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Abstract

Wavelets (see [2, 3, 4]) are a recent mathematical tool that is applied in signal
processing, numerical mathematics and statistics. The wavelet transform allows to
follow data in the frequency as well as time domain, to compute efficiently the wavelet
coefficients using fast algorithm, to separate approximations from details. Due to these
properties, the wavelet transform is suitable for analyzing and forecasting in time
series. In this paper, Box-Jenkins models (see [1, 5]) combined with wavelets are used
to the prediction of a time series behavior. The described method is demonstrated on
an example from practice in the conclusion.

1. Introduction

It is possible to get the first impression of a time series behavior from the line
graph. However, the conclusions received are highly subjective. More accurate infor-
mation can be provided for instance by the Box-Jenkins methodology. Box-Jenkins
models use the fact that every time series {yt | t = 1, . . . , T} is a realization of some
stochastic process. Because such models are based on the stochastic nature of time
series, correlations have important place in drawing them up. A prediction for the
time series is then created on the basis of the mathematical model received. This
paper deals with linking wavelets and Box-Jenkins models. The ability of wavelets
to decorrelate data is then used to specify forecast in time series.

The contribution is divided into following parts: The description of standard Box-
Jenkins models built is given in Section 2. Wavelets and their usage in forecasting
time series are discussed in Section 3. The procedures described are presented in the
example in Section 4.

2. Box-Jenkins models

The Box-Jenkins models are constructed for the stationary time series. It means
that the mean value and the variance function are constant, the correlation and the
covariation functions depend only on the time distance of random variables.
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A special case of the stationary process is the series {at} of uncorrelated random
variables with constant mean value and constant variance function that is called the
white noise. In what follows, suppose that every time series consists of an unsys-
tematic component {at} and of systematic components such as a trend, a seasonal
component or a cyclical component.

The stationary Box-Jenkins process is denoted by ARMA(p, q). It is a process
composed of an autoregressive process of order p and a process of moving averages
of order q. The mathematical model of it is

yt = Φ1yt−1 + · · ·+ Φpyt−p + at − θ1at−1 − θ2at−2 − · · · − θqat−q, (1)

where Φ1, . . . ,Φp are parameters of the autoregressive part and θ1, . . . , θq are param-
eters of the moving averages part of the model. This model can be rewritten using
a backshift operator Biyt = yt−i in the form

Φp(B)yt = θq(B)at, (2)

where Φp(B) = (1− Φ1B − · · · − ΦpB
p) and θq(B) = (1− θ1B − · · · − θqBq).

The process AR(p) is stationary in case when roots of the polynomial Φp(B) lie
outside the unit circle. The process MA(q) is invertible, when roots of the polyno-
mial θq(B) lie outside the unit circle. But stationary models nearly absent in the
economic practice. Fortunately, it is possible to convert a nonstationary model to
a stationary one.

If d roots of the polynomial Φp(B) lie on the unit circle, the process is not
stationary but it has a stochastic trend. Such process is denoted I(d) and it is called
the integrated process of order d. Its model has the form

(1−B)dyt = at. (3)

This model can be converted to a stationary one if d-times differentiation is applied
to it. The combination of the stationary and the integrated process leads to the
nonstationary process ARIMA(p, d, q),

Φp(B)(1−B)dyt = θq(B)at. (4)

When a seasonal oscillation with period s occurs in a time series, it is necessary
to capture the dependence among the components of the original series and also the
dependence among the components, which correspond to the different seasons. The
seasonal model SARIMA(p, d, q)(P,D,Q),

ΦP (Bs)Φp(B)(1−B)d(1−Bs)Dyt = θq(B)θQ(Bs)at, (5)

where P,D and Q are seasonal parameters of process, is used in this case. The left-
hand side of (5) supplies the dependence inside the period and the right-hand side
represents only the seasonal dependences.
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Constructions of Box-Jenkins models are especially based on the information that
is obtained from the correlograms, i.e. the graphs of values of the autocorrelation
function ACF and the partial autocorrelation function PACF.

For stationary time series, the residual ACF is defined through autocorrelations
with the delay k,

ρk =
γk
γ0

, (6)

where γk = E[(yt−µ)(yt−k−µ)]. The residual ACF indicates the range of the linear
dependence between yt and yt−k.

The partial autocorrelation with delay k is defined through partial regressive
coefficients Φkk in the autoregression of order k

yt = Φk1yt−1 + Φk2yt−2 + · · ·+ Φkkyt−k + at, (7)

where at is a value that is uncorrelated with yt−1, yt−2, . . . , yt−k. The function PACF
gives the information cleaned from the influence of the variables yt−1, yt−2, . . . , yt−k.

First estimation properties of a given time series are based on the line graph,
periodogram, ACF and PACF. Peaks in the periodogram indicate the presence of
seasonal oscillations. It means that it is necessary to work with a seasonal model.
Values greater than 1 in ACF and PACF mean that the series is not stationary. In
this case, it is necessary to consider an integrated model. Removal of non-stationarity
in the variance can be achieved by the Box-Cox transformation.

The model chosen has to be verified, i.e. monitored whether autocorrelation un-
systematic components are zero by the Box-Pearson test and how good the received
estimates of the parameters µ, φ, θ are by t-tests.

The model selected is the basis for the estimate of further development of the se-
ries. The calculation of the forecasted value yT+h is done by means of the conditional
mean value E(yT+h | yT−1, yT−2, . . . ).

3. Wavelet transform

The wavelet transform is a useful tool for detecting local properties and inves-
tigating nonstationary data. It is defined using wavelets, which form a basis in the
space L2(R). Multiresolution analysis (MRA) is the most commonly used method to
the construction of such basis.

During MRA, subspaces Vj ⊂ L2(R) are constructed with properties
1) Vj ⊂ Vj+1,
2) there exists ϕ ∈ V0 such that {ϕ0,k}, where ϕ0,k(x) = ϕ(x− k), is orthogonal and

complete in L2(R),
3) f(x) ∈ V0 if and only if f(2jx) ∈ Vj,
4) ∩jVj = {0},
5) ∪jVj = L2(R).
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When {Vj} is MRA with scaling function ϕ, then there exists a scaling vector
u = (. . . , u−1, u0, u1, . . . ) such that

ϕ(x) =
√

2
∑
k∈Z

ukϕ(2x− k). (8)

In this case, the associated wavelet ψ is defined by the formula

ψ(x) =
√

2
∑
k∈Z

vkϕ(2x− k), vk = (−1)ku1−k. (9)

It follows from the MRA that there exists a subspace Wj ⊂ L2(R) such that

Vj+1 = Vj ⊕Wj. (10)

The subspaces Vj and Wj can be generated by means of dilations and traslations of
the functions ϕ and ψ. It holds

Wj = span{ψj,k(x)}, where ψj,k(x) = 2j/2ψ(2jx− k), (11)

Vj = span{ϕj,k(x)}, where ϕj,k(x) = 2j/2ϕ(2jx− k). (12)

Moreover, it can be seen that

Vj+1 = VJ ⊕WJ ⊕WJ+1 ⊕ · · · ⊕Wj. (13)

It means that it is possible to expand every function f ∈ L2(R) into the series

f(x) =
∑
k∈Z

yJ,kϕJ,k +
∞∑
j=J

∑
k∈Z

xj,kψj,k. (14)

The scaling coefficients yj,k and the wavelet coefficients xj,k are calculated as inner
products. It holds

yj,k = 〈f, ϕj,k〉, xj,k = 〈f, ψj,k〉. (15)

It follows from (15), (11), (12), (8), (9) and (14) that

yj,k =
1√
2

∑
l

ulyj+1,2k+l, xj,k =
1√
2

∑
l

(−1)lu1−lyj+1,2k+1, (16)

yl+1,k =
1√
2

∑
m

um−2kyl,m +
1√
2

∑
m

(−1)mu1−m−2kxl,m. (17)

Computation of the wavelet coefficients is realized by means of the Mallat algo-
rithm. The relations (16) and (17) are the basis of this algorithm. First, approxi-
mations and details are computed from the data given (the decomposition phase).
The approximations correspond to the trend and the details correspond to random
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components of the time series. The process can be repeated more times. The wavelet
coefficients can be adapted or not. In the end, modified or original data are obtained
from this set of values (the reconstruction phase).

In the following example, the wavelet transform is used to construct the prediction
for the time series given. First, a decomposition into approximations and details is
done. Then the proper ARIMA model and prediction are found for each of these
parts. The resulting prediction is a sum of values from these two partial predictions.

4. Example

The monthly values of CPI inflation in the Czech Republic in the years 2004–2014
are given in Table 1. Find a suitable ARIMA model for this series from January 2004
to December 2012. Make a forecast for the rest of the series using the ARIMA model
and then using ARIMA model modified by wavelets. Compare the results received
to each other.

Table 1: Inflation 2000–2014

Solution. On the basis of ACF and PACF, the original time series were modeled
through ARIMA(3,2,1) model.

Further, the decomposition of the time series to approximations and details by
using the Daubechies wavelet Db3 was done. The first order extrapolation was used
to expand the data beyond boundary. This allowed receiving such approximation
coefficients that are close to the values of the original time series.

In the next step, appropriate ARIMA models were selected for the approximations
and for the details separately. The approximation coefficients are not identical with
the time series values, because the information is lost when wavelet decomposition
is made. Moreover, a small change of range (e.g. a truncation of the time series
or an extension of the data beyond boundary) may affect the shape of the ARIMA
model. Therefore, Box-Jenkins models are different for the original data and for
approximations.

The approximations were modeled with the help of ARIMA(2,2,1) process and
the details were modeled as ARIMA(2,0,1) process in this example. The prognosis
for the time series was obtained by adding up the forecasts for approximation and
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details. Note that it is possible to realize prediction using approximations only and
ignore details, when the details are detected like random noise.

Choice of ARIMA models affects the shape of the predictions. Adequacy of the
models is assessed by means of corresponding graphs ACF and PACF. Comparison
of the predictions for the next 15 months is shown in Figure 1. Comparison of the
values received is presented in Table 2.

Figure 1: Comparison of predictions

Table 2: Comparison of predictions

The root mean square error RMSE = 1.07178 in case of the ARIMA model and
RMSE = 0.78320 in case of the model that uses the wavelet transform. It can be
seen that the prognosis was improved by 36.8% when the wavelet modification was
used.

5. Conclusion

The example has shown that the ARIMA model modification can lead to im-
proved estimation of time series evolution. Note that wavelets can be used not only
in forecasting non-stationary time series, but also to detect sudden changes, or to
select cycles or fractal nature of time series.
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