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Abstract

A method for the second-order approximation of the values of partial derivatives
of an arbitrary smooth function u = u(x1, x2) in the vertices of a conformal and
nonobtuse regular triangulation Th consisting of triangles and convex quadrilaterals
is described and its accuracy is illustrated numerically. The method assumes that
the interpolant Πh(u) in the finite element space of the linear triangular and bilinear
quadrilateral finite elements from Th is known only.

1. Introduction

The problem to find second-order approximations of the first partial derivatives of
smooth functions u in the vertices of triangulations by means of the interpolant Πh(u)
only is actual since its formulation in [6] in the year 1967. Besides the widely ac-
knowledged method [7] there exist successful methods like [5] and [3]. In this paper,
we generalize the method of averaging from [2] to nonobtuse regular triangulations
consisting of triangles as well as convex quadrilaterals in general. Numerical ex-
periments indicate the second-order accuracy of this procedure. These high-order
approximations of the partial derivatives have many applications. See [1] for some
of them.

We denote [a1, a2] the Cartesian coordinates of a point a and |ab| the length of the
segment ab. For arbitrary points a1, . . . , am, operations ,,+“ and ,,−“ mean addition
and subtraction modulo m on the set {1, . . . , m}.

2. Bilinear quadrilateral finite elements

Besides the linear triangular finite elements, we work with the following bilinear
quadrilateral ones.

Definition 1. A reference bilinear finite element consists of
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Figure 1: The reference square.

a) the reference square K̂ = â1â2â3â4 from Fig. 1,

b) the local space Q(1) = {a + bξ + cη + dξη | a, b, c, d ∈ R} and of

c) the parameters p̂(â1), . . . , p̂(â4) related to every function p̂ ∈ Q(1). The parameters
determine the function p̂ uniquely.

Definition 2. A bilinear quadrilateral finite element consists of

a) an image K = a1a2a3a4 of K̂ by the injective bilinear mapping

[

x1

x2

]

= FK(ξ, η) ≡
4

∑

i=1

N̂ i(ξ, η)

[

ai1
ai2

]

(1)

with the Lagrange base functions

N̂1(ξ, η) = (1− ξ)(1− η)/4, N̂2(ξ, η) = (1 + ξ)(1− η)/4,

N̂3(ξ, η) = (1 + ξ)(1 + η)/4, N̂4(ξ, η) = (1− ξ)(1 + η)/4

in the space Q(1) related to the nodes â1, . . . , â4 consecutively. Then FK(â
i)=ai

for i = 1, . . . , 4 obviously and FK is an injection if and only if K is a convex
quadrilateral, i.e. the inner angle ∠ai−1aiai+1 of K is less than π for i = 1, . . . , 4
due to [4], Section 3.3,

b) the local space Q
(1)
K = {q | q = q̂ ◦ F−1

K for some q̂ ∈ Q(1)} and of

c) the parameters q(a1), . . . , q(a4) related to every q ∈ Q
(1)
K . The parameters

determine the function q uniquely.

Lemma 1. The functions 1, x1, x2 belong to Q
(1)
K for every convex quadrilateral K.

Proof. If K = a1a2a3a4 is a convex quadrilateral then Q
(1)
K = {q | q ◦ FK ∈ Q(1)}

is a direct consequence of Definition 2. This and

1 ◦ FK = 1 ∈ Q(1)

x1 ◦ FK = N̂1(ξ, η)a11 + . . .+ N̂4(ξ, η)a41 ∈ Q(1)

x2 ◦ FK = N̂1(ξ, η)a12 + . . .+ N̂4(ξ, η)a42 ∈ Q(1)

give us the statement.
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Definition 3. If K is a triangle and convex quadrilateral then we denote by ΠK(u)
the linear and bilinear interpolant of a function u ∈ C(K) in the vertices of K,
respectively.

Lemma 2. Let us consider a bilinear quadrilateral finite element K = a1a2a3a4,
l = 1, 2 and a linear triangular finite element Tj = aj−1ajaj+1. Then the graph of
ΠTj

(u) is the tangent plane to that of ΠK(u) at the point aj, so that

∂ΠK(u)

∂xl

(aj) =
∂ΠTj

(u)

∂xl

∀ u ∈ C(K)

for j = 1, . . . , 4.

Proof. As the functions from Q
(1)
K are linear on every side of K, ΠK(u) is linear

on the segments aj−1aj and ajaj+1. Hence the segments pj−1pj and pjpj+1 for pi =
[ai1, a

i
2, u(a

i)], i = j−1, j, j+1, are subsets of graph(ΠK(u)). These segments belong
to a unique plane. This one is the tangent plane of graph(ΠK(u)) at aj and it
contains graph

(

ΠTj
(u)

)

as well. Lemma 2 follows immediately.

3. Nonobtuse regular triangulations

The symbols P(1) and P(2) are reserved for the spaces of real linear and quadratic
polynomials in two variables and Ω for a non-empty bounded connected polygonal
domain in the plane. We say that K is an element when K is a triangle or a convex
quadrilateral, denote |K| the area of K, hK the diameter of K and ̺K the maximal
diameter of the circles inside of K.

A system Th of elements is said to be a triangulation of Ω when ∪K∈ThK = Ω,
any two different elements have disjoint interiors and any side of an element is either
a side of another element or a subset of the boundary ∂Ω. Let us consider a vertex a
of (an element from) a triangulation Th. We call b a neighbour of a (in Th) when the
segment ab is a side of an element from Th and denote Nh(a) the set of neighbours
of a in Th. We say that a is an inner and boundary vertex when a ∈ Ω and a ∈ ∂Ω,
respectively.

Definition 4. A system T of triangulations of Ω is said to be

a) a family when for every ε > 0 there exists Th ∈ T satisfying hK < ε for all
K ∈ Th.

b) shape-regular when there is σ > 0 such that ̺K/hK > σ for all elements K of
any triangulation from T.

We work with a shape-regular family T of triangulations of Ω such that all inner
angles of the triangles from any triangulation in T are less than or equal to the right
angle. We call these triangulations nonobtuse regular.
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4. The method of averaging

It is well-known that ∂u/∂xl(a) = ∂ΠK(u)/∂xl(a) + O(hK) for a vertex a of
an element K from a nonobtuse regular triangulation, function u ∈ C2(K) and
for l = 1, 2. We construct a weight vector such that the corresponding weighted
average of the values of ∂ΠK(u)/∂xl in various vertices of the elements K with
vertex a approximates ∂u/∂xl(a) with an error of the second order. A special case
of this construction has been analysed in [2] for the nonobtuse regular triangulations
consisting of triangles only.

Calculating the approximations of ∂u/∂xl(a), we use local Cartesian coordinates
with origin a.

Defrinition 5. Let Th be a nonobtuse regular triangulation. We say that r =
(b1, . . . , bn) is a ring around

a) an inner vertex a of Th when

a1) {b1, . . . , bn} ⊇ Nh(a) and

bi /∈ Nh(a) =⇒ K = abi−1bibi+1 ∈ Th and ∠bi−1abi+1 > π/2,

a2) ∠bnab1, . . . ,∠bn−1abn have the same orientation and

a3) ∠bnab1 + · · ·+ ∠bn−1abn = 2π.

b) a boundary vertex a of Th when there is an inner vertex bj such that

b1) (b1, . . . , bj−1, a, bj+1, . . . , bn) is a ring around bj with n ≥ 5 or

b2) abj+1bjbj−1 ∈ Th and (b1, . . . , bj−1, bj+1, . . . , bn) is a ring around bj .

We say that the triangles U1 = bnab1, . . . , Un = bn−1abn are related to r and set
H(a) = max1≤i≤n |ab

i|.
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Figure 2: A ring around a) an inner vertex a and b) a boundary one.

In Fig. 2, the thick lines denote the quadrilaterals from the given triangulation
and the dotted lines indicate triangles U1, . . . , U6 in the case a) and U1, . . . , U7 in b).
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Definition 6. Let l = 1, 2, r = (b1, . . . , bn) be a ring around a vertex a of a nonobtuse
regular triangulation and let u ∈ C(Ω). Then we set

Bl[u](a) = f1
∂Π1(u)

∂xl

+ · · ·+ fn
∂Πn(u)

∂xl

. (2)

Here Π1(u), . . . ,Πn(u) are the linear interpolants of u in the vertices of the triangles
U1, . . . , Un related to r and the weight vector f = [f1, . . . , fn]

⊤ is the minimal 2-norm
vector such that Bl[u](a) is consistent, i.e. Bl[u](a) = ∂u/∂xl(a) for all u ∈ P(2). Due
to [2], f is the minimal 2-norm solution of the equations M(r)f = d with

M(r) =











1 1 · · · 1
x2
ny1−x2

1
yn

D1

x2

1
y2−x2

2
y1

D2

· · ·
x2

n−1
yn−x2

nyn−1

Dn
yny1(xn−x1)

D1

y1y2(x1−x2)
D2

· · · yn−1yn(xn−1−xn)
Dn

yny1(yn−y1)
D1

y1y2(y1−y2)
D2

· · · yn−1yn(yn−1−yn)
Dn











, d =









1
0
0
0









,

[xi, yi] = bi and Di = D(a, bi−1, bi) for i = 1, . . . , n.

Definition 5 is in agreement with Lemma 2 and with the following statement:

Lemma 3. The system of equations M(r)f = d related to the ring r = (b1, . . . , b4)
around a vertex a is

a) unsolvable if a is a boundary vertex and

b) solvable if and only if the vertices b1, a, b3 as well as b2, a, b4 are situated on
one straight-line if a is an inner vertex.

We omit the proof of Lemma 3.

Example. For a = [0, 0], we approximate the partial derivative ∂u/∂x1(a) =
−0.5403023 of u(x1, x2) = sin(1+ 2x1 + x2)/(x2− 2) by B1[u](a). In Table 1, we use
the ring from Fig. 2 a) with H(a) = 1.3453624/2i for i = 1, . . . , 8.

i H(a) B1[u](a) ∂u/∂x1(a)− B1[u](a)
1 6.72681 e-1 -0.460947 -7.93549 e-2
2 3.36341 e-1 -0.519906 -2.03960 e-2
3 1.68170 e-1 -0.535183 -5.11974 e-3
4 8.40852 e-2 -0.539023 -1.27939 e-3
5 4.20426 e-2 -0.539983 -3.19584 e-4
6 2.10213 e-2 -0.540222 -7.98508 e-5
7 1.05106 e-2 -0.540282 -1.99563 e-5
8 5.25532 e-3 -0.540297 -4.98822 e-6

Table 1
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i H(a) B1[u](a) ∂u/∂x1(a)− B1[u](a)
1 1.15244 -0. -0.104569 e-1
2 5.76222 e-1 -0.577975 3.76723 e-2
3 2.88111 e-1 -0.556928 1.66261 e-2
4 1.44055 e-1 -0.545228 4.92589 e-3
5 7.20277 e-2 -0.541620 1.31737 e-3
6 3.60138 e-2 -0.540642 3.39385 e-4
7 1.80069 e-2 -0.540388 8.60568 e-5
8 9.00346 e-3 -0.540324 2.16627 e-5

Table 2

In Table 2, we use the ring from Fig. 2 b) with H(a) = 2.3048861/2i for i =
1, . . . , 8.

This example indicates the second order of error of the approximations Bl[u](a)
both for the inner and the boundary vertices a, but an analysis of the accuracy of
this averaging operator is necessary.
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