
PANM 16

Radek Kaňa; Ctirad Matonoha; Štěpán Papáček; Jindřich Soukup
On estimation of diffusion coefficient based on spatio-temporal FRAP images: An inverse ill-posed
problem

In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of
Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 3-8, 2012. Institute of Mathematics AS CR,
Prague, 2013. pp. 100–111.

Persistent URL: http://dml.cz/dmlcz/702713

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702713
http://dml.cz


Programs and Algorithms of Numerical Matematics 16

J. Chleboun, K. Segeth, J. Š́ıstek, T. Vejchodský (Eds.)
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Abstract

We present the method for determination of phycobilisomes diffusivity (diffusion
coefficient D) on thylakoid membrane from fluorescence recovery after photobleaching
(FRAP) experiments. This was usually done by analytical models consisting mainly
of a simple curve fitting procedure. However, analytical models need some unrealistic
conditions to be supposed. Our method, based on finite difference approximation
of the process governed by the Fickian diffusion equation and on the minimization
of an objective function representing the disparity between the measured and simu-
lated time-varying fluorescent particles concentration profiles, naturally accounts for
experimentally measured time-varying Dirichlet boundary conditions and can include
a reaction term as well. The result we get is the overall (time averaged) diffusion
coefficient D and the sequence of diffusivities Dj based on two successive fluorescence
profiles in j-th time interval. Due to the ill-posedness of our inverse problem, regu-
larization algorithms are implemented. On the synthetic example, we illustrate the
behaviour of solution depending on regularization parameter for different signal to
noise ratio.

1. Introduction

Fluorescence Recovery After Photobleaching (FRAP) measuring technique is
widely used since 1970s to study the organization and dynamics of many photo-
synthetic pigment-protein complexes in the photosynthetic membrane [16]. Later
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on, FRAP has been extended to the investigation of protein dynamics within the
living cells [14]. Using fluorescence confocal microscopy we get the spatio-temporal
FRAP images, and consequently the mobility of photosynthetic complexes in a na-
tive intact membrane, i.e. the diffusivity or diffusion coefficient D,1 is reconstructed
using either a closed form model or simulation based model [9, 6]. The FRAP images
are in general very noisy, with small signal to noise ratio (SNR), which requires an
adequate technique assuring the reliable results.2

Our study describes the development of a method aiming to determine the phyco-
bilisomes diffusivity on thylakoid membrane from FRAP experiments. As we know,
this is usually done by experimental curve fitting to the analytical (closed form)
models, see e.g. [1, 10, 7, 15]. However, the closed form models need some unre-
alistic assumptions. For example, C. W. Moulineaux et al. [10] have exploited the
rotational symmetry of the cells by bleaching a plane across the short axis of the cell
and reaching one-dimensional bleaching profiles along the long axis. Moreover, it was
supposed that: (i) x ∈ R, i.e. the infinite domain, (ii) the initial bleaching profile is
Gaussian, and (iii) the recovery is complete for t → ∞.3 The calculation of diffusion
coefficient D then resides in the weighted linear regression. The error analysis for
this method, i.e. how the noise corrupts the result, we treat in paper [13].

As the analytical approach has several limitation (e.g. restriction to the specific
cell geometry, bleach profile must be gaussian-like, full recovery is required, etc.),
we model the FRAP process by the Fickian diffusion equation with realistic initial
and boundary conditions instead. The estimation of diffusivity is further formulated
as a single parameter optimization problem consisting in the minimization of an
objective function representing the disparity between the experimental and simulated
time-varying concentration profiles.

The paper is organized as follows. The model of the process (i.e. reaction-
diffusion system) and the real data form we deal with are introduced in the second
section. In the third section we define the optimization problem, describe a regular-
ization method and its implementation. The results of the numerical simulations are
contained in the fourth section, while in the fifth section the paper is concluded.

1I. F. Sbalzarini in [14] distinguishes between the molecular diffusion constant and the apparent
diffusion constant; while the former is directly measured by single-molecule techniques, the latter is
determined by coarse-grained methods such as FRAP, averaging over a certain observation volume.

2Let us mention that the fluorescence confocal microscope allows the selection of a thin cross-
section of the sample by rejecting the information coming from the out-of-focus planes. However,
the small energy level emitted by the fluorophore and the amplification performed by the photon
detector introduces a measurement noise.

3Having y(x, t0) = y0,0 exp
−2x2

r02 , where r0 is the half-width of the bleach at time t0 = 0, the

solution y(x, t) of diffusion equation ∂y
∂t

= D
∂2y
∂x2 and the maximum depth at time t, i.e. y(0, t)

are as follows: y(x, t) =
y0,0r0√
r02+8Dt

exp −2x2

r02+8Dt
, y(0, t) =

y0,0r0√
r02+8Dt

. The calculation of diffusion

coefficient D then resides in the weighted linear regression: a plot of (
y0,0

y(0,t) )
2 against time should

give a straight line with the tangent 8D
r02 .
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2. Problem formulation

2.1. Reaction-diffusion system

FRAP (Fluorescence Recovery After Photobleaching) technique is based on appli-
cation of short, intense laser irradiation to a small target region of the cell that causes
irreversible loss in fluorescence in this area without any damage in intracellular struc-
tures. After the “bleach” (or “bleaching”), the observed recovery in fluorescence in
the “bleached area” reflects diffusion of fluorescence compounds from the area out-
side the bleach. For an arbitrary geometry of bleach spot and assuming (i) local
homogeneity, i.e. assuring that the concentration profile of fluorescent particles is
smooth, (ii) isotropy, i.e. diffusion coefficient is space-invariant, (iii) an unrestricted
supply of unbleached particles outside of the target region, i.e. assuring the com-
plete recovery,4 the unbleached particle concentration C as a function of spatial
coordinate ~r and time t is modeled with the following diffusion-reaction equation on
two-dimensional domain Ω:

∂C

∂t
−∇ · (D∇C) = R(C) , (1)

where D is the fluorescent particle diffusivity within the domain Ω and R(C) is
a reaction term.

The initial condition and time varying Dirichlet boundary conditions are:

C0 = f(~r, t0) in Ω, C(t) = g(~r, t) in ∂Ω × [t0, T ]. (2)

The reaction term R(C) is often viewed as negligible under assumptions that diffusion
of fluorescence compounds (proteins) is not restricted (e.g. by some binding to the
medium) and that photobleaching of these molecules during recovery is negligible.
In occasions where the binding reaction takes place, we can not reduce our process
to the one component diffusion equation, but the dynamics of binding reaction and
eventually the diffusion of bound complexes have to be modelled, see e.g. [15].
Consequently, if R(C) is neglected, Eq. (1) becomes the Fickian diffusion equation.
In contrast, under continual photobleaching during image acquisition, this reaction
term could be described as a first order reaction: R(C) = −kS C , where kS is a rate
constant describing bleaching during scanning [6].

It is of utmost importance to identify the relation between concentration of parti-
cles C and fluorescent signal φ. Although Eq. (1) and objective function J , cf. (10),
works with concentrations, in fact we measure the fluorescence intensity level and
not directly C. If the relation C = kFφ, where kF is a constant, holds, than we
can work with the measured signal without necessity of any recalculation. On the
contrary, if kF is space or time dependent, then we should design an experiment and
estimate this dependence.

4The recovery is not always complete. It is usually modelled by introducing some correction
term. More consistent method resides in the special time dependent Neumann boundary condition
in form of a saturation curve.
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Before bleaching, some number of so-called pre-bleach measurements are per-
formed. Notice that the pre-bleach profile Cpre represents a steady state constant
concentration profile which has to be gradually recovered for t → ∞. Thereafter,
based on the pre-bleach data φpre(e.g. its average value), we reach the coefficient kF
as follows: kF = Cpre

φpre
. Consequently, in order to have experimental values Cexp repre-

senting the concentration profiles after bleaching, we have to divide the post-bleach
fluorescence signal by its pre-bleach value, as it is explained in the following.

2.2. One-dimensional one component diffusion equation

For a linear bleach spot perpendicular to a longer axis (let this axis be denoted
as r) and assuming local homogeneity and isotropy, the recovery of unbleached par-
ticle concentration as a function of spatial coordinate r and time t is modeled with
a linear, diffusion-reaction equation

∂C

∂t
−D

∂2C

∂r2
= R(C) . (3)

If we adopt the form of reaction term according to R(C) = −kS C and introduce
the dimensionless spatial coordinate x, the dimensionless diffusion coefficient p, the
dimensionless time τ and the dimensionless concentration y by

x :=
r

L
, p :=

D

D0
, τ := t

D0

L2
, y :=

C

Cpre

, (4)

where L is the length of our specimen in direction perpendicular to bleach spot,
D0 is a constant with some characteristic value (unit: m2s−1), and Cpre is a pre-
bleach concentration of C, we finally obtain the following form of dimensionless
diffusion-reaction equation on one-dimensional domain, i.e. for x ∈ [0, 1]

∂y

∂τ
− p

∂2y

∂x2
= −kSL

2

D0
y . (5)

The initial condition and time varying Dirichlet boundary conditions are:

y(x, τ0) = f(x), x ∈ [0, 1], (6)

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0. (7)

2.3. Experimentally measured data

Based on FRAP experiments, we have a 2D dataset in form of a table with
experimental values yexp(ri, tj) (already normalized), where (N +1) rows correspond
to the number of spatial points where the values are measured, and (m∗ + M + 1)
columns correspond to the number of discrete time points, i.e. time instant when
the data were measured:

yexp(ri, tj), i = 0 . . . N, j = −m∗ . . .M. (8)
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This can be read by columns as the concentration profiles (along r axis) inm∗+M+1
discrete time points, wherem∗ corresponds to the number of columns with pre-bleach
data containing the information about the steady state and optical distortion, and
M + 1 columns of post-bleach data contain the information about the transport of
unbleached particles (due to the diffusion process) through the boundary of bleach
spot (our computational domain Ω).

The row data are further re-scaled in order to be in the following form:

yexp(xi, τj), i = 0 . . . n, j = −m∗ . . .m, (9)

where space interval between first and last measurement points we take into account
is chosen as [a, b]. Thus, L = b − a is the length of space interval in physical units,
i.e. [m], chosen by the person performing the measurment. The re-scaled dimen-
sionless space interval is again x ∈ [0, 1] and the re-scaled distance between two
space measurements is h = 1

n
. Time interval between two measurements is T in [s],

re-scaled dimensionless time interval is τt = TD0

L2 . For the further calculation, the
number of post-bleach measurements can be also reduced, i.e. let m ≤ M . Recall
that τ0 corresponds to the first post-bleach measurement, and x0 = 0, xn = 1. Con-
sequently, yexp(xi, τ0), i = 0 . . . n, represent the initial condition and yexp(0, τj) and
yexp(1, τj), j = 0 . . .m, the left and right Dirichlet boundary conditions, respectively.

Recall that due to the measurement noise both the respective j − profiles
yexp(xi, τj), i = 0 . . . n, and the initial and boundary conditions cannot be sim-
ply approximated by a smooth function. The forthcoming task is to analyze the
measurement noise from real data and to treat it correctly, i.e. to use it for the
setting of the regularization parameter, see the following section 3.

Figure 1: Left: Experimental data from FRAP experiments with red algae Por-

phyridium cruentum describing the phycobilisomes mobility on thylakoid mem-
brane [7]. Right: Synthetic data used for numerical experiments. The y-axis rep-
resents the dimensionless concentration and x-axis the spatial coordinate, both in
arbitrary units.
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3. Inverse problem and its regularization

3.1. Determination of diffusivity as a parameter estimation problem

The problem of autofluorescence compound (e.g. phycobilisomes) diffusivity de-
termination based on time series of FRAP experimental data will be further for-
mulated as a parameter estimation problem. We construct an objective function J
representing the disparity between the experimental and simulated time-varying con-
centration profiles, and then within a suitable method we look for such a value p
minimizing J . The usual form of an objective function is the sum of squared differ-
ences between the experimentally measured and numerically simulated time-varying
concentration profiles:

J(p) =
m
∑

j=0

n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj)]
2 , (10)

where ysim(xi, τj) are simulated values resulting from the solution of PDE (5) with the
initial and boundary conditions (6)-(7) for the known parameter p, which is now the
independent variable, i.e. ysim = ysim(p) . For the sake of clarity we further neglect
the other parameter concerning the reaction term, i.e. we neglect the influence of
bleaching during scanning, i.e. we put kSL

2

D0

= 0.
Taking into account the biological reality residing in possible time dependence of

phycobilisomes diffusivity, we further consider two cases:

1. First, we can take both sums for i and j in (10) together. In this case, the
scalar p∗ is a result of a minimization problem p∗ = argminp J(p) .

2. Secondly, we can consider each j-th time instant separately. In this case, the
m solutions p∗1, . . . , p

∗

m with values J1, . . . , Jm correspond to each minimization
problem for fixed j in sum (10), i.e. pj

∗ = argminpj Jj(pj) , where Jj(pj) =
∑n

i=0 [yexp(xi, τj)− ysim(xi, τj , pj)]
2, and we have a “dynamics” of diffusivity

p evolution.

Our problem is ill-posed in the sense that the solution, i.e. the diffusion coef-
ficients Dj = pj D0, j = 1, . . . , m, does not depend continuously on the data and
may be very sensitive to noise. This led us to the necessity of some stabilizing pro-
cedure5 and the formulation of another cost function by adding the regularization
term α||p − preg||2 to (10), see [3, 5, 17]. Here α ≥ 0 is a regularization parameter
and preg is an expected regularized value. Doing this, we use an apriori information
about the solution, in other words we assume that p ≡ p(x, τ) is almost constant
with respect to x and τ and regularization term moves the minimum of functional
J(p) =

∑m
j=1 Jj(pj), i.e. the solutions p

∗

1, . . . , p
∗

m towards a constant. In case α → ∞
5The “naive approach” consisting in the hope that the typical oscillation of pj

∗ can be suppressed
by removing the noise from data, e.g. by smoothing using the Fourier transformation, was treated
in [12] and further abandoned by the authors.
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we obtain p∗j = preg, j = 1, . . . , m. Note that taking α = 0, the regularization term
vanishes, i.e. the functional (10) is the special case of a more general functional, see
the next section.

3.2. Three types of optimization problem

Define the cost functions

Jj(pj , α) =
n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj, pj)]
2+α (pj − preg)

2, j = 1, . . . , m, (11)

J(p1, . . . , pm, α) =
m
∑

j=1

Jj(pj, α). (12)

Three types of a one-dimensional optimization problem are considered:

1. Scalar p is a solution when taking both sums for i and j in together:

p∗ = argmin
p

m
∑

j=1

n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj, p)]
2 (13)

2. Each jth time instant separately without regularization (α = 0):

p∗j = argmin
pj

n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj, pj)]
2 (14)

3. Each jth time instant separately using so-called Tikhonov regularization:

p∗j(α) = arg min
pj ,preg

{

n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj , pj)]
2 + α (pj − preg)

2

}

(15)

We use a basic optimization method leading to values p∗, p∗j , p∗j (α) that minimize
respective cost functional. Values p∗j , p∗j(α) are approximations of diffusion coeffi-
cients. We briefly describe a basic optimization method without loss of generality
for the case of solving problem (13).

Basic optimization method is an iteration process starting from an initial point p(0)

and generating a sequence of iterates p(1), p(2), . . . leading to a value p∗ such that

p(l+1) = p(l) + σ(l)d(l),

where

• d(l) is a direction vector determined on the basis of values

p(j), J(p(j)), J ′(p(j)), J ′′(p(j)), 0 ≤ j ≤ l,

• σ(l) > 0 is a step-length determined on the basis of behavior of the function J
in the neighborhood of p(l).

There exist several methods for determination of direction vector and step-length
selection (line-search or trust-region method) described e.g. in [11]. The trust-
region method, implemented in the system for universal functional optimization [8],
was used in our numerical test described in the next section.
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3.3. Implementation

In this subsection we describe how we implemented both the direct problem, i.e.
solution of problem (5)-(7), and the parameter estimation problem, i.e. minimization
of a respective functional J .

In order to compute a function value Jj(p
(l)
j , α) in (12) for a given p

(l)
j in the

lth iteration, we need to know both

• the experimental values yexp(xi, τj), i = 0 . . . n, j = 0 . . .m,

• the simulated values ysim(xi, τj, p
(l)
j ), i = 0 . . . n, j = 0 . . .m.

It means that in each lth iteration we need to solve the problem (we use the notation

ysim ≡ y, p
(l)
j ≡ p for simplicity)

∂y

∂τ
− p

∂2y

∂x2
= 0 , (16)

with the initial and boundary conditions defined by the experimental data

y(x, τ0, p) = yexp(x, τ0) for x ∈ [0, 1], (17)

y(0, τ, p) = yexp(0, τ), y(1, τ, p) = yexp(1, τ) for τ ≥ τ0. (18)

Problem (16)-(18) for simulated data y(xi, τj, pj) was solved numerically using
two following finite difference schemes [2] for uniformly distributed nodes with the
space steplength ∆h and the variable time steplength ∆τ :

• The explicit scheme of order ∆τ +∆h2:

yi,j = βyi−1,j−1 + (1− 2β)yi,j−1 + βyi+1,j−1

• The Crank-Nicholson implicit (CN) scheme of order ∆τ 2 +∆h2:

−β

2
yi−1,j + (1 + β)yi,j −

β

2
yi+1,j =

β

2
yi−1,j−1 + (1− β)yi,j−1 +

β

2
yi+1,j−1

Here β = ∆τ
∆h2 p and yi,j ≡ y(xi, τj , pj) are the computed values in nodes that

enter the function J as values ysim(xi, τj , pj). Recall that for the explicit scheme the
condition β ≤ 1/2 must hold.

Concerning the steplengths used in the numerical schemes, we set the space
steplength to be ∆h = 1/n (smaller splitting ∆h = 1/(κsn) with κs ∈ N can
also be considered). The time steplength ∆τ is variable but should be ideally of the
same order as ∆h2 (or ∆h in the CN scheme) and in the explicit scheme has to fulfill
the relation ∆τ ≤ ∆h2

2p
. In order to get from the (j − 1)-th time instant to the j-th,

we need to perform κt = ⌈ TD0

L2∆τ
⌉ substeps of the above chosen scheme, where κt ∈ N

is the smallest integer that is not less than TD0

L2∆τ
.
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4. Numerical simulation results

We have performed numerical experiments with the synthetic data corrupted by
the 10% Gaussian noise with n = 51, m = 19 and consider each j-th time instant
separately, i.e. j is fixed in sum (12). We report the results using the CN scheme
(they are in fact independent of the used scheme) and illustrate the difficulties caused
by the ill-posedness of our problem.

In Figure 2 we can see big jumps in computed approximated values p∗j , j=1, . . . , m
when using no regularization (α = 0). In contrast, regularization technique (α > 0)
seems to cope with ill-posedness quite well. The solutions p∗1(α), . . . , p

∗

m(α) become
smoother and tend to the estimated regularized value preg for larger α (larger weight
of the regularization term). The regularized value corresponds to the exact solution
1/π ≈ 0.3183.

Figure 2: Dimensionless diffusivities p∗j =
Dj

D0

: Values p∗1(α), . . . , p
∗

19(α).

When using this approach, the variance of solutions p∗j (α) tends to zero for
α → ∞, i.e. p∗j(α) → preg ∀j = 1, . . . , m, but the function values J(p∗, α), see (12),
become larger (however there is a supremum). This fact is demonstrated in Fig-
ure 3, where we have used relative deviation from the average value (coefficient of
variation6) as a solution norm:

cv(α) =
1

m øp∗j (α)

√

√

√

√

m
∑

j=1

[p∗j (α)− øp∗j(α)]
2. (19)

A proper choice of the regularization parameter α balances the above types of the
curves. One of the possible criteria how to choose a proper α which is in some sense

6The coefficient of variation (cv) is defined as the ratio of the standard deviation to the mean
cv = σ

µ
, which is the inverse of the signal-to-noise ratio.
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Figure 3: Values J(p∗, α)− J(p∗, 0) are increasing, values cv(α) are decreasing.

Figure 4: The L-curve – values J(p∗, α), see (12), against values cv(α), see (19).

optimal is called the L-curve. We plot the value of objective function J against the
value cv(α). The L-curve-optimal parameter α∗ usually corresponds to the point with
maximal curvature. In Figure 4, we plot the L-curve resulting from our numerical
tests for the 10% Gaussian noise, i.e. for cv = 0.1. We see that for our “FRAP
problem” and a particular noise level, there is not a sharp corner. Furthermore,
the question of optimal value of α∗ may also depend on what the user expects or
prefers, if rather small function value J(p∗, α) or more constant solutions p∗1, . . . , p

∗

m,
i.e. small value cv(α), see e.g. [4].
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5. Conclusions

The purpose of this paper was to present the real problem residing in the estima-
tion of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal
FRAP images. While the state-of-the-art methods in FRAP measurement of photo-
synthetic complexes mobility are usually based on the curve fitting to an analytical
(closed form) models, which need some unrealistic conditions to be supposed, our
method is based on finite difference approximation of diffusion process and on the
minimization of an objective function evaluating both the disparity between the ex-
perimental and simulated time-varying concentration profiles and the smoothness of
the time evolution of diffusivity. This approach naturally takes into account the time-
dependent Dirichlet boundary conditions and can include also a reaction term (e.g.
modeling the low level bleaching during scanning) and the time varying fluorescence
signal as well.

Our program CA-FRAP 4.0 is actually under testing, however, for the previously
known diffusion coefficient and the synthetic data corrupted by the Gaussian noise
it computes satisfactory results. Afterward, we determined the diffusivities for the
real data of FRAP measurements (with the red algae Porphyridium cruentum). The
range of result 10−15m2s−1 (10−3µm2s−1) is in agreement with reference values.
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