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EXTRAPOLATION OF FUNCTION

SPACES AND RELATED TOPICS

Dorothee D. Haroske and Hans-Jürgen Schmeisser

Abstract. We survey recent contributions dealing with function spaces of
Lorentz-Zygmund type and Lipschitz type which can be obtained by extrap-
olation techniques, and study equivalent characterizations. Furthermore, we
collect results connected with embeddings and decompositions in such spaces,
as well as the case of missing derivatives. We only present some model proofs
and describe ideas how to deal with such questions; otherwise we refer to the
original papers for details and related topics.

1. Introduction

Extrapolation theory in the proper sense is usually considered to start with
the paper by Yano [103], although Titchmarsh [90], [91] and Zygmund
[105], [106] had considered some similar results before. Strong motivation
came from harmonic analysis, in particular, mapping properties of oper-
ators; for further historic details and explanations we refer to [74] and
[10]. Meanwhile this topic is well-established and studied in detail, we refer
to the papers and books by Jawerth, Milman [56], [57], Milman [71],
[72], Karadzhov, Milman [58], and, recently, by Cobos, Fernández-
Cabrera, Manzano, Mart́ınez [11] for the abstract background. Our
interest comes from the investigation of embeddings in limiting situations,
such as the famous Sobolev embedding [87] or the Brézis-Wainger em-
bedding [6] which attracted a lot of interest in the past. But we have also
other limiting situations in mind, where the identification of some source or
target space as extrapolation space is often an essential tool to study fur-
ther questions like compactness or decompositions in such situations. Quite
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272 DOROTHEE D. HAROSKE, HANS-JÜRGEN SCHMEISSER

recently applications (to spectral theory, approximation problems) require
precise knowledge about spaces that arise by extrapolation procedures – and
similar to interpolation theory, one wants to know under what assumptions
the resulting space ‘inherits’ features from the extrapolated spaces. Though
one can think of many different parameters and properties to be interpo-
lated, we shall mainly concentrate on function spaces where extrapolation
concerns their integrability (parameters) or smoothness (parameters).

We are certainly not experts on the abstract extrapolation theory, but
have worked in this area (in concrete situations) for a couple of years. There
is also joint interest with our friend and colleague Miroslav Krbec on
which we shall comment in the following: this short survey paper was pre-
sented by the second author at the Spring School on Nonlinear Analysis,
Function Spaces and Applications 9 (NAFSA-9) in Třešt’ in September 2010,
where in a special session the 60th birthday of our colleague was marked.
Over the last years there developed a wide and intensive collaboration on
related topics between groups in Prague, Brighton and Cardiff, Aveiro and
Coimbra, and Jena (and further colleagues), as can easily be observed from
the list of references as well. Another reason for us to return to this subject
recently is connected with wavelet decomposition techniques in extrapolation
spaces, we shall give some more details in the end.

Apart from the abstract approach there is a long-standing and fruitful
collaboration of Czech mathematicians with a large number of different col-
leagues studying spaces of logarithmic and more general smoothness and
integrability with respect to embeddings, norms, mapping properties, com-
pactness assertions, interpolation; we give some references below.

The paper is organised as follows. In Section 2 we concentrate on Lorentz-
Zygmund spaces, their definition, basic properties, extrapolation results and
connection to limiting embeddings. Similarly we proceed in Section 3 with
Lipschitz spaces, where now – in contrast to Section 2 – smoothness is ex-
trapolated. Finally, in Section 4 we discuss some further settings in view of
spaces on Rn, Sobolev spaces and Besov spaces.

2. Lorentz-Zygmund spaces

First we fix some notation. By N we denote the set of natural numbers, by N0

the set N ∪ {0}, and by Zn the set of all lattice points in Rn having integer
components. The positive part of a real function f is given by f+(x) =
max(f(x), 0), the integer part of a ∈ R by %a& = max{k ∈ Z : k ≤ a}. If
0 < u ≤ ∞, the number u′ is given by 1

u′ = (1 − 1
u )+. For two positive

real sequences {αk}k∈N and {βk}k∈N we mean by αk ≈ βk that there exist
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EXTRAPOLATION OF FUNCTION SPACES AND RELATED TOPICS 273

constants c1, c2 > 0 such that c1αk ≤ βk ≤ c2αk for all k ∈ N; similarly
for positive functions. Given two (quasi-) Banach spaces X and Y , we write
X ↪→ Y if X ⊂ Y and the natural embedding of X in Y is continuous.

All unimportant positive constants will be denoted by c, occasionally with
subscripts.

2.1. Lorentz-Zygmund spaces. Let Lp(Ω), 0 < p ≤ ∞, be the (quasi-)
Banach space with respect to Lebesgue measure, normed by

‖ f | Lp(Ω)‖ =
(∫

Ω

|f(x)|p dx
)1/p

, (2.1)

(with the usual modification for p =∞), where Ω ⊂ Rn stands for a domain
in Rn. A natural refinement of this scale of Lebesgue spaces are the spaces
Lp(logL)a(Ω) being the set of all measurable functions f : Ω→ C such that

∫

Ω

|f(x)|p logap(2 + |f(x)|) dx <∞. (2.2)

This definition (2.2) for spaces Lp(logL)a(Ω) may be found in the book of
Bennett and Sharpley in [4, Ch. 4, Def. 6.11] where 1 < p < ∞, a ∈ R,
and Ω ⊂ Rn with |Ω| <∞. They are called Zygmund spaces there. We use
an alternative definition (admitting also parameters 0 < p ≤ 1 and p =∞),
presented in Definition 2.1 below.

In [4, Ch. 4, Lemma 6.12] it is shown that f ∈ Lp(logL)a(Ω), 1 < p <∞,
a ∈ R, if, and only if,

(∫ |Ω|

0

[
(1 + | log t|)af∗(t)

]p
dt

)1/p

<∞, (2.3)

where f∗ denotes the non-increasing rearrangement of f , as usual,

f∗(t) = inf
{
s > 0 : |{x ∈ Ω : |f(x)| > s}| ≤ t

}
, t > 0. (2.4)

There is a plenty of literature on this topic; we refer to [4, Ch. 2], [16, Ch. 2,
§2], for instance. In view of (2.3) we come to an alternative definition of
Lp(logL)a(Ω), which simultaneously extends it to parameters 0 < p ≤ ∞.

Definition 2.1. Let Ω ⊂ Rn, and 0 < p, q ≤ ∞ and a ∈ R. The Lorentz-
Zygmund space Lp,q(logL)a = Lp,q(logL)a(Ω) consists of all measurable
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274 DOROTHEE D. HAROSKE, HANS-JÜRGEN SCHMEISSER

functions f : Ω→ C for which

‖ f | Lp,q(logL)a(Ω)‖

=

⎧
⎪⎪⎨
⎪⎪⎩

(∫ |Ω|

0

[
t
1
p (1 + | log t|)af∗(t)

]q dt

t

)1/q

, 0 < q <∞,

sup
0<t<|Ω|

t
1
p (1 + | log t|)af∗(t), q =∞

(2.5)

is finite.

Remark 2.2. The above definition may be found in [4, Ch. 4, Def. 6.13]
and in [3, (1.4), (1.14)]. Note that Lp,p(Ω) = Lp(Ω) are the usual Lebesgue
spaces, 0 < p ≤ ∞, and Lp,q(logL)0(Ω) = Lp,q(Ω) are the Lorentz spaces.
The spaces Lp,q(logL)a(Ω) are trivial when p = ∞, 0 < q < ∞, and
a + 1/q ≥ 0, or p = q = ∞, but a > 0; thus in case of p = ∞ we only
study spaces L∞,q(logL)a in the sequel, where a + 1/q < 0 for 0 < q < ∞,
or a ≤ 0 for q =∞, respectively.

It is sometimes more convenient to work with the discretisation of (2.5),

‖ f | Lp,q(logL)a(Ω)‖ ≈
( ∞∑

k=−∞

[
e−k/p(1 + |k|)af∗(e−k)

]q)1/q

(2.6)

where one benefits from the monotonicity of f∗.
Note that (2.5) does not give a norm in any case, not even for p, q ≥ 1.

However, replacing the non-increasing rearrangement f∗ in (2.5) by its
maximal function

f∗∗(t) =
1

t

∫ t

0

f∗(s) ds, t > 0, (2.7)

one obtains for 1 < p < ∞, 1 ≤ q ≤ ∞, or p = q = ∞, a norm in
that way, the corresponding expressions (2.5) with f∗ and f∗∗, respectively,
being equivalent; cf. [4, Ch. 4, Lemma 4.5, Thm. 4.6].

Remark 2.3. The spaces Lp,q(logL)a(Ω) are monotonically ordered in q
(for fixed p and a) as well as in a (when p, q are fixed). In particular, for
a1, a2 ∈ R, a2 < a1,

Lp(logL)a1
(Ω) ↪→ Lp(logL)a2

(Ω). (2.8)

Moreover, when |Ω| <∞, then there is also some monotonicity in p, i.e. we
obtain for any 0 < ε < p and all a > 0,

Lp+ε(Ω) ↪→ Lp(logL)a(Ω) ↪→ Lp(Ω) ↪→ Lp(logL)−a(Ω) ↪→ Lp−ε(Ω), (2.9)

kniha_Institute_of_Mathematics_v282   282kniha_Institute_of_Mathematics_v282   282 7.9.2011   9:46:277.9.2011   9:46:27



EXTRAPOLATION OF FUNCTION SPACES AND RELATED TOPICS 275

see [35, Rem. 2.1/2] and [36, Prop. 2.6.1/1 (i)]. Otherwise, when |Ω| =∞,
there is no monotonicity in p. But for fixed p, there is an interplay between
q and a; cf. [3, Thms. 9.3, 9.5]: let 0 < p, q, r ≤ ∞, a, b ∈ R, with a+ 1

q < 0,

b + 1
r < 0 if r, q < p = ∞, or a ≤ 0 when p = q = ∞, b ≤ 0 if p = r = ∞,

respectively. Then

Lp,q(logL)a(Ω) ↪→ Lp,r(logL)b(Ω) if

{
either q ≤ r, a ≥ b

or q > r, a+ 1
q > b+ 1

r .
(2.10)

Moreover, for 0 < q ≤ r ≤ ∞ = p, this can be extended to

L∞,q(logL)a(Ω) ↪→ L∞,r(logL)b(Ω) if a+
1

q
= b+

1

r
. (2.11)

a

Lp,q(logL)a

Lp,r(logL)b

a+ 1
q = const

1
q

0 < p <∞

a

L∞,q(logL)a

L∞,r(logL)b

a+ 1
q = 0

1
q

p =∞
Figure 1

In other words, spaces L∞,q(logL)a(Ω) are ordered along the “diagonals”
a + 1/q = const., see also Figure 1 where we indicated in the shaded areas
admitted parameters (1r , b) for target spaces Lp,r(logL)b(Ω) such that for
a fixed source space we have Lp,q(logL)a(Ω) ↪→ Lp,r(logL)b(Ω). These
conditions can, in general, not be relaxed, see [3, Rem. 9.4].

Remark 2.4. In case of |Ω| <∞, say, |Ω| = 1, and p = q =∞, a ≥ 0, one
has

L∞,∞(logL)−a(Ω) = Lexp,a(Ω), (2.12)

where the latter are the exponential (or Zygmund) spaces consisting of all
measurable functions f on Ω for which there is a constant λ = λ(f) > 0 such
that ∫

Ω

exp(λ|f(x)|)1/a dx <∞, (2.13)

(if a = 0, this is interpreted as f is bounded, i.e. Lexp,0 = L∞); see [4, Ch. 4,
Def. 6.11, Lemma 6.12].
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276 DOROTHEE D. HAROSKE, HANS-JÜRGEN SCHMEISSER

For later use, let us mention two special cases separately (concerning
spaces ‘close’ to L1 and L∞, respectively). Assume a ∈ R, 1 < q < ∞,
b > 1

q . Then

‖ f | L1(logL)a(Ω)‖ =
∫ |Ω|

0

(1 + | log t|)af∗(t) dt, (2.14)

‖ f | L∞,q(logL)−b(Ω)‖ =
(∫ |Ω|

0

[ f∗(t)
(1 + | log t|)b

]q dt

t

)1/q

. (2.15)

2.2. Extrapolation. We consider the situation of domains Ω ⊂ Rn with
finite measure |Ω| < ∞ in further detail. Let for 0 < p < ∞, j ∈ N, the
numbers pj and p−j be given by

1

pj
:=

1

p
+ 2−j and

1

p−j
:=

1

p
− 2−j , (2.16)

where we may always assume that j ≥ j0 = j0(p) such that p−j ∈ (0,∞) as
well.

Theorem 2.5. Let Ω ⊂ Rn be a domain with |Ω| < ∞, 0 < p < ∞,
0 < q ≤ ∞.

(i) If a < 0, then f ∈ Lp, q(logL)a(Ω) if, and only if,

( ∞∑

j=j0

2jaq‖ f | Lpj ,q(Ω)‖q
)1/q

(2.17)

(with the usual modification if q = ∞) is finite, where (2.17) is an
equivalent quasi-norm in Lp, q(logL)a(Ω).

(ii) If a > 0, then f ∈ Lp,q(logL)a(Ω) if, and only if, it can be represented
as

f =

∞∑

j=j0

fj with fj ∈ Lp−j ,q(Ω), j ≥ j0, (2.18)

and such that ( ∞∑

j=j0

2jaq‖ fj | Lp−j ,q(Ω)‖q
)1/q

(2.19)

is finite (with the usual modification if q = ∞). The infimum of the
expressions (2.19) taken over all admissible representations (2.18) is an
equivalent quasi-norm on Lp,q(logL)a(Ω).
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EXTRAPOLATION OF FUNCTION SPACES AND RELATED TOPICS 277

Remark 2.6. This result in the above version was proved by Cobos,
Fernández-Cabrera, Manzano, Mart́ınez in [11] using interpolation
methods, see also the approach by Karadzhov, Milman in [58] and the
recent survey [2]. Note that in case of p = q one can replace Lpj , q in (i) by
Lpj

, and Lp−j ,q in (ii) by Lp−j
, respectively. If p = q =∞, a < 0, then there

is the obvious counterpart of (2.17).

Theorem 2.5 extends quite a number of forerunners to the full range of
parameters: the basic assertion for 1 < p = q < ∞ is due to Edmunds,
Triebel [34–37]. This was extended in [49] to p 	= q and by Edmunds,
Gurka, Opic in [22] to p = q = ∞. Further progress was made by
Fiorenza, Krbec in [40], [41] concerning p = q = 1, a > 0, and by Ed-
munds, Krbec in [30] and Cruz-Uribe, Krbec in [14] including values
p =∞, q ≤ ∞. We return to this last case in Theorem 2.10 below.

2.3. Yano’s theorem. As briefly mentioned in our introduction, Yano’s
paper [103] can be seen as some starting point of extrapolation theory,
though there are earlier results of similar type by Titchmarsh [90], [91] and
Zygmund [105], [106]. We refer to [74] and [10] for some further (historical)
description of those results. Roughly speaking, the theorem of Yano can be
described as follows: If T is a bounded linear operator on Lp(Ω) for p > 1
with ‖T‖L(Lp(Ω)) = O((p−1)a) as p ↓ 1 for some a > 0, then these estimates

can be extrapolated to obtain assertions for T ∈ L
(
L1(logL)a(Ω), L1(Ω)

)
.

More general formulations and other cases can be found in [108, XII.4.11],
[92, Theorem IV.5.3] (for sub-linear T ), [40] (for sub-additive T ), and [88,
p. 23], [36, p. 74] (for T being the Hardy-Littlewood maximal operator). In
those latter results a decomposition approach is used instead of weak type
inequalities and the Marcinkiewicz interpolation theorem. We formulate a
version below that suits our idea to demonstrate (in its proof) the strength
and interplay of decomposition, localisation and extrapolation techniques.
The case a = 1 is due to Yano in [103].

Theorem 2.7. Let a > 0, Ω ⊂ Rn be a domain with |Ω| <∞, 1 < p <∞,
and T sub-linear such that for some p0 > 1,

‖Tf | Lp(Ω)‖ ≤ c
( 1

p− 1

)a

‖ f | Lp(Ω)‖, 1 < p < p0. (2.20)

Then

T : L1(logL)a(Ω)→ L1(Ω) is bounded.
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278 DOROTHEE D. HAROSKE, HANS-JÜRGEN SCHMEISSER

Proof. We follow the elementary proof given by Edmunds, Krbec in [32].
Let us for simplicity assume that |Ω| = 1 and denote by Ik =

[
e−k, e−k+1

]
,

k ∈ N, hence |Ik| = (e− 1)e−k. Assume that f =
∑∞

k=1 fk such that

{
f∗k (t) ∈

[
f∗(e−k+1), f∗(e−k)

]
if 0 < t ≤ |Ik|,

f∗k (t) = 0 if t ≥ |Ik|.
(2.21)

Then the sub-linearity of T together with Hölder’s inequality and |Ω| = 1
imply

‖Tf | L1(Ω)‖ ≤
∞∑

k=1

‖Tfk | L1(Ω)‖

≤
∞∑

k=1

‖Tfk | L1+ 1
k
(Ω)‖

≤ c
∞∑

k=1

ka‖ fk | L1+ 1
k
(Ω)‖

= c

∞∑

k=1

ka
(∫ |Ik|

0

[f∗k (t)]
k+1
k dt

) k
k+1

in view of (2.20). Now the decomposition of f and monotonicity lead to

‖Tf | L1(Ω)‖ ≤ c1

∞∑

k=1

kaf∗(e−k)(e−(k+1))
k

k+1

= c1

∞∑

k=1

kae−kf∗(e−k)

≤ c2

∫ 1

0

(1 + | log t|)af∗(t) dt

= c2‖ f | L1(logL)a(Ω)‖,

where we applied (2.6) and (2.14) in the end. �
Remark 2.8. In the course of the above argument it turns out that

∞∑

k=1

ka‖ fk | L1+ 1
k
(Ω)‖ ≤ c

∫ 1

0

(1 + | log t|)af∗(t) dt.

We can even show the equivalence of both terms.
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EXTRAPOLATION OF FUNCTION SPACES AND RELATED TOPICS 279

Corollary 2.9. Let a > 0 and Ω ⊂ Rn be a domain with |Ω| = 1. Then

∞∑

k=1

ka‖ fk | L1+ 1
k
(Ω)‖ ≈

∫ 1

0

(1 + | log t|)af∗(t) dt,

where f =
∑

k∈N fk is the decomposition described in (2.21).

Proof. We use the optimal decomposition of f =
∑

fk as above, that is,
f∗(e−k) ≤ f∗k+1(t) for 0 < t ≤ |Ik+1|. Thus integration yields

f∗(e−k) ≤ |Ik+1|−
k+1
k+2

(∫ |Ik+1|

0

f∗k+1(t)
k+2
k+1 dt

) k+1
k+2

≤ cek‖ f∗k+1 | L1+ 1
k+1

(0, 1)‖
= cek‖ fk+1 | L1+ 1

k+1
(Ω)‖

for all 0 < t ≤ |Ik+1| such that discretisation yields

∫ 1

0

(1 + | log t|)af∗(t) dt ≤ c1

∞∑

k=1

(1 + k)af∗(e−k)e−k

≤ c2

∞∑

k=1

(1 + k)a‖ fk+1 | L1+ 1
k+1

(Ω)‖

as requested. �

2.4. Decompositions in exponential spaces. Assume |Ω|=1, 1<q<∞.
In view of Remark 2.4 and (2.11) we have

L∞,q(logL)−1(Ω) ↪→ L∞(logL)−1/q′(Ω) = Lexp,1/q′(Ω), (2.22)

i.e., by (2.5) and (2.15) with b = 1,

sup
0<t<1

f∗(t)

(1 + | log t|)1/q′ ≤ c

(∫ |Ω|

0

[ f∗(t)
1 + | log t|

]q dt

t

)1/q

.

Plainly, the case q = ∞ can be included. Now we come to the counterpart
of Theorem 2.5 in case of 1 < q ≤ ∞ = p. Recall our notation Ik =[
e−k, e−k+1

]
, k ∈ N.
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280 DOROTHEE D. HAROSKE, HANS-JÜRGEN SCHMEISSER

Theorem 2.10. Let Ω ⊂ Rn be a domain with |Ω| = 1, 1 < q ≤ ∞, and
a > 1

q . Then the following assertions are equivalent:

(i) f ∈ L∞,q(logL)−a(Ω),

(ii)

∞∑

k=1

[‖ f | Lk(Ω)‖
ka

]q
<∞,

(iii)

∞∑

k=1

[‖ f | Lk, q(Ω)‖
ka

]q
<∞,

(iv)

∞∑

k=1

[‖ f∗ | Lk(Ik)‖
ka

]q
<∞,

where we always have the usual modification if q =∞.

Remark 2.11. For later use, let us explicitly state the equivalence of (i)
and (ii) in case of q =∞ in the following form, recall (2.12),

‖ f | Lexp,a(Ω)‖ ≈ sup
k∈N

k−a‖ f | Lk(Ω)‖, a > 0. (2.23)

As already mentioned, Theorem 2.10 is due to Edmunds, Krbec [30], and
Cruz-Uribe, Krbec [14]. As a consequence, it admits a simple proof of
the famous Brézis-Wainger embedding

Wm
p (Ω) ↪→ L∞,p(logL)−1(Ω) if m =

n

p
∈ N, (2.24)

where Ω ⊂ Rn is a bounded domain with sufficiently smooth boundary, and
Wm

p (Ω), m ∈ N, 1 ≤ p <∞, are the classical Sobolev spaces. We return to
this point below. Generalisations dealing with Generalized Lorentz-Zygmund
spaces (GLZ) and Lorentz-Karamata spaces were obtained by Edmunds,
Evans, Gogatishvili, Gurka, Krbec, Neves, Opic, Pick in an impres-
sive number of papers: [18–21], [23–25], [42–46], [74–76], [78], see also [17,
Sects. 3.4, 3.6] for a recent survey. There are further, closely linked topics
studied in this field, such as mapping properties of convolution operators,
Moser’s Lemma (see Edmunds, Krbec [31]), and interpolation arguments
[39]. However, this list is by no means complete.

2.5. Limiting embeddings in the critical case. As is well-known, the
history of such questions starts in the 1930s with Sobolev’s famous embed-
ding theorem [87]

Wm
p (Ω) ↪→ Lr(Ω), (2.25)
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EXTRAPOLATION OF FUNCTION SPACES AND RELATED TOPICS 281

where Ω ⊂ Rn is a bounded domain with sufficiently smooth boundary,
m ∈ N, 1 ≤ p <∞ with m < n

p , and 1 ≤ r ≤ ∞ such that m
n − 1

p ≥ −1
r . In

particular, in the limiting casem = n
p ∈ N, the inclusion (2.25) does not hold

for r =∞. Thus, to obtain further refinements of the limiting case of (2.25)
it became necessary to deal with wider classes of function spaces. In the
late 1960s Peetre [81], Trudinger [102], Moser [73], and Pohozhaev
[83] independently found refinements of (2.25) expressed in terms of Or-
licz spaces of exponential type, see also Strichartz [89], Yudovich [104],
Hempel, Morris and Trudinger [55], Bennett, Rudnick [3]; this was
followed by many contributions in the last decades investigating problems
related to (2.25) in detail. In 1979 Hansson [48] and Brézis, Wainger
[6] showed independently (2.24), see also Hedberg [54], and sharper results
by Maz’ya [69] and [70] dealing with capacitary estimates. Recently we
noticed a revival of interest in limiting embeddings of Sobolev spaces indi-
cated by a considerable number of publications devoted to this subject; in
addition to the papers referred to in Remark 2.11 let us only mention the
important contributions by Edmunds and Krbec [29], Edmunds, Kerman
and Pick [28], Cwikel, Pustylnik [15], and – also from the standpoint of
applications to spectral theory – the publications [35] and [94] by Edmunds
and Triebel. This list is by no means complete, but reflects the increased
interest in related questions in the last years. There are a lot of different
approaches to the modification of (2.25) in order to get – in the adapted
framework – appropriately optimal assertions. We especially recommend
the very interesting detailed survey paper by Pick [82].

Dealing with Sobolev spaces of fractional order Hs
p(Ω), s ∈ R, 1 < p <∞,

the Brézis-Wainger result (2.24) can be extended to

Hn/p
p (Ω) ↪→ L∞, p(logL)−1(Ω)

↪→ L∞(logL)−1/p′(Ω) = Lexp,1/p′(Ω),
(2.26)

recall also (2.22). Here Hs
p(Rn), s ∈ R, 1 < p < ∞, are the well-known

(fractional) Sobolev spaces of all measurable functions f : Rn → C, normed
by

‖ f | Hs
p(Rn)‖ = ‖F−1(1 + |ξ|2)s/2Ff | Lp(Rn)‖,

using the Fourier transform F and their inverse F−1. They naturally extend
the scale of (classical) Sobolev spaces Wm

p (Rn) since

Wm
p (Rn) = Hm

p (Rn), m ∈ N0, 1 < p <∞. (2.27)
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For bounded domains Ω ⊂ Rn the spaces Hs
p(Ω) are defined by restriction;

we shall mainly work with the following closed subspaces of Hs
p(Rn),

H̃s
p(Ω) = {f ∈ Hs

p(Rn) : supp f ⊂ Ω}. (2.28)

Recall that for a > 0,

‖ f | Lexp,a(Ω)‖ ≈ sup
k∈N

k−a‖ f | Lk(Ω)‖, a > 0,

by (2.23), cf. [36, Thm. 2.6.2/1]. Moreover, when 1 < p <∞, k ∈ N, k ≥ p,
then ∥∥id : H̃n/p

p (Ω)→ Lk(Ω)
∥∥ ≈ k

1
p′ ,

cf. [36, Thm. 2.7.2] and [94]. Using the extrapolation characterisation [29]
one can now conclude that

H̃n/p
p (Ω) ↪→ Lexp,a(Ω) is compact if, and only if, a >

1

p′
, (2.29)

see also [36, Thm. 2.7.3].

Remark 2.12. There are extensions of assertion (2.29) in various directions:
as far as function spaces are concerned, there are results for Besov spaces in
[36, Thm. 2.7.3] and in [52, Cor. 8.21], the latter also dealing with spaces of
Triebel-Lizorkin type. This is closely connected with the concept of growth
envelopes studied in [52], see also [95].

In view of applications also the degree of compactness of embeddings like
(2.29) is of special interest, characterised by the asymptotic behaviour of its
corresponding entropy or approximation numbers. We do not go into further
detail but refer to the results in [7], [9], [33], [36], [49], [50], [67], [68], [94]
which mainly rely on extrapolation arguments.

2.6. The case of missing derivatives. We briefly discuss some phe-
nomenon which is connected with critical embeddings for so-called reduced
Sobolev spaces and spaces with dominating mixed smoothness; this is based
on our joint papers with Krbec [60], [65], see also [59], [63], [64].

Let for a multi-index α = (α1, . . . , αn) ∈ Nn
0 its length be given by |α| =

α1 + · · ·+ αn, as usual, and define for m ∈ N the set

M(n;m) = {α ∈ Nn
0 : |α| = m, αi ∈ {0, 1}, i = 1, . . . , n}.
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For some numbers d1, . . . , dm ∈ N with d1 + · · · + dm = n, we consider the
subset

S(n; d1, . . . , dm) =
{
α = (α1, . . . , αm) ∈ Nn

0 : αj = (αj
1, . . . , α

j
dj
) ∈ Ndj

0 ,

|αj | = 1, j = 1, . . . ,m
}
.

If d1 = · · · = dm = d with n = md, then we shall write S(n;m) =
S(n; d, . . . , d). Obviously we always assume that m ≤ n.

Definition 2.13. Let m ∈ N, M ⊆ M(n;m), 1 < p < ∞, and Ω ⊆ Rn.
Then the reduced Sobolev spaces are given by

WM
p (Ω) = {f ∈ Lp(Ω) : D

βf ∈ Lp(Ω) for all α ∈M
and all β ∈ Nn

0 with β ≤ α}.

Plainly,

Wm
p (Ω) ↪→WM(n;m)

p (Ω) ↪→WM
p (Ω), 1 < p <∞. (2.30)

A remarkable result, proved by Adams in [1] says that in analogy to (2.25),

WM(n;m)
p (Ω) ↪→ Lr(Ω) (2.31)

if m < n
p , 1 ≤ r < ∞, and 1

r = 1
p − m

n . In other words, the Sobolev

embedding remains true for reduced Sobolev spaces.
A deeper look shows that reduced Sobolev spaces are closely related to

Sobolev spaces with dominating mixed derivatives. More precisely, if n =
dm, then (2.31) can be refined by

WM(n;m)
p (Rn) ↪→WS(n;m)

p (Rn) = S1
pW (Rd × · · · × Rd) ↪→ Lr(Rn),

where 1
r ≥ 1

p − m
n = 1

p − 1
d . Details about the spaces S1

pW (Rd × · · · × Rd)

and related spaces of functions with dominating mixed smoothness can be
found in the survey article [84] and the references given there.

In the general case, for example, when M = S(n; d1, . . . , dm), the situa-
tion is more sophisticated, cf. [60], and leads to Lebesgue spaces with mixed
norms as target spaces. Here we restrict ourselves to the above model case
M = S(n;m) for convenience, where n = dm. Thus in the critical case
m = n

p this leads to p = d > 1. The following extrapolation result can be

found in [60, Thm. 3.2, Cor. 4.1].
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Proposition 2.14. Let 1 < p <∞, m ∈ N. Then there exists some number

c > 0 such that for all f ∈W
S(n;m)
p (Rn),

sup
k>p

k−m/p′‖ f | Lk(Rn)‖ ≤ c‖ f |WS(n;m)
p (Rn)‖. (2.32)

Let Ω ⊂ Rn be a bounded domain with |Ω| = 1. In analogy to (2.28) we
set

W̃M
p (Ω) = {f ∈WM

p (Rn) : supp f ⊂ Ω}.
Then (2.32) implies the counterpart of (2.26),

W̃S(n;m)
p (Ω) ↪→ L∞(logL)−m/p′(Ω) = Lexp,m/p′(Ω). (2.33)

Moreover, in [60] it is shown that this is sharp in the scale of exponential
spaces as target spaces. Hence, the situation is different in the critical case
if one replaces the standard Sobolev spaces by reduced Sobolev spaces.

Remark 2.15. In the frame of Zygmund spaces the embeddings in (2.33)
can be refined in the spirit of (2.26) using multivariate rearrangements com-
bined with atomic representations and extrapolation arguments. This has
been done in [65]. In particular, we proved in [65, Thm. 5.3] for m = 2 that

W̃S(n;m)
p (Ω) ↪→ L∞,p(logL)−m(Ω).

Let us further mention that in case of general subsets M ⊂ M(n;m), but
with the additional condition that the coordinate-wise sum of all multi-
indices is uniformly bounded,

∑

α∈M
αi = ki ≤ K, i = 1, . . . , n,

then there is some counterpart of (2.33) in [60, Cor. 4.3] if one modifies the
target space of exponential type appropriately.

3. Lipschitz spaces

3.1. Definitions. Let C(Rn) be the space of all complex-valued bounded
uniformly continuous functions on Rn, equipped with the sup-norm as usual.
Recall the concept of the modulus of continuity,

ω(f, t) = sup
|h|≤t

‖Δhf | C(Rn)‖, t > 0, (3.1)

where Δh, h ∈ Rn, is the usual difference operator (Δhf)(x) = f(x + h) −
f(x), x ∈ Rn.
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Remark 3.1. For simplicity we restrict ourselves to first differences (and
derivatives) here considered in the sup-norm. In general one has to study
the r-th modulus of smoothness of a function f ∈ Lp(Rn), 0 < p ≤ ∞, r ∈ N,
defined by

ωr(f, t)p = sup
|h|≤t

‖Δr
hf | Lp(Rn)‖, t > 0, (3.2)

where the iterated differences Δm
h , m ∈ N0, are given by

(Δ1
hf)(x) = f(x+ h)− f(x), (Δm+1

h f)(x) = Δ1
h(Δ

m
h f)(x), (3.3)

for x, h ∈ Rn; cf. [4, Ch. 5, Def. 4.2] or [16, Ch. 2, §7]. An essential feature
of these moduli is given by Marchaud’s inequality,

ωr(f, t)p ≤
r

log 2
tr
∫ ∞

t

ωr+1(f, u)p
ur

du

u
, (3.4)

where f ∈ Lp(Rn), 1 ≤ p ≤ ∞, t > 0, and r ∈ N; see [4, Ch. 5, (4.11)] or
[16, Ch. 2, Thm. 8.1] (for the one-dimensional case).

Next we need the notions of Hölder-Zygmund and Besov spaces and spaces
of Lipschitz type. Again we restrict ourselves to smoothness parameters
s ∈ (0, 1] and p =∞.

Definition 3.2. Let 0 < s < 1.

(i) The Hölder-Zygmund space Cs(Rn) consists of all f ∈ C(Rn), such that

‖ f | Cs(Rn)‖ = ‖ f | C(Rn)‖+ sup
h�=0

‖Δhf | C(Rn)‖
|h|s (3.5)

is finite.

(ii) The Besov space Bs
∞,q(Rn) consists of all functions f ∈ L∞(Rn) such

that

‖ f | Bs
∞,q(Rn)‖ = ‖ f | L∞(Rn)‖+

(∫ 1

0

[
t−sω(f, t)

]q dt

t

)1/q

(3.6)

(with the usual modification if q =∞) is finite.

Remark 3.3. Note that Besov spaces Bs
p,q(Rn) of positive smoothness s > 0

can always be given by differences as subspaces of Lp(Rn), but they do not
coincide with their Fourier-analytically defined counterparts (in the frame-
work of tempered distributions S ′(Rn)) in all cases. However, for s ≥ 1 and
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p < ∞ the characterisation (3.6) has to be modified appropriately; that is,
for 0 < p ≤ ∞, s > n( 1p − 1)+, 0 < q ≤ ∞, and r ∈ N with r > s,

‖ f | Bs
p,q(Rn)‖ ≈ ‖ f | Lp(Rn)‖+

(∫ 1

0

[
t−sωr(f, t)p

]q dt

t

)1/q

(3.7)

(with the usual modification if q = ∞), where ωr(f, t)p is given by (3.2).
We refer to [4, Ch. 5, Def. 4.3], [16, Ch. 2, §10] (where the Besov spaces are
defined like in (3.7)) for the Banach case, and [93, Thm. 2.5.12], [98, Sect. 9],
[86] for the equivalence and distinction of both approaches. Obviously, with
q =∞, one recovers in (ii) the Hölder-Zygmund spaces Cs(Rn) = Bs

∞,∞(Rn),
0 < s < 1 (in the sense of equivalent norms), i.e.

‖ f | Cs(Rn)‖ ≈ ‖ f | C(Rn)‖+ sup
0<t<1

ω(f, t)

ts
. (3.8)

We also consider spaces of Lipschitz type which are “close” to Lipa,
0 < a ≤ 1. For convenience, we deal with p =∞ exclusively.

Definition 3.4. Let 0 < a ≤ 1.

(i) The Lipschitz space Lipa(Rn) is defined as the set of all f ∈ C(Rn)
such that

‖ f | Lipa(Rn)‖ = ‖ f | C(Rn)‖+ sup
0<t<1

ω(f, t)

ta
(3.9)

is finite.

(ii) Let 0 < q ≤ ∞, and

⎧
⎪⎨
⎪⎩

α ∈ R if 0 < a < 1, 0 < q ≤ ∞
α > 1

q if a = 1, 0 < q <∞
α ≥ 0 if a = 1, q =∞.

(3.10)

The space Lip(a,−α)
∞,q (Rn) is defined as the set of all f ∈ C(Rn) such

that

‖ f | Lip(a,−α)
∞,q (Rn)‖ = ‖ f | C(Rn)‖+

(∫ 1
2

0

[ ω(f, t)

ta| log t|α
]q dt

t

)1/q

(3.11)

(with the usual modification if q =∞) is finite.
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Remark 3.5. Note that the restriction for a in (i) and for α in (ii) are
quite natural as otherwise the spaces are trivial; when a = 1 one recovers
the classical Lipschitz space Lip1(Rn) in (i) which are different from C1(Rn)
(unlike in case of 0 < a < 1, Lipa(Rn) = Ca(Rn)). The above spaces

Lip(a,−α)
∞,q (Rn) first appeared (in this notation) in [51] in connection with

limiting embeddings, extending the case a = 1 studied in [26], [27]; in the

latter case we also investigated spaces Lip(1,−α)
p,q (Rn) in [51] in detail,

∥∥ f
∣∣ Lip(1,−α)

p,q (Rn)
∥∥ = ‖ f | Lp(Rn)‖+

(∫ 1
2

0

[ ω(f, t)p
t | log t|α

]q dt

t

)1/q

(3.12)

(with the usual modification if q = ∞), where 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and
α according to (3.10).

Remark 3.6. The spaces Lip(1,−α)(Rn) = Lip(1,−α)
∞,∞ (Rn), α ≥ 0, equipped

with the norm

‖ f | Lip(1,−α)(Rn)‖ = ‖ f | C(Rn)‖+ sup
0<t< 1

2

ω(f, t)

t| log t|α ,

can be obtained as special cases of the more general spaces C0,σ(t)(Ω),
Ω ⊆ Rn, introduced by Kufner, John and Fuč́ık (see [66, Def. 7.2.12]),

whereas Lip(1,0)p,∞ = Lip(1, Lp) are considered by DeVore and Lorentz
in [16, Ch. 2, §9]. In [26] we further studied Zygmund spaces of type
C(1,−α)(Rn), α ≥ 0, as refinements of C1(Rn), given by Definition 3.2, and

counterparts of the spaces Lip(1,−α)(Rn).

Remark 3.7. We recall a sharp embedding result for logarithmic Lipschitz

spaces Lip(a,−α)
p,q from [51] and restrict ourselves to p =∞, a = 1 for conve-

nience. Let 0 < q, r ≤ ∞, α > 1
q , β > 1

r . Then

Lip(1,−α)
∞,q (Rn) ↪→ Lip(1,−β)

∞,r (Rn) if, and only if,

either r ≥ q, β − 1

r
≥ α− 1

q
, or r < q, β − 1

r
> α− 1

q
.

(3.13)
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a
Lip(1,−β)

∞,r

Lip(1,−α)
∞,q

α = 1
q

1
q

0 < p <∞
Figure 2

The similarity to (2.10), (2.11) is obvious.
Let us again point out the somehow astonish-
ing result that one can “compensate” some
gain of logarithmic smoothness −β > −α by
“paying” with the additional index q, that is,
as long as (−β) − (−α) ≤ 1

q − 1
r , r ≥ q. We

also refer to Figure 1 for the counterpart of
limiting embeddings in terms of integrability
instead of smoothness. For later use, we ex-
plicate (3.13) in case of α = 1, r = ∞, and
β = 1

q′ , that is

Lip(1,−1)
∞,q (Rn) ↪→ Lip(1,−1/q′)

∞,∞ (Rn) = Lip(1,−1/q′)(Rn). (3.14)

3.2. Extrapolation. The following extrapolation type result for spaces

Lip(a,−α)
p,q (Rn) was obtained in [27], [51]; for convenience we recall the case

p =∞, a = 1 only.

Proposition 3.8. (i) Let q = ∞, α > 0. Then f ∈ Lip(1,−α)(Rn) =

Lip(1,−α)
∞,∞ (Rn) if, and only if, f belongs to C(Rn) and there is some

c > 0 such that for all λ, 0 < λ < 1,

sup
0<t<1/2

ω(f, t)

t1−λ
≤ cλ−α.

Moreover, we obtain as an equivalent norm in Lip(1,−α)(Rn),

‖ f | Lip(1,−α)(Rn)‖ ≈ ‖ f | C(Rn)‖+ sup
0<λ<1

λα sup
0<t<1/2

ω(f, t)

t1−λ
. (3.15)

(ii) Let 0 < q < ∞, α > 1
q . Then f ∈ Lip(1,−α)

∞,q (Rn) if, and only if, f

belongs to C(Rn) and there is some c > 0 such that

∫ 1

0

λαq

∫ 1
2

0

[ω(f, t)
t1−λ

]q dt

t

dλ

λ
≤ c.

Moreover,

∥∥ f
∣∣ Lip(1,−α)

∞,q (Rn)
∥∥ ≈ ‖ f | C(Rn)‖

+

(∫ 1

0

λαq

∫ 1
2

0

[ω(f, t)
t1−λ

]q dt

t

dλ

λ

)1/q

.
(3.16)
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Remark 3.9. Part (i) can be found in [62, Prop. 2.5], see also [64], which
was also the motivation for the above extension in [27], [51].

In view of Definition 3.2 one can reformulate the above result as follows
to emphasise the extrapolation nature of the outcome.

Corollary 3.10. (i) Let α > 0. Then f ∈ Lip(1,−α)(Rn) if, and only if,
f ∈ C1−λ(Rn) for all λ ∈ (0, 1), and

sup
0<λ<1

λa‖ f | C1−λ(Rn)‖ (3.17)

is finite, where (ex-inf) yields an equivalent norm in Lip(1,−α)(Rn).

(ii) Let 0 < q < ∞, α > 1
q . Then f ∈ Lip(1,−α)

∞,q (Rn) if, and only if,

f ∈ B1−λ
∞,q (Rn) for all λ ∈ (0, 1), and

(∫ 1

0

λαq‖ f | B1−λ
∞,q (Rn)‖q dλ

λ

)1/q

(3.18)

is finite, where (3.18) yields an equivalent norm in Lip(1,−α)
∞,q (Rn).

Remark 3.11. The proof of Proposition 3.8(i) is based on the equality

sup
0<λ<1

λα sup
0<t<1/2

ω(f, t)

t1−λ
= sup

0<t<1/2

[ω(f, t)
t

sup
0<λ<1

λαtλ
]

= sup
0<t<1/2

[ω(f, t)
t

(α
e

)α

| log t|−α
]
.

However, one should always keep in mind that this extrapolation characteri-
sation heavily depends on the use of fixed norms in (3.6), whereas equivalent
norms may lead to different spaces. We refer to a more general approach by
Cobos, Fernández-Cabrera, Triebel in [12].

Remark 3.12. Let us mention that extrapolation characterisations as in the
above Corollary 3.10 can be extended to Lipschitz-type spaces with domi-
nating mixed smoothness defined via mixed differences and mixed moduli of
smoothness, respectively; we refer to [62, Sect. 4] for further details.

3.3. Limiting embeddings in the supercritical case. We return to
the topic of limiting embeddings already explained in Section 2.5. Note
that (in an appropriately modified context) it also makes sense to consider
embeddings like (2.25) in “super-critical” situations, that is, when m > n

p .
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Then by simple monotonicity arguments all distributions in the Sobolev
space Wm

p are essentially bounded,

Wm
p (Rn) ↪→ C(Rn) (3.19)

in this case, 1 ≤ p <∞. The counterparts of (2.25) and (2.24) then read for
m ∈ N, 1 ≤ p <∞, as

Wm
p (Rn) ↪→ Lipa(Rn), 0 < a ≤ m− n

p
< 1,

and,

W 1+n/p
p (Rn) ↪→ Lipa(Rn), 0 < a < 1, m = 1 +

n

p
∈ N,

but W
1+n/p
p (Rn) 	↪→ Lip1(Rn). Using the above extended scale of Lipschitz

spaces the direct counterpart of (2.26) can be written as

H1+n/p
p (Rn) ↪→ Lip(1,−1)

∞,p (Rn) ↪→ Lip1,−1/p′(Rn), (3.20)

where we used (3.14), recall (2.27). Note that the outer embedding coincides
with the celebrated result of Brézis and Wainger [6] in which it was shown

that every u ∈ H
1+n/p
p , 1 < p <∞, is “almost” Lipschitz-continuous, in the

sense that

|u(x)−u(y)| ≤ c|x−y|
∣∣log |x−y|

∣∣1− 1
p ‖u | H1+n/p

p ‖, 0 < |x−y| < 1

2
. (3.21)

In [26], [27], [51] and [61], [62], [64] we studied the sharpness of these em-
beddings and found that for 1 < p <∞,

B1
∞,p(Rn) ↪→ Lip(1,−1)

∞,p (Rn) ↪→ Lip1,−1/p′(Rn), (3.22)

which together with the well-known Franke-Jawerth-type sharp embedding

H
1+n/p
p (Rn) ↪→ B1

∞,p(Rn), 1 < p < ∞, and (3.13) implies (3.20). Note
that the methods to prove such embeddings are different: in the first papers
we rely on atomic decomposition techniques, whereas the latter are directly
based on extrapolation ideas and Marchaud-type inequalities, recall (3.4).

Remark 3.13. The above result (in its classical form) was obtained by
Hansson [48] and Brézis-Wainger [6]. In addition to the references re-
called at the beginning of Section 2.5 and in Remark 2.12 (which often deal
with both limiting situations) let us further mention papers by Bourdaud
and Lanza de Cristoforis [5], and by Neves [74]. The borderline case
was already studied by Zygmund [107], [108].
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Remark 3.14. In this super-critical limiting situation we have counterparts
of (2.29) like

B1+1/p
p,q (Ω) ↪→ Lip1,−α(Ω) is compact if, and only if, α >

1

q′
, (3.23)

where 0 < p < ∞, 0 < q ≤ ∞, and similar results for spaces H
1+n/p
p (Ω).

The sufficiency part can be found in [26], whereas the necessity is an easy
consequence of related general results for continuity envelopes as studied in
[52]. Again, further extensions in view of the function spaces can be found
in [26], [27], [51], whereas the asymptotic behaviour of its corresponding
entropy or approximation numbers is investigated in [13], [26], [27].

3.4. The case of missing derivatives revisited. In Section 2.6 we
briefly introduced the subject of reduced Sobolev spaces. Relying on similar
extrapolation techniques we proved in [61], [62] corresponding results for
reduced Sobolev spaces and spaces with dominating mixed smoothness. We
discuss a special case.

As a consequence of (3.20) we have in the case m = n
p ∈ N,

Wm+1
p (Rn) ↪→ Lip1,−1/p′(Rn), 1 < p <∞. (3.24)

Observe that one can understand

Wm+1
p (Rn) =

{
f ∈ Lp(Rn) : Dα+ηf ∈ Lp(Rn) for all α ∈ Nn

0 ,

|α| ≤ m, and η ∈ Nn
0 with |η| = 1

}
.

Thus for a set M⊂M(n;m) we put

M+ 1 = {α+ η : α ∈M, η ∈ Nn
0 with |η| = 1}.

Obviously, the space WM+1
p (Rn) can be considered as a counterpart of

Wm+1
p (Rn) in the context of reduced Sobolev spaces. We have

Wm+1
p (Rn) ↪→WM+1

p (Rn)

parallel to (2.30) and it makes sense to study sharp embeddings of spaces

WM+1
p (Rn) into Lipschitz spaces Lip(1,−α)(Rn) refining (3.20). However, in

contrast to the approach in the critical case briefly presented in Section 2.6,
it turns out now that the target space remains unchanged in (3.24) (com-
pared with the classical Sobolev spaces). In [62, Thm. 5.11] we proved the
following.
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Theorem 3.15. Let m ∈ N, and M⊂M(n;m) such that
∑

α∈M
αi = const.

independently of i = 1, . . . , n. Then for p = n/m,

WM+1
p (Rn) ↪→ Lip1,−1/p′(Rn). (3.25)

In particular, if M = S(n;m), n = md, then

WS(n;m)+1
p (Rn) ↪→ Lip1,−1/p′(Rn). (3.26)

Remark 3.16. The proof relies on the estimate

‖ f | C1−λ(Rn)‖ ≤ cλ−1/p′‖ f |WM+1
p (Rn)‖

and the extrapolation result Corollary 3.10(i). One may ask whether further
reduction is possible, i.e., whether (HS-16) remains true ifM+1 is replaced
by a subset S ⊂ M + 1 containing less multi-indices of order m + 1. This
may lead to different limiting situations; several examples are discussed in
[62, Sect. 5].

4. Further spaces and problems

Now we briefly sketch some further directions of research based on the ex-
trapolation techniques.

4.1. Logarithmic Sobolev spaces. Let 0 < p < ∞, j ∈ N, recall our
notation for pj , p−j in (2.16). Edmunds and Triebel introduced in [35–37]
logarithmic Sobolev spaces Hs

p(logH)a(Ω), 1 < p < ∞, s ∈ R, a ∈ R, in
the same spirit as presented in Theorem 2.5, where Ω ⊂ Rn is a bounded
C∞-domain. For instance, if a < 0, then

f ∈ Hs
p(logH)a(Ω) if, and only if,

( ∞∑

j=j0

2jap‖ f | Hs
pj
(Ω)‖p

)1/p

is finite; for a > 0 a modification similar to Theorem 2.5(ii) is needed. If
s ∈ N, then as in the classical case,

Hs
p(logH)a(Ω) = Hs(X) with X = Lp(logL)a(Ω),

that is, the Sobolev spaces Hs
p(logH)a(Ω) can be seen as the Lorentz-

Zygmund space Lp(logL)a(Ω) ‘lifted’ with smoothness s ∈ N0 and equipped
with the equivalent norm

∑

|α|≤s

‖Dαf | Lp(logL)a(Ω)‖,

see [36, Thm. 2.6.3] and [35].
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4.2. Spaces on Rn. Dealing with spaces on Ω = Rn, or more general,
unbounded domains with |Ω| = ∞, then there is no direct counterpart for
the construction described in Section 2.2: it heavily relies on monotonicity
arguments for the spaces like (2.9) when approaching the destination space;
but this fails in this setting. To circumvent this difficulty we followed a
slightly modified approach in [49], [50] and introduced additional weights
(which have no influence in spaces on bounded domains). In particular,
when 1 < p <∞ and a < 0, then Lp(logL)a(Rn) is the set of all measurable

functions f : Rn → C such that (1 + |x|2)−2−j

f ∈ Lpj ,p(Rn) for j ≥ j0, and

‖ f | Lp(logL)a(Rn)‖ =
( ∞∑

j=j0

2jap
∥∥ (1+ |x|2)−2−j

f
∣∣ Lpj ,p(Rn)

∥∥p
)1/p

(4.1)

is finite. In case of a > 0 a modification similar to Theorem 2.5(ii) is neces-
sary. This led to spaces Lp,q(logL)a(Rn) and Hs

p(logH)a(Rn) which inher-
ited useful properties from their counterparts on domains when restricted,
say, to dyadic annuli. So using rather mild additional logarithmic weights we
found counterparts of sharp or compact embeddings like (2.29) and could –
via scaling arguments – also estimate their entropy and approximation num-
bers, recall Remark 2.12.

On the other hand, defining the target space of type Lp,q(logL)
∗
a(Rn)

directly by (2.5) causes no problems in this context, but leads to different
spaces: unlike in case of bounded domains one can prove that, in general,
Lp,q(logL)a(Rn) and Lp,q(logL)

∗
a(Rn) do not coincide. The latter approach,

also in view of Bessel-potential spaces Hs
p(logH)∗a(Rn) = Hs(X) with X =

Lp(logL)
∗
a(Rn), was studied in a series of papers by Edmunds, Gurka and

Opic [18–23], [47], and by Evans, Opic, Pick and Trebels in [38], [39],
[77–80].

It seems that already in this relatively simple situation on Rn the opti-
mal approach to logarithmic spaces strongly depends on the intention what
problems should be solved: in view of compactness, decomposition methods
and some applications in spectral theory the extrapolation method appears
preferable, whereas in terms of optimality of embeddings, e.g. in the context
of r.i. spaces, more abstract settings, or mapping properties and connections
to interpolation theory, the immediate definition (2.5) is advantageous.

4.3. Spaces on Tn. Finally we describe some new Besov spaces obtained
via extrapolation techniques and restrict ourselves to the periodic case
Ω = Tn for convenience. Besov spaces of type Bs

p,q(Tn) were described
in [85, Ch. 3] using a Fourier-analytical approach based on smooth dyadic
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partitions ϕ = (ϕj)j∈N0
of unity. Let (f̂(k))k∈Zn be the Fourier coefficients

of f ∈ D′(Tn) and

fϕ
j (x) =

∑

k∈Zn

f̂(k)ϕj(k)e
2πikx, j ∈ N0, x ∈ Tn.

Then for s ∈ R, 0 < p, q ≤ ∞,

‖ f | Bs
p,q(Tn)‖ =

( ∞∑

j=0

‖ 2jsfϕ
j | Lp(Tn)‖q

)1/q

.

Equivalent characterisations, based on wavelet decompositions, can be found
in [100, Sect. 1.3]. We refer to [93, Ch. 9] for the connection with weighted
spaces on Rn.

Plainly, some first approach to define Besov-Zygmund spaces consists in
replacing the basic space Lp in the above definition by Lp(logL)a, that is, to
understand Bs

p(Lp(logL)a) = Bs
p(Lp(logL)a(Tn)) where 0 < p <∞, s ∈ R,

a ∈ R. This idea was also used by Edmunds and Netrusov in [33] in a
slightly different context. Obviously these spaces coincide for a = 0 with
Bs

p,q(Tn).
On the other hand, using notation (2.16), we aim at descriptions similar

to Theorem 2.5, that is, where

‖ f | Bs
p(logB)a(Tn)‖ =

( ∞∑

j=J

2jap‖ f | Bs
pj ,p(T

n)‖p
)1/p

<∞, (4.2)

for a < 0, and a modified construction for a > 0. At first glance these are
different spaces, Bs

p(Lp(logL)a)(Tn) and Bs
p(logB)a(Tn), but the assump-

tion is that both spaces coincide in the sense of equivalent norms. This relies
on some unpublished notes by Triebel [96], [99] and is not yet clear in all
cases, e.g., when 0 < p < 1.

As spaces of such type already appeared in some limiting embedding sit-
uations, cf. [53], the study seems quite interesting, in particular in view of
(wavelet) decompositions, (compact) embeddings, entropy and approxima-
tion numbers. First partial contributions in this direction can be found in
[8], [97], [100], [101].
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