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Institute of Mathematics AS CR, Prague 2013

ON THE OPTIMAL SETTING OF THE hp-VERSION OF THE

FINITE ELEMENT METHOD

Jan Chleboun

Faculty of Civil Engineering, Czech Technical University

Thákurova 7, 166 29 Prague 6, Czech Republic

chleboun@mat.fsv.cvut.cz

Abstract

The goal of this contribution is to find the optimal finite element space for solving

a particular boundary value problem in one spatial dimension. In other words, the

optimal use of available degrees of freedom is sought after. This is done through

optimizing both the mesh and the polynomial degree of the basis functions. The

resulting combinatorial optimization problem is solved in parallel by a Matlab program

running on a cluster of multi-core personal computers.

1. Introduction

A finite element mesh is among principal factors that affect the performance of
the h-version of the finite element method (FEM). An appropriately defined mesh
or, to be more correct, a sequence of appropriately defined meshes can accelerate
the convergence of the method. Since the FEM projects the exact solution to the
mesh-dependent finite element space, the distance between the exact solution and
the finite element (FE) space determines the error, that is, the distance between the
exact solution and its FE approximation. Various techniques have been proposed to
adaptively modify FE meshes and, consequently, FE spaces in order to minimize the
error [2, 3, 10].

In the h-version of the FEM, however, the polynomials forming the basis of the
FE space either remain unchanged during the mesh modification process or only
limited increase/decrease of the polynomial degree is allowed. Typically, piecewise
linear and quadratic or even cubic functions are considered.

In the hp-version of the FEM, both mesh and polynomial degree modifications
are supported and low as well as higher order polynomials can be found together
in FE spaces, see [5, 6, 8, 11, 12]. Nevertheless, this freedom has its dark side.
Unlike the h-version of the FEM, where the FE space improvement is mediated
solely by adaptive mesh optimization, the mesh as well as the polynomial degree can
be adaptively changed in the hp-FEM and it is difficult to determine which of the
two approaches is more efficient or how to combine them to get best results. We
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refer to [1, 7, 9, 13] for various algorithms and analyses focusing on one-dimensional
boundary value problems (BVPs).

This contribution presents computational results of the optimization of FE spaces
that have a fixed dimension. The goal of the optimization is to minimize the dif-
ference between a FE solution and the exact solution of a BVP. The difference is
measured in the H1-norm. The results can (a) serve as benchmarks for the perfor-
mance of adaptive algorithms, and (b) help to evaluate the efficiency of polynomial
degree optimization and mesh optimization.

2. Optimization problem

Let u(x) = 1/(1.25 − x) and let f , a, and b be inferred to comply with the
following BVP on the interval [−1, 1]

−u′′ + u = f, (1)

u′(−1) = a, u′(1) = b. (2)

Omitting the knowledge of u, we solve (1)–(2) by the FEM: Find uTh,p ∈ V Th,p such
that

∫ 1

−1

(

u′
Th,p

v′Th,p + uTh,pvTh,p
)

dx =

∫ 1

−1

fvTh,p dx+ bvTh,p(1)− avTh,p(−1) (3)

holds for any vTh,p ∈ V Th,p. The finite element space V Th,p is defined on the mesh Th

determined by points −1 = x0 < x1 < · · · < xm = 1. If C([−1, 1]) denotes the space
of continuous functions on [−1, 1] and Pdk([xk−1, xk]) is the space of polynomials on
[xk−1, xk] of degree dk or less, we have

V Th,p =
{

vTh,p ∈ C([−1, 1]) : vTh,p|[xk−1,xk]
∈ Pdk([xk−1, xk]), k = 1, . . . , m

}

.

The basis functions of V Th,p are defined via the Lobatto shape functions (LSFs;
see [12]) with their polynomial degree limited to at most 10. Let us note that each
LSF of order two and higher is a bubble function because its support comprises only
one mesh subinterval.

Various FE spaces can be designed with the same dimension N . To this end, we
introduce p = (d1, . . . , dm), m-tuples that describe the polynomial degree distribution
over the mesh intervals. By counting the LSFs inclusive of piecewise linear basis
functions, we arrive at N = d1 + · · ·+ dm + 1.

Next, let PN be the set of all polynomial degree distributions that correspond to
N -dimensional FE spaces. As an example, take N = 5 and

P5 = {(1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2), (3, 1), (1, 3), (4)},

where (1, 1, 1, 1) represents a FE space with five piecewise linear functions and three
unspecified mesh nodes between −1 and 1 (inner nodes), whereas (4) represents the
unique FE space formed by quartic polynomials on [−1, 1].
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Each p ∈ PN determines a family Mp of meshes Th that, if combined with the
polynomial degree distribution p, lead to FE spaces with the dimension N .

As already indicated, we are interested in the minimization of

Φ(p, Th) = ‖u− uTh,p‖H1(−1,1)

where uTh,p ∈ V Th,p solves (3). More precisely, if a fixed dimension N is given, we
search for p0 ∈ PN and T 0

h such that

Φ(p0, T 0
h ) = min

p∈PN

min
Th∈Mp

Φ(p, Th). (4)

Problem (4) was solved in the MATLABR© environment. To avoid mesh degen-
eration, a minimum distance of mesh nodes was bounded from below by a small
positive constant.

The position of mesh nodes was optimized by the MATLABR© Optimization
ToolboxTM

fmincon function designed to search for local minima. Since the goal of
the inner minimization in (4) is to find a global minimum, multiple runs of fmincon
were performed on an initial uniform mesh as well as on a number of initial random
meshes.

The computational complexity of problem (4) is rapidly increasing with N . In-
deed, |PN |, the cardinality of PN , is equal to 2N−2 if N = 3, 4, . . . , 11. For N > 11,
the constraint put on the maximum polynomial degree inhibits the exponential
growth of |PN |, but not strongly. It is |P14| = 4088, for instance.

The inner minimizations are mutually independent for different p ∈ PN and were
solved in parallel on a cluster of personal computers with (up to) 200 cores.

3. Results

Let N = 14. Figure 1 (left) shows the values Φ(p, Th) where Th are uniform (non-
optimized) meshes. The numbers on the horizontal axis correspond to the position
of a particular p in the sequence of all p ∈ P14. The dependence of p on its ordinal
number cannot be given by a simple formula. Let us only say that, very roughly, the
higher the ordinal number, the higher the polynomial degrees in p.

We observe that Φ(p, Th) is rather sensitive to p because the values span from
0.0062 (minimum, p = (3, 10)) to 2.895 (maximum, p = (6, 6, 1) or p = (10, 2, 1), for
example).

The right part of Figure 1 depicts the histogram of Φ(p, Th) on uniform meshes.
Figure 2 is an analogy to Figure 1; it presents the same type of results for op-

timized meshes. The dependence on p is clearly visible. The S-shaped patterns
correspond to the structure of the ordering of P14. In each pattern, Φ(p, Th) de-
creases if the higher order polynomials move towards the right-end of the mesh.
The first pattern from the left begins with p = (1, 1, . . . , 1) giving the maximum
Φ(p, Th) = 0.298 and ends with p = (1, 2, 2, . . . , 2) and Φ(p, Th) = 0.075; ordinal
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Figure 1: N = 14, uniform meshes. Values Φ(p, Th) (left) and the histogram (right).
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Figure 2: N = 14, optimal meshes. Values Φ(p, Th) (left) and the histogram (right).

number 377. The next pattern begins with p = (3, 1, 1, . . . , 1) and Φ(p, Th) = 0.253;
ordinal number 378.

By comparing the cluster of minimum and near-to-minimum values in Figure 1
and Figure 2, we also infer that though the exact solution u is not a polynomial, it
is sufficiently well approximated by a few higher order polynomials. The minimum
value of Φ(p, Th) attained on the optimized meshes is equal to 0.0042 if p = (5, 8).
This is not a significant improvement over the uniform meshes.

Although the sensitivity to p is strong in the optimal mesh results, we should
not overlook the decrease in Φ. Even for the worst-case p, the error is one order
lower if the mesh is optimal. This is not the only evidence that mesh optimization
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Figure 3: Convergence of the minimum values of Φ if (a) p is optimal and Th is
uniform; (b) both p and Th are optimal. The horizontal axis shows N and the
vertical axis shows Φ, the error.

pays off. Let us compare the histograms. Among uniform meshes, only 146 degree
distributions guarantee the error less than 0.1; see the first bar in Figure 1 (right).
For the optimized meshes, we obtain more than 3300 such degree distributions.

Figure 3 shows the rate of convergence of both optimal p-FEM and optimal
hp-FEM. If evaluated through the minimum values of Φ, the difference between the
two methods applied to (3) is small. However, one should take into account that
there are only a few optimal and almost optimal p distributions on uniform meshes,
but significantly more p -Th couples can guarantee good performance if the mesh is
optimized; consider 0 < Φ(p, Th) ≤ 0.05 and compare Figure 1 and Figure 2. As
a consequence, although we strive to optimize both the mesh and p in the hp-FEM,
it seems to be advisable to pay somewhat more attention to the former than to the
latter. This conclusion agrees with that of [4] where a more detailed analysis of
a different BVP is presented.
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