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Abstract. We present three corpus-based studies on symbol declaration in
mathematical writing. We focus on simple object denoting symbols which
may be part of larger expressions. We look into whether the symbols are
explicitly introduced into the discourse and whether the information on
once interpreted symbols can be used to interpret structurally related
symbols. Our goal is to support fine-grained semantic interpretation of
simple and complex mathematical expressions. The results of our analysis
empirically show the potential benefit of using larger discourse context in
automated disambiguation of mathematical expressions.

Key words: mathematical discourse, disambiguation of mathematical
expressions, corpus-based analysis

1 Motivation

Semantic search in mathematical documents, in order for it to account for their
full mathematical content, must necessarily provide ways of searching through
the symbolic expressions which are part of mathematical discourse. While
dedicated approaches to formulae search do exist (see, for instance, [11,10] and
references therein) they typically depend on semantically-oriented mark-up in
their internal representation of mathematical expressions; be it OpenMath [5]
or Content MathML [4]. Recent years have therefore seen increasing efforts
towards improving automatic creation of machine-readable semantics-enriched
mathematical documents [15].

Automatically inferring the semantics of a mathematical expression, both as
a whole and of its constituent parts, is, however, a non-trivial task because of
the infinite nature of the mathematical alphabet: new symbols may be invented,
constructed from existing symbols, existing symbols may be typographically
enriched to form new symbols, etc. All this possibly in a single document. There
are of course certain conventions as to the usage of mathematical notation,
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general and specific to mathematical sub-areas, as well as prescriptive rules on
how to write mathematics (see, for instance, [9,12]) which mathematics’ authors
tend to follow, however, automated interpretation of arbitrary mathematical
expressions remains a challenging task.

We performed a quantitative analysis of a subset of the arXMLiv collec-
tion [3] processed using LaTeXML [15], the state-of-the-art mathematical doc-
ument processing architecture, and found out that approximately 41% of all
the parsed mathematical symbols have not been interpreted by the LaTeXML
grammar (2,842,813 out of a total number of 6,872,419 mathematical symbols);
where by “not interpreted” we mean that the grammatical role attribute in the
internal LaTeXML representation, the XMath role, has been set to unknown.

In our previous work [8], we showed that the local linguistic context, within
which mathematical expressions are embedded, provides a good source of
information for recognizing the denotation of mathematical expressions. Our
approach, however, treats a mathematical term as a whole and attempts to
identify an object type to which the entire term refers.

In this paper, we present three corpus-based studies which are meant to
complement our previous work and constitute a step towards compositional
semantic analysis of symbolic expressions. We now focus on simple object de-
noting symbols which may be part of larger expressions and ask, paraphrasing
Knuth and colleagues, whether in actual mathematical papers “[a]ll variables
[are] defined, at least informally, when they are first introduced” [9]. Certainly
not all of them are: certain notational conventions are taken for granted, espe-
cially in academic scientific papers. They constitute part of what Clark calls
communal (in this case, professional) common ground [6]. Our question of inter-
est is rather “how much” of the notation is left implicit. More specifically, in
the three studies described in this paper we were interested in the following
questions:

1. To what extent are mathematical symbols systematically explicitly intro-
duced into the discourse in mathematical scientific publications?

2. To what extent can symbol interpretation rely on larger local discourse
context?

3. Can symbol interpretation be supported by an analysis of locally co-
occurring symbolic expressions of similar structure?

Outline: The paper is organised as follows: In Section 2 we describe our corpus-
based methodology: first we briefly describe the data set we use, followed by
the descriptons of our three study setups. In Section 3 we present quantitative
results of our studies. We conclude with a discussion of the results in Section 4
and discuss further work in Section 5.

2 Method

We performed three corpus studies in order to investigate symbol declaration
practices in mathematical scientific papers. In all the experiments we used
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actual mathematical papers as they were originally published. The setup of our
studies is outlined below.

2.1 Data and Preprocessing

The subsets of documents we used in the studies were randomly selected
from a corpus of 1,000 mathematical publications from the arXMLiv collection,
processed by the LaTeXML architecture [14,15]. arXMLiv is subset of the arXiv,
an archive of electronic preprints of scientific papers in the fields of, among
others, mathematics, statistics, physics, and quantitative biology [2]. That is,
the documents we analyzed were advanced scientific contributions written by
professional mathematicians.

The documents have been word- and sentence-tokenized. For the analysis of
symbolic expressions, we used two mathematical expression markup formats:
the XMath format, a LaTeXML internal representation, and the Presentation
MathML format, a widely used W3C standard for rendering mathematical
content on the Web [4,13].

2.2 Experiments

In the experiments presented here, we were interested in object-denoting terms
of “simple” high-level structure. More specifically, as “simple” symbols we
consider atomic identifiers and super- or sub-scripted atomic identifiers; we
do not, however, analyse the expression(s) in the super-/sub-scripts. In the
following sections, we will use the term simple mathematical expression to refer to
this class of symbols. We extracted the expressions of interest by parsing the
XMath and MathML representations.

The first study The purpose of the first experiment was to investigate
mathematicians’ practices as to explicitly declaring symbols in their scientific
writing. We randomly selected 50 documents from the preprocessed collection
and from each document we randomly extracted 10 simple mathematical
expressions. Next, we manually checked whether among the first 5 occurrences
of these expressions in the paper, the symbol is explicitly declared; i.e. we
inspected 500 simple expressions (2,500 occurences).

In this and the following study, we considered two types of declarations: a
symbol may be introduced in isolation, as in the fragment: “Let F be a Hermitian
vector bundle over W . . . ”, or embedded in a larger symbolic expression which
additionally elaborates the properties of the object denoted by the symbol, as
in: “Consider the cylinder U = M× [−ε, 0) . . . ”, where U is further qualified
to a have certain property. We will refer to the former type of declaration as
unqualified and to the latter as elaborated (the declared symbol is further qualified
by the sub-expression within which it appears). The point of this distinction is
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Let
<XMath>

<XMApp>
<XMTok role="SUBSCRIPTOP" scriptpos="post2"/>
<XMTok role="UNKNOWN" font="italic">C</XMTok>
<XMTok role="UNKNOWN" font="italic">i</XMTok>

</XMApp>
</XMath>
be the closed convex hull in
<XMath>

<XMTok role="UNKNOWN" font="italic">Y</XMTok>
</XMath>
of the tail end of the sequence.

Fig. 1. A fragment of LaTeXML XMath markup with elements of unknown roles

that the declarations of elaborated expressions require more sophistication in
the process of their automated identification.3

The second study The second study was a more focused variant of the
first study. This time we were interested in simple expressions which are
embedded in complex expressions, in particular those simple expressions
whose grammatical role has not been recognized by the LaTeXML process.

The grammatical role, specified in the role attribute of the XMath markup,
captures the syntactic nature of a symbol, the “grammatical role” that the object
plays in surrounding expressions. The role attribute is used in generating the
presentation markup and it can also help drive the derivation of the semantics
of an expression.

Examples of role attributes which the LaTeXML parser does recognize
include: ATOM (a general atomic subexpression), APPLYOP (an explicit infix
application operator), RELOP (a relational operator), ADDOP (an addition
operator), INTOP (an integral operator) [1]. Unrecognized symbols are assigned
an UNKNOWN attribute by default, as illustrated in Figure 1.

In this study, we randomly extracted a subset of 100 mathematical
documents from the collection. From each document we randomly selected 3
mathematical expressions whose XMath representations contained at least 3
simple expressions as defined above. For each of the resulting 300 expressions,
we extracted all the simple sub-expressions tagged as UNKNOWN in the XMath
representation and which also occurred independently in the discourse. For
instance, for the expression ρ =< ωi, λ >, we would have extracted the
following simple expressions should they be tagged as UNKNOWN: ρ, ωi, and
λ. Then we would check which of the resulting simple expressions occurred

3 One could, for instance, assume that in the process of identifying declaration
statements, it would be sufficient to consider as candidates only those sentences
which contain unqualified simple object-denoting expressions. As we will show in
the next section, this approach would miss a small percentage of instances.
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Table 1. Results of the first study

Category Occurrence n (%) N (%)

Explicitly declared unqualified

1st 290 (58%)

337 (67.4%)

2nd 15 (3.0%)
3rd 11 (2.2%)
4th 6 (1.2%)
5th 2 (0.4%)

elaborated − 13 (2.6%)

Not explicitly declared 134 (26.7%)

Other 30 (5.9%)

in isolation in the document and select those for the analysis. We performed
analogous manual analysis of the extracted instances as in the first study.

The third study Now, assuming that new symbols are systematically properly
declared, in the third study, we were interested in finding out whether related
symbols, which might not be individually introduced, indeed tend to be
semantically related (that is, denote the same concept or different instances
of the same concept). More specifically, we looked at simple terms based on
the same main identifiers, i.e. sharing the same root/top-level node in the
expression tree, and which are structurally similar modulo the structure of the
subscript and superscipt terms. For instance, the following two expressions are
structurally similar according to our criteria: ωi and ωn−1. By contrast, P2

c and
Ak

n are not similar because they differ in the top-node operator.
For each pair of such expressions we verified whether the objects they denote

are also semantically related if they occur in the same local discourse context.
As discourse context we considered a section of a document; in the current
study we ignored sub-section scopes. We randomly selected 25 mathematical
documents and from each section of these documents we extracted all the
pair-wise combinations of simple mathematical expressions which shared the
same root symbol (same identifier) and either have the same surface structure
or one expression is embedded in the other; 496 such pairs were extracted.
Again, we analysed the extracted pairs manually as to whether each pair of
expressions denotes the same concept in the context of the section scope.

The point of this study was to empirically verify whether the local discourse
scope is a good indicator of semantic relatedness of structurally similar
terms. Identification of structurally similar pairs could be used in document
processing to construct sets of mathematical expressions which denote the
same mathematical concept: n symbolic expressions would form a set if
each of the possible C2

n pair-wise combinations fulfilled the above-mentioned
conditions. Consider, for instance, the (unordered) pairs of simple mathematical
expressions: (c, c1), (c2, c1), and (c2, c) which fulfill the criteria. They form a set
{c, c1, c2}. Assuming that the expression c has been previously interpreted, for
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instance, as a constant, the expressions c1 and c2 are likely to have the same
mathematical interpretation.

3 Results

The results of the analyses are presented in Tables 1 through 3.
Table 1 shows the results of the symbol declaration study. The first column

contains the categories. We present the absolute and percentage counts for the
two subcategories of explicit declarations and for the location of the declaration
(the occurrence number from the beginning of the document which is part of
the symbol’s declaration).

About 67% of simple mathematical expressions were explicitly introduced
in the discourse. In most cases the first occurrence of a symbol is within a
declaration, however, as can be seen from the fourth column, ‘n (%)’, in some
rare cases the declaration does not come till the fourth and fifth occurrence.
It appears that for this study, extracting the first five occurrences was a
good choice, with only two out of 336 instances being declared as far as
the fifth occurrence from the first mention. Moreover, in most cases symbols
in declarations do not appear as part of a larger expression (only about 3% of
occurrences were elaborated by means of a symbolic expresson). In 6% cases
we encountered processing errors or were not able to distinguish how an object
was declared.

Now, the results of the second study, Table 2, shows that about 72% of simple
sub-terms of complex expressions, which were not recognized by LaTeXML
have been explicitly introduced in the discourse. The declaration of most of
these, again, appears together with the first occurrence of the expression, and,
again unqualified declarations of these were more frequent. The remaining 27%
of unknown symbols were not declared in the documents, so assigning them
a role automatically based on the discourse context would perhaps require
sophisticated inferences based on the context of the other occurrences.

Finally, Table 3 shows the results of semantic relatedness of locally occurring
structurally similar expressions. Indeed, in most cases, 89%, structurally similar
expressions which share the root identifier are also semantically related. We
were unable to relate the expressions in 5% of the cases.

4 Discussion

The results of the study show that mathematicians do indeed tend to explicitly
introduce object-denoting symbols which they use in their writings. While it is
somewhat surprising that symbol declarations occur past the first mention of a
symbol (that is, symbols are used before they have been introduced) overall, the
context of the first mention accounts for the majority of symbol declarations.

The findings of the first and the second study also indicate that the global
discourse context is a good starting point in an automated interpretation (and
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Table 2. Results of the second study

Category Occurrence n (%) N (%)

Explicitly declared unqualified

1st 331 (53.5%)

449 (72.5%)

2nd 22 (3.5%)
3rd 23 (3.7%)
4th 7 (1.1%)
5th 20 (3.2%)

elaborated − 46 (7.4%)

Not explicitly declared 170 (27.5%)

Table 3. Results of the third study

Category N (%)
Same concept 441 (88.9%)
Different concept 28 (5.6%)
Not classifed 27(5.4%)

disambiguation) of symbolic expressions in mathematical scientific documents.
From a point of view of computational processing of mathematical discourse,
this means that if the linguistic context in which a symbol appears can be
parsed and interpreted (in particular, the first-mention context) then the
intended usage of the symbol at hand, i.e. the symbol’s meaning, can be
recognized. Interpretation recovered in this way would, in turn, help complete
the information in the (semantic) mark-up of mathematical expressions.

Now, the last study shows that the structural similarity of mathematical
expressions and their disourse proximity can be exploited in propagating
the interpretation of mathematical symbols. That is, assuming the a set of
structurally similar expressions can be identified in a local discourse context
and we can find the interpretation of one of them (for instance, using methods
such as those proposed in [8]) then the interpretation of the related symbols
can be with a large likelihood assumed to be the same. This can be seen as
analogous to the “one sense per discourse” tendency in well-written prose
(see [7]).

5 Conclusion and Further Work

In this paper, we presented the design and the results of three corpus-based
studies on mathematical symbols in scientific papers, which were concerned
with explicit declarations of symbols’ denotations. The results of the studies
empirically motivate methods of automated disambiguation of mathematical
expressions based on the discourse context in which the symbols appear. While
the data set we used was not large, the preliminary results we obtained are
encouraging and suggest the need for comprehensive incremental interpretation
as the methodology for semantic processing of mathematical documents. We are
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planning to implement the results of the studies as part of a larger architecture
for mathematical expression disambiguation.

We are planning a number of follow-up studies: A natural continuation
of the presented experiments would be to investigate the way symbolic
mathematical expressions are declared, from the linguistic point of view. That
is, to study the languagage of symbol declarations in mathematical discourse.
While a number of lexico-syntactic patterns for symbol declarations can be
anticipated based on general familiarity with mathematical writing (the obvious
being “Let SYMBOL be a mathematical concept-denoting term”) given the size of
the arXMLiv corpus we should be able to discover a variety of verbalizations.

Another natural follow-up direction which we are planning to pursue, is to
look in more details into the set of symbols of which we have not found explicit
declarations in the documents. Is there systematism to what symbols tend to
be left unexplained, for their interpretation can be assumed as obvious? It is
common knowledge that there are certain notational conventions in the usage
of symbols, in mathematics in general and within sub-areas of mathematics (e.g.
the use of mnemonics), can we automatically recognize these conventions based
on corpus analysis focused on symbol declarations? Finally, aside from the
knowledge of notational conventions, what other kinds of knowledge would be
required to find automatically the interpretations of the remaining undeclared
symbolic expressions in mathematical scientific documents?
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and Ioan A. Şucan. MathWebSearch 0.4, A Semantic Search Engine for Mathematics.
http://search.mathweb.org/index.xhtml (Retrieved April 2010), 2008.
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