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Abstract

This contribution contains a description and comparison of two methods applied to exposure

optimization applied to moulding process in the automotive industry.

1. Introduction

Consider an aluminium shape weighting approximately 300 kg. This shape should
be uniformly warmed to 270oC by approximately 100 heating lamps of the same power.
Every lamp is defined by the coordinates of its endpoints A, B and the lighting direction u
(9 parameters). All the lamps have the same length d. The shape surface is defined by
using approximately 10000 plane elements. Every plane element is represented by the
coordinates of its center T and its outer normal v (6 parameters). The initial coordinates
of the lamps are given. To obtain a uniform exposure of the surface to the heat radiation,
we optimize the lamp coordinates.

2. Formulation of a constrained optimization problem

2.1. Equations for the exposure of a plane element by a lamp

Let xT = (xT
1 , x

T
2 , x

T
3 ) be the center of a plane element, xN = (xN

1 , x
N
2 , x

N
3 ) be its

outer normal, xA = (xA
1 , x

A
2 , x

A
3 ), x

B = (xB
1 , x

B
2 , x

B
3 ) be the endpoints of the lamp and

xS = (xS
1 , x

S
2 , x

S
3 ) be the lighting direction of the lamp. We also denote v = −xN , u = xS

and use the following constraints

3
∑

i=1

(xS
i )

2 = 1,

3
∑

i=1

xS
i (x

B
i − xA

i ) = 0,

3
∑

i=1

(xB
i − xA

i )
2 = d2, (1)

where d is the length of the lamp. The first constraint ensures the unit length of vector xS,
the second its orthogonality to the axis of the lamp, and the third stabilizes the length of
the lamp.
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The lamp is a linear body of the length d, consisting of p lighting elements of lengths
dk = d/p, 1 ≤ k ≤ p. The connecting line between the center of the lighting element and
the center of the plane element is expressed as

wk = xT − (1− λk)x
A − λkx

B, λk =
2k − 1

2p
, (2)

where 1 ≤ k ≤ p. The exposure I of the selected plane element by the particular lamp is
given by the formula

I =

p
∑

k=1

Ik, Ik =

(

3αk +
1

2

√

1− α2
k

)

βk

‖wk‖2
dk, (3)

where

αk =
uTwk

‖u‖‖wk‖
= ũT w̃k, βk =

vTwk

‖v‖‖wk‖
= ṽT w̃k,

and

ũ = u/‖u‖, ṽ = v/‖v‖, w̃k = wk/‖wk‖

(the expression for Ik has been obtained by measurements). Analytical expressions for the
derivatives of the exposure I with respect to the elements of vectors xA, xB, xS (elements
of the vectors xT , xN are constants, since the heated surface is fixed) have the form
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so they can be easily computed from gradients
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Furthermore, one has
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wk

‖u‖‖wk‖
−

uTwk
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and after substitution we obtain
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It is not necessary to known the elements of vectors u, v and wk, 1 ≤ k ≤ p. We use only
their Euclidean norms and the elements of normalized vectors ũ, ṽ and w̃k, 1 ≤ k ≤ p, in
our numerical algorithm.

2.2. Objective function and constraints for the uniform exposure

We have ne plane elements and nl lamps. Every plane element can be exposed by
several lamps. Let Lj be a set of indices of the lamps that expose the jth plane element.
Choose 1 ≤ j ≤ ne and l ∈ Lj . If we denote Ijl the exposure of the jth element by the lth
lamp, (this value corresponds to the value I from the previous subsection), then the total
exposure Ij of the jth element is given by the formula

Ij =
∑

l∈Lj

Ijl.

The derivatives of Ij are computed by the formulas

∂Ij
∂xA

il

=
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∂xA

il

,
∂Ij
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=
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∂xB
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,
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il
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∂Ij
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il

= 0,
∂Ij
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il
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∂Ij
∂xA

il

= 0, l 6∈ Lj,

where we substitute the previously defined quantities. Let I be the prescribed value of the
exposure (the same for all elements of the shape surface). Then

F (x) =
1

2

ne
∑

j=1

(Ij − I)2, (6)
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where vector x has elements xA
1l, x

A
2l, x

A
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where we substitute quantities computed in the previous relations. The prescribed value
of the exposure is determined by the initial positions of the lamps through the formula

I =
1

ne

ne
∑

j=1

Ij.

The objective function F (x) is minimized in the feasible region given by the equality
constraints (1) (three constraints for every lamp). Computation of derivatives of these
constraints with respect to the elements of vector x is easy. All constraints are sparse, so
the memory size and the number of arithmetic operations are not large.

The described problem consists in the minimization of a sum of squares with respect
to nonlinear equality constraints. The number of partial functions in the sum of squares is
ne ∼ 10000 (the number of the plane elements). The number of variables is 9nl ∼ 900 (nine
for every lamp). The Hessian matrix of the objective function is not sparse. The number
of nonlinear equality constraints is 3nl ∼ 300 (three for every lamp). The Jacobian matrix
of nonlinear equality constraints is sparse. These facts have an influence on the choice of
the numerical method. We have used the recursive quadratic programming method with
iterative solution of linear KKT system by indefinitely preconditioned conjugate gradient
method (see [3]). This method uses partial derivatives derived above.

3. Formulation of an unconstrained optimization problem

In this section, we use constraints (1) to eliminate vector u = xS from the formula (3).
For this purpose we assume that the basis of the warmed shape lies in the horizontal plane,
the lamps are placed over the heated surface and the lighting directions of the lamps are
mostly perpendicular to the basis of the shape. This assumption is not very restrictive and
results obtained in this way are comparable with those obtained by approach used in the
previous section.

Let y be a vector parallel to vector xB − xA. Then we can write xB − xA = (y/‖y‖)d
and wk = xT − xA − λk(y/‖y‖)d, 1 ≤ k ≤ p, where d = ‖xB − xA‖ (see (2)). By our
assumption, the angle between vector u = xS , which is perpendicular to vector y, and
the normal e = (0, 0,−1) is minimal. If the norm of vector u is unit, it can be uniquely
determined from vectors y and e.

Theorem 1 Vector

u =
e + λy

√

eT (e + λy)
, λ = −

eTy

yTy
.

is the solution of the optimization problem

Maximize eTu subject to yTu = 0, uTu = 1.
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Since the length of vector u can be arbitrary, we put

u = e−
eTy

yTy
y = e− eT ỹỹ,

where ỹ = y/‖y‖ (vector e = (0, 0,−1) has the unit norm). To compute the gradient of the
objective function, we need the transposed Jacobian matrices of vectors u and wk (with
respect to y), which we denote ∇yu and ∇ywk.

Theorem 2 One has

∇yu =

(

2
y yT

yTy
− I

)

eTy

yTy
−

e yT

yTy
=

1

‖y‖

(

(2 ỹỹT − I) eT ỹ − e ỹT
)

∇ywk =
λkd

‖y‖

(

y yT

yTy
− I

)

=
λkd

‖y‖

(

ỹỹT − I
)

The exposure (3) now depends on vectors x = xA and y (then xB = xA + (y/‖y‖)d
and vector xS = u is obtained by Theorem 1). Analytical expressions for gradients of the
exposure I have the form

∇xI =

p
∑

k=1

∇xIk = −

p
∑

k=1

∇wk
Ik, ∇yI =

p
∑

k=1

∇yIk =

p
∑

k=1

(∇yu∇uIk +∇ywk∇wk
Ik),

where gradients ∇uIk and ∇wk
Ik are computed by formulas (4) and (5). Note that using

Theorem 2 we can write

∇yu∇uIk +∇ywk∇wk
Ik = −

1

‖y‖
(γe(∇uIk − 2γuỹ) + γue+ λkd(∇wk

Ik − γwk
ỹ)) ,

where γe = ỹTe, γu = ỹT∇uIk and γwk
= ỹT∇wk

Ik.
Analogously to the previous section, we minimize the sum of squares (6), but now

without constraints. The number of variables is 6nl ∼ 600 (six for every lamp). The
Hessian matrix of the objective function is not sparse. This fact have an influence to
the choice of the numerical method. We have used the combination of the Gauss-Newton
method and the BFGS variable metric method, which is described in [2]. This combination
uses partial derivatives derived above.

4. Numerical comparison

The purpose if this section is to show that the elimination of constraints and the solu-
tion of the unconstrained optimization problem significantly increase the efficiency of the
computation. To demonstrate this fact, we have used four test problems L1–L4 introduced
in [1]. The following table contains the results corresponding to the two approaches de-
scribed in the previous sections. Here NIT and NFV are the numbers of iterations and
function evaluations, F0 and F are the initial and the final values of the objective func-
tion. Computational time is given in seconds. The ∗ symbol means that 10000 function
evaluations did not suffice for obtaining the solution. The results were obtained by the
interactive system for universal functional optimization UFO described in [4].

The following figure demonstrates the solution of problem L1.
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Method with constraints Method without constraints
Problem F0 NIT NFV Time F NIT NFV Time F

L1 169.53 1125 4653 396.14 27.68 74 165 18.67 29.16
L2 198.14 712 2456 218.68 31.22 83 186 21.22 32.75
L3 22.50 382 812 118.79 14.25 57 126 20.50 12.02
L4 11.86 1094 10007 742.15 2.03 ∗ 43 98 9.71 1.27

Table 1: Comparison of two approaches for the heat exposure optimization.

Figure 1: Initial (left) and final (right) positions of the lamps.
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V-1151, ÚI AVČR, Praha, 2011.

123


