Markup, and (iii) the apply-free Content
Markup we defined in Sec. 4. In addition, we cut out some following symbols in
Presentation Markup to improve the accuracy and dispose of vague information,
as was the case for Hashimoto [7]; mrow, mstyle, semantics, annotation.

At first, we compare the statistical features of these three tree-forms:
Presentation Markup, Content Markup, and apply-free Content Markup. The
number of children in each symbol and the maximum depth of the tree
construction in each expression are shown in Fig. 4, and the maximum and
average values of them are listed in Table 1, where the depth in the table
represents the depth of the tree construction and the width represents the
number of children in each symbol.

Looking through this figure, we can see that the trees generated by
Presentation Markup expressions are totally different from the ones generated
by Content Markup or the apply-free Content Markup, both in their depths and
in their numbers of children. The former group tends to be smaller in depth, but

i
i

“dml09” — 2009/6/30 — 0:11 — page 32 — #42 i
i

i
i

i
i

32 Keisuke Yokoi and Akiko Aizawa

has more children. In addition, when we compared Content Markup with apply-
free Content Markup, it turned out that the depths of the two representations
are very similar while the latter has less children. This can be easily explained
since the translation in Sec. 4 does not change the depth of the tree, but does
reduce the number of children. To summarize, tree construction of Presentation
Markup is apt to broaden widthwise, and that of Content Markup is apt to
broaden lengthwise.

Fig. 4: Comparison of three types of MathML representations.

Table 1: Depth and width data in tree-construction of targeted expression.

Tree-construction form Max depth Ave. depth Max width Ave. width

Presentation Markup 16 5.000 11,438 7.187
Content Markup 54 11.102 77 2.903
Proposed form 54 11.102 76 2.044

5.2 Search results of example queries

Next, we implemented a prototype search system using Subpath Set. For the
purpose of illustration, we selected a few sample queries and checked the
rankings from the prototype system. Table 2 shows the top five rankings for
the example queries where apply-free Content Markup was used as the MathML
representation.

The results show that the proposed method is capable of evaluating the
structural similarities of the trees rather than the notational similarities of the
tokens. For example, cosine’s additional theorem was ranked high in the first
result listed in Table. 2, allowing for variations in function names.

i
i

“dml09” — 2009/6/30 — 0:11 — page 33 — #43 i
i

i
i

i
i

An Approach to Similarity Search for Mathematical Expressions. . . 33

Table 2: Sample search results.

Query : sin(a+ b) = sin(a)cos(b) + cos(a)sin(b)

rank results

1 sin(a+ b) = sin(a)cos(b) + cos(a)sin(b)

2 sin(a− b) = sin(a)cos(b) − cos(a)sin(b)

3 sin(a+ ib) = sin(a)cosh(b) + icos(a)sinh(b)

4 cos(a− b) = cos(a)cos(b) + sin(a)sin(b)

5 cos(a+ b) = cos(a)cos(b) − sin(a)sin(b)

Query : tan(z) = sinh(iz)

sinh(iπ2 +iz)

rank results

1 tan(z) = sinh(iz)

sinh(iπ2 +iz)

2 tan(z) = sinh(iz)

sinh(iπ2 −iz)

3 sec(z) = i

sinh(πi2 +iz)

4 sec(z) = i

sinh(πi2 −iz)

5 cot(z) =
sinh(iπ2 +iz)

sinh(iz)

5.3 Evaluation by the rank of an expected expression

Next, we compared the different forms of tree constructions, i.e., Presentation
Markup, Content Markup, and apply-free Content Markup, using the same
example queries. For each query, we manually selected an “expected” reference
answer so that none of them were too large nor too close to the original
queries. Then, we examined the ranks of the expected answers for the different
representation forms. The results in which we observed a difference between
the representation forms are listed in Table. 3, where the columns P, C, and A
correspond to Presentation Markup, Content Markup, and apply-free Content
Markup, respectively. The value “x” means that the reference expression did
not appear in the top 100.

Table 3: Result ranking of expected expressions.

Query Expected Expression P C A

sin(a+ b) = sin(a)cos(b) + cos(a)sin(b) sin(a− b) = sin(a)cos(b) − cos(a)sin(b) x 6 2
∫
sinzdz = −coszdz

∫
sin(az)dz = − cosza x 39 23

∫
zeazdz = eaz(−1+az)

a2

∫
z3eazdz = eaz(−6+6az+3a2z2+a3z3)

a4 x 17 5
∫
(ecz)vdz = (ecz)v

cv

∫√
eczdz = 2

√
ecz

c x 5 2

ArcSin(z) = 3π
4 − 1

2Arctan(1−2z2

2z
√

1−z2
) ArcCos(z) = −π4 + 1

2Arctan(1−2z2

2z
√

1−z2
) 33 79 16

The results show that Presentation Markup is not suitable for our search
system. This may be because all the functions and operators are represented
using the same symbol “mo” in Presentation Markup, and it shortens each
sub-path that tree constructions in Presentation Markup are apt to broaden

i
i

“dml09” — 2009/6/30 — 0:11 — page 34 — #44 i
i

i
i

i
i

34 Keisuke Yokoi and Akiko Aizawa

widthwise, and therefore, the Subpath Sets have only a small amount of
information. Comparing Content Markup and apply-free Content Markup, the
latter performed slightly-better performance, which shows the advantage of
the proposed free-apply transformation.

Here, we used only one reference answer for the evaluation, and a more
comprehensive study for a qualitative evaluation will be necessary in the future.
Since there has not been any reasonable scale of datasets for evaluation purposes
in previous works on mathematical search systems, we believe such an effort
would be worthwhile particularly for the enrichment of contents in today’s
digital mathematics libraries.

6 Conclusion & Future Work

In this paper, we proposed a new similarity search scheme for mathematical
expressions. We started by introducing a similarity measure based on Subpath
Set and proposed a MathML conversion that is apt for it. Based on the
preliminary experiments, we believe that the proposed scheme has the potential
to provide a flexible interface for searching for mathematical expressions on
the Web. However, some important issues are left for future study.

First is the scalability issue. The proposed search system responds to a
submitted query within a feasible amount time by using 155,607 formulas
collected in Wolfram Functions Site [10]. However, with the variety and number
of equations currently on the Web, the similarity calculation may become the
bottleneck of the search. Therefore, some kinds of ingenious methods are
needed, such as clustering targeted expressions, to pick up speed.

Second is the consideration of symbol values. Our current implementation
recognizes only symbols and does not perceive the actual values or strings
assigned to them. For example, expressions with different coefficients are
treated as the same. While the simplification is effective process simplification,
it sometimes degrades the performance. Therefore, in order to improve the
accuracy of the similarity calculation, the values of the symbols should be taken
into account to some extent.

Lastly, it is not easy to decide the similarity between two mathematical
expressions using only their MathML descriptions. We are looking into the
possibility of integrating other techniques including the existing translation-
based approaches.

References

1. Rajesh Munavalli and Robert Miner: MathFind: A Math-Aware Search Engine. SIGIR.
pp. 735–735, 2006.

2. Abdou Youssef: Information Search And Retrieval of Mathematical Contents: Issues
And Methods. the ISCA 14th Int’l Conf. on Intelligent and Adaptive Systems and
Software Engineering (IASSE-2005), July 20–22, Toronto, Canada, 2005.

i
i

“dml09” — 2009/6/30 — 0:11 — page 35 — #45 i
i

i
i

i
i

An Approach to Similarity Search for Mathematical Expressions. . . 35

3. Muhammad Adeel, Hui Siu Cheung, and Sikandar Hayat Khiyal: Math GO!
Prototype of A Content Based Mathematical Formula Search Engine. Journal of
Theoretical and Applied Information Technology, Vol4, No10, pp. 1002–1012, 2008.

4. Michael Kohlhase and Ioan A. Sucan: A Search Engine for Mathematical Formulae.
Proceedings of Artificial Intelligence and Symbolic Computation, AISC’2006,
Springer Verlag, pp. 241–253, 2006.

5. Andrea Asperi, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano
Zacchiroli: A Content Based Mathematical Search Engine: Whelp Proceedings of
TYPES 2004 conference: Types for Proofs and Programs, LNCS 3839, Springer Berlin
/ Heidelberg, ISBN 3-540-31428-8, pp. 17–32, 2006.

6. Hiroshi Ichikawa, Taiichi Hashimoto, Takenobu Tokunaga, and Hozumi Tanaka:
New methods of retrieve sentences based on syntactic similarity. IPSJ SIG Technical
Reports, DBS-136, FI-79, pp. 39–46, 2005.

7. Hideki Hashimoto, Yoshinori Hijikata, and Shogo Nishida: A Survey of index
formats for the search of MathML objects. IPSJ SIG Technical Reports, DBS-142,
FI-87, pp. 55–59, 2007.

8. Yoshinori Hijikata, Hideki Hashimoto, and Shogo Nishida: An Investigation of Index
Formats for the Search of MathML Objects. Proc. of Intelligent Web Interaction
Workshop (IWI 2007), pp. 244–248, DOI 10.1109/WI-IATW.2007. 121, Silicon Valley,
USA, November, 2007.

9. Kenichi Otagiri and Tsuyoshi Murata: Search of Mathematical Formulas using
MathML. The 22nd Annual Conference of the Japanese Society for Artificial
Intelligence, 1F1-3, 2008.

10. The Wolfram Functions Site, Wolfram Research Inc. http://functions.wolfram.
com.

11. Mathematical Markup Language (MathML) Version 2.0 (Second Edition), World
Wide Web Consortium. http://www.w3.org/TR/MathML2/.

		webmaster@dml.cz
	2012-08-27T16:12:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

