
PANM 16

Václav Finěk; Martina Šimůnková
Parallel implementation of Wavelet-Galerkin method

In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of
Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 3-8, 2012. Institute of Mathematics AS CR,
Prague, 2013. pp. 69–74.

Persistent URL: http://dml.cz/dmlcz/702693

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702693
http://dml.cz

Programs and Algorithms of Numerical Matematics 16

J. Chleboun, K. Segeth, J. Š́ıstek, T. Vejchodský (Eds.)
Institute of Mathematics AS CR, Prague 2013

PARALLEL IMPLEMENTATION OF WAVELET-GALERKIN

METHOD

Václav Finěk, Martina Šimůnková

KAP and KMD FP TU Liberec
Studentská 1402/2, 461 17 Liberec 1, Czech Republic

vaclav.finek@tul.cz, martina.simunkova@tul.cz

Abstract

We present here some details of our implementation of Wavelet-Galerkin method
for Poisson equation in C language parallelized by POSIX threads library and show
its performance in dimensions d ∈ {3, 4, 5}.

1. Introduction

Due to storage requirements and computational complexity, the approximate
solution of PDEs computed by standard numerical methods is usually limited to
problems with up to three or fourth dimensions. However in mathematical model-
ing, there is a lot of problems which involve more than three or four dimensions.
For example, the pricing of financial derivatives, problems in quantum mechan-
ics and particle physics. Here, the dimension grows with the number of consid-
ered derivatives, electrons or nuclei. An important issue for numerical methods for
higher-dimensional PDEs is that typical domains are usually hypercubes. And it
is well-known, that the curse of dimensionality can be broken on tensor product
domain (0, 1)d by using sparse grids [1] or by wavelets [5].

To use wavelets efficiently to solve PDEs, it is necessary to have very efficient
matrix-vector multiplication for vectors and matrices in wavelet coordinates and to
have at one’s disposal suitable wavelet bases. Wavelets should have short supports
and vanishing moments, be smooth and known in closed form, and a corresponding
wavelet basis should be well-conditioned.

In [5], authors were able to solve Poisson equation up to 10 dimensions by applying
an adaptive wavelet scheme with orthonormal continuous piecewise linear multi-
wavelets proposed in [6]. They exploited the fact that the corresponding stiffness
matrices are in tensor product wavelet coordinates well-conditioned independently
on the dimension. Their approximations converged in energy norm with the same
rate as the best N -term approximations independent of d with the cost of producing
these approximations proportional to their length up to a constant factor growing
potentially with the dimension, but only linearly.

69

We try to improve results obtained in [5] by applying higher order wavelet ba-
sis. In recent years, several promising constructions of wavelets were proposed. We
mention, for example, a construction of spline-wavelet bases on the interval proposed
in [2]. Their bases are compactly supported and generate multiresolution analyses
on the unit interval with the desired numbers of vanishing wavelet moments for pri-
mal and dual wavelets. Moreover, the condition number of interval spline-wavelet
bases is close to the condition number of the spline wavelet bases on the real line for
bases up to order 4. In our contribution, we use recently proposed wavelets based
on quadratic splines [3] which have shorter supports and are better conditioned. It
is a modification of basis proposed in [4] with an improved condition number. Some
preliminary results were already presented in [7]. There, a sequential algorithm was
used to solve Poisson equation for d ∈ {2, 3}.

2. Problem formulation

We solve Dirichlet problem

−
d

∑

i=1

∂2u

∂x2i
= f x ∈ Ω = (0, 1)d

u = 0 x ∈ ∂Ω

by Galerkin method. Basis functions are wavelets based on quadratic splines pro-
posed in [3] extended to higher dimensions by tensor product. Stiffness matri-
ces are computed exactly. Used quadratic splines have points of discontinuity at
1
2L
, 2
2L
, . . . , 2

L
−1

2L
where L denotes the number of decomposition levels. Right-hand

side integrals are calculated by adaptive Simpson rule. We split integration to hy-
percubes of size (2−L)d which enables efficient parallelization. We solve the arising
system of linear algebraic equations originated from discretization by the conjugate
gradient method with standard wavelet preconditioning consisting in normalizing all
basis functions with respect to a bilinear form corresponding to stiffness matrix. It
practically means that the stiffness matrix is multiplied from both sides by a diago-
nal matrix which has at its diagonal square root of diagonal elements of the original
stiffness matrix.

We aim at an efficient implementation of adaptive wavelet methods for higher
dimensional problems. For this purpose it is necessary to implement an efficient
storage of sparse vectors and sparse matrices in wavelet coordinates and their efficient
multiplication. We have so far implemented an efficient algorithm for matrix-vector
multiplication in the case d = 1 and because stiffness matrices for Poisson equation
in higher dimensions are computed from the stiffness matrices for Poisson equation
in one dimension and from matrices of scalar products of basis functions in one
dimension, we apply it here also for d ∈ {3, 4, 5}. Here, we present a non-adaptive
implementation. It means that we choose a number of levels L and a dimension d

which leads to 2Ld basis functions.

70

3. Implementation and parallelization

In next subsections, we shortly describe some implementation details – a compu-
tation of right-hand side integrals and a multiplication of vector by stiffness matrix.

3.1. Computation of right-hand side integrals

Right-hand side integrals are in the form
∫

(0,1)d
ψi1(x1) . . . ψid(xd)f(x1 . . . xd) dx1 . . . dxd, (1)

where functions ψij are piecewise quadratic. Therefore we can split hypercube (0, 1)d

to hypercubes of size (2−L)d and compute integrals
∫

xi11 . . . x
id
d f(x1 . . . xd) dx1 . . .dxd (2)

at each small hypercube for i1, . . . , id ∈ {0, 1, 2}. Consequently, we compute (1) as
a linear combination of integrals (2). To calculate (2) we use Fubini’s theorem and
a recursion. Let us denote xi =

i
2L
. We designed an implementation of Simpson rule

for a computation of iterated integrals I =
∫ xi+1

xi
F (x) dx described below in 1.-5.

Main goal of our design is to omit evaluation of the same value of function F twice
because it is again an integral and its evaluation is computationally expensive.

1. Compute recursively F (xi) and F (xi+1) and evaluate

I0 =
xi+1−xi

2
(F (xi) + F (xi+1)) .

2. Set j = 0.

3. Compute recursively F (ξi,k) with

ξi,k = xi +
2k−1

2L+j+1 for k = 1, 2, 3, . . . , 2j

and evaluate

I ′ = xi+1−xi

2j

2j
∑

k=1

F (ξi,k).

4. If |Ij − I ′| > ε, set j = j + 1, compute Ij =
1
2
(Ij−1 + I ′) and go to step 3.

5. Compute I ≈ 1
3
(Ij + 2I ′).

As mentioned above, we compute right-hand side integrals separately on hyper-
cubes (2−L)d. These integrals can be computed independently which enables simple
parallelization. Our implementation is in C language and for parallelization we use
a POSIX threads library. Every thread takes an index of a hypercube from a global
variable in a loop, then increases the index and computes integrals. Taking and
increasing global variable is a critical section. Therefore we use mutex (mutual
exclusion) to synchronize threads there.

71

3.2. Multiplication of vector by stiffness matrix

We have implemented a very efficient algorithm of matrix multiplication in case
d = 1. It stores stiffness matrix with entries

dij =

∫ 1

0

ψ′

i(x)ψ
′

j(x) dx (3)

in a constant space with respect to number of levels L and run in a linear time with
respect to a matrix order. You can find a description of this algorithm in [8]. We
use a tensor product of 1D bases as a multi-dimensional basis

ψi1,...,id(x1, . . . , xd) = ψi1(x1) · · ·ψid(xd)

and entries of the corresponding stiffness matrix

ai1,...,id,i′1,...,i′d =

∫

[0,1]d
∇ψi1,...,id∇ψi′

1
,...,i′

d
. (4)

We derive how to express the matrix a through matrices d and g

gij =

∫ 1

0

ψi(x)ψj(x) dx.

Note that used spline-wavelet basis is not orthonormal and so g is not identity matrix.
We put d = 3 for the sake of simplicity. Matrix (4) is then given by

ai,j,k,i′,j′,k′ =

∫

[0,1]3
ψ′

i(x1)ψj(x2)ψk(x3)ψ
′

i′(x1)ψj′(x2)ψk′(x3) +

+ψi(x1)ψ
′

j(x2)ψk(x3)ψi′(x1)ψ
′

j′(x2)ψk′(x3) +

+ψi(x1)ψj(x2)ψ
′

k(x3)ψi′(x1)ψj′(x2)ψ
′

k′(x3)

and can be expressed as

ai1,i2,i3,i′1,i′2,i′3 = dii′gjj′gkk′ + gii′djj′gkk′ + gii′gjj′dkk′

and multiplication of right-hand side r with a as
∑

i′,j′,k′

(dii′gjj′gkk′ + gii′djj′gkk′ + gii′gjj′dkk′) ri′j′k′. (5)

To compute (5) we use the following algorithm

1. Compute r0ij′k′ =
∑

i′ gii′ri′j′k′ and r1ij′k′ =
∑

i′ dii′ri′j′k′ as a one-dimensional
multiplication for all j′, k′.

2. r0ijk′ =
∑

j′ gjj′r
0
ij′k′,

r1ijk′ =
∑

j′ gjj′r
1
ij′k′,

r2ijk′ =
∑

j′ djj′r
0
ij′k′ .

72

3. r1ijk =
∑

k′ gkk′r
1
ijk′,

r2ijk =
∑

k′ gkk′r
2
ijk′,

r3ijk =
∑

k′ dkk′r
0
ijk′.

4. rijk = r1ijk + r2ijk + r3ijk.

Then, we have 8 matrix-vector multiplication in steps 1.–3. In each step, all multi-
plications are independent and are computed in parallel. In the case d = 4, we have
13 multiplications in 4 groups and for d = 5, we have 19 multiplications in 5 groups.

4. Numerical experiments

We run our code for Poisson equation in dimensions d ∈ {3, 4, 5} with the solution

u(x1, x2, . . . , xd) = (1− x1)(1− x2) . . . (1− xd)
(

1− e(−10x1x2...xd)
)

.

In Table 1, d denotes dimension, L denotes the decomposition level of wavelet basis,
N is the matrix size, RHS16 (m) and RHS8 (m), respectively denotes time of
computation of right-hand side integrals in minutes in 16 and 8 threads, respectively,
#CG denotes the number of iterations of the conjugate gradient method and CG(m)
denotes time of computation of the conjugate gradient method in minutes. We used
for our computation a processor with frequency 2.3 GHz and with 16 cores.

d L N RHS16(m) RHS8(m) #CG CG (m) L2 norm of error
3 8 224 10 21 177 100 1.6 · 10−11

3 9 227 136 260 199 920 1.1 · 10−12

4 5 220 9 18 161 5 5.9 · 10−9

4 6 224 49 92 203 120 4.5 · 10−10

5 4 220 250 480 128 3 1.5 · 10−8

5 5 225 520 - 176 200 1.5 · 10−9

Table 1: Results of numerical experiments.

5. Conclusion

We have presented here some details of our implementation of Wavelet-Galerkin
method for Poisson equation in dimension d ∈ {3, 4, 5} in C language parallelized
by POSIX threads library. Parallelization of evaluation of right-hand side integrals
is efficient – enables concurrent evaluation by as many threads as the number of
available computational cores. The ratio of total CPU time and real time is in
the case of 16 threads around 15.8. This is not the case for the conjugate gradient
method and our future goal is to improve it. Another goal is to design and implement
appropriate data structures for adaptive methods.

73

Acknowledgements

This work has been supported by the project ESF No. CZ.1.07/2.3.00/09.0155
”Constitution and improvement of a team for demanding technical computations on
parallel computers at TU Liberec”

References

[1] Bungartz, H. J. and Griebel, M.: Sparse grids. Acta Numer. 13 (2004), 147–269.

[2] Černá; D. and Finěk, V.: Construction of optimally conditioned cubic spline
wavelets on the interval. Adv. Comput. Math. 34 (2011), 519–552, 2011.

[3] Černá; D. and Finěk, V.: The construction of well-conditioned wavelet basis
based on quadratic B-splines. To appear In: Simos, T. E. (Ed.) ICNAAM – Nu-

merical Analysis and Applied Mathematics, American Institute of Physics, New
York, 2012.

[4] Černá, D., Finěk, V., and Šimůnková, M.: A quadratic spline-wavelet basis on
the interval. In: Chleboun, J., Segeth, K., Š́ıstek, J., Vejchodský, T. (Eds.),
Programs and Algorithms of Numerical Matematics 16, pp. 29–34. Institute of
Mathematics AS CR, Prague, 2013.

[5] Dijkema, T. J., Schwab, Ch., and Stevenson, R.: An adaptive wavelet method for
solving high-dimensional elliptic PDEs. Constr. Approx. 30 (3) (2009), 423–455.

[6] Donovan, G.C., Geronimo, J. S., and Hardin, D.P.: Intertwining multiresolution
analyses and the construction of piecewise-polynomial wavelets. SIAM J. Math.
Anal. 27 (6) (1996), 1791–1815.

[7] Finěk, V. and Šimůnková, M.: Effective implementation of wavelet Galerkin
method. To appear. In: Venkov, G., Kovacheva, R., Pasheva, V. (Eds.), AMEE –

Applications of Mathematics in Engineering and Economics, American Institute
of Physics, New York, 2012.

[8] Šimůnková, M.: Multiplication by wavelet matrix – efficient implementation. Sub-
mitted to ACC Journal.

74

