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Abstract

We propose a modification of MPGP algorithm for solving minimizing problem
of strictly convex quadratic function subject to separable spherical constraints. This
active set based algorithm explores the faces by the conjugate gradients and changes
the active sets and active variables by the gradient projection with the Barzilai-
Borwein steplength. We show how to use the algorithm for the solution of sepa-
rable and equality constraints. The power of our modification is demonstrated on the
solution of a contact problem with Tresca friction.

1. Motivation

Let us consider simple contact problem with given friction. The block of homo-
geneous material has prescribed zero displacements on boundary ΓD and imposed
traction F on ΓF . The part ΓC denotes the part of boundary that may get into
contact with rigid obstacle. The block is attracted to obstacle by gravity force FG.
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Figure 1: Contact problem with rigid obstacle and given friction.
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We solve discretized form of the problem using FEM. This technique leads to
optimizing problem (see [3])

ū := min
u∈Ω

(f(u) + jh(u)) , f(u) :=
1

2
uTKu− fTu, jh(u) :=

mc
∑

i=1

ψi‖T iu‖, (1)

where N ∈ N is number of used nodes and n = 3N is number of variables, u ∈ R
n

is a vector of unknown displacements, Ω := {u ∈ R
n : uz ≥ −c} is set of feasible u,

c ∈ R
+
0 is a distance between body and rigid obstacle, f : Rn → R denotes function

of total potential energy, K ∈ R
n,n is a symmetric-positive definite stiffness matrix,

f ∈ R
n is vector of internal forces resulting from the stresses imposed on the structure

during a displacement, jh : R
n → R is numerical integration of functional describing

the friction forces in the weak formulation of the problem, T i ∈ R
2,n are formed by

appropriately placed multiples of the unit tangential vectors in such way that the
jump of tangential displacement due to displacement u is given by T iu, ψi ∈ R is
slip bound associated with T i.

At first denote mc ≤ N as number of FEM nodes in ΓC .
Our problem has simple geometry, so we can simply choose n := [0, 0,−1] as normal
vector and t1 := [1, 0, 0], t2 := [0, 1, 0] as tangential vectors for every FEM node
in ΓC .

FEM node t
t

n

1

2

Figure 2: Normal and tangential vectors on ΓC .

So for every contact node (i-th node from ΓC) is T i ∈ R
2,n given by sparse matrix

with 1 in first row on appropriate x-coordinate of i-th node and in second row on

appropriate y-coordinate of i-th node. Then we assume that T :=
[

T T
1 , . . . ,T

T
mc

]T

is the full rank matrix.
In our problem with Dirichlet conditions, f is strictly convex quadratic function

(i.e. quadratic function with symmetric positive-definite matrix K), so in next
eductions, we can use standard inversion K−1.
We can express the non-differentiable term jh in (1) by (see [7])

jh(u) =
mc
∑

i=1

max
‖τi‖≤ψi

τ Ti T iu, (2)

where τ i ∈ R
2 are regulation variables.
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2. Saddle point problem equivalency and dual formulation

At first, we denote function and vector

L̃(u, τ ) := f(u) + τ TTu, τ := [τ T1 , . . . , τ
T
mc
]T . (3)

Then the conditions ‖τ i‖ ≤ ψi can by written in form

√

τ 22i−1 + τ 22i ≤ ψi, i = 1, . . . , mc, (4)

where τj is j-th component of τ .
Now we can simplify the notation, we denote set of feasible τ as

Λτ :=

{

√

τ 22i−1 + τ 22i ≤ ψi, i = 1, . . . , mc

}

. (5)

After substituing (2) into (1) and using (3),(4) we get

min
u∈Ω

(f(u) + jh(u)) = min
u∈Ω

(

f(u) +

mc
∑

i=1

max
‖τi‖≤ψi

τ Ti T iu

)

= min
u∈Ω

sup
τ∈Λτ

L̃(u, τ ). (6)

If we consider L̃(u, τ ) as Lagrange function and τ as vector of Lagrange multipliers
(in notation (3)), we can use the classical duality theorem (see [4]) to reformulate
problem (6) and get

min
u∈Ω

sup
τ∈Λτ

L̃(u, τ ) = max
τ∈Λτ

min
u∈Ω

L̃(u, τ ). (7)

Now we can include condition u ∈ Ω by creating new Lagrange multipliers.

max
τ∈Λτ

min
u∈ΩC

L̃(u, τ ) = max
τ∈Λτ ,λC≥0

min
u∈Rn

(

L̃(u, τ ) + λTC(Bu− c)
)

, (8)

where matrix B ∈ R
mc,n and vector c ∈ R

mc are constructed in such way, that

{u ∈ R
n : Bu ≤ c} = Ω.

Due to geometry in our problem we can construct B very simply. B is a sparse
matrix with −1 in every i-th row (which is corresponding to i-th node in ΓC) on
appropriate z-coordinate of i-th node (see former choice of normal vectors for nodes
in ΓC).

So problem (1) is equivalent to the saddle point problem

(ū, λ̄) := argmax
λ∈Λ

min
u∈Rn

L(u,λ), (9)

where
L(u,λ) := f(u) + λT (B̃u− c̃) (10)
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is Lagrange function, which includes both of friction and non-penetration conditions,
and

λ :=

[

τ

λC

]

, B̃ :=

[

T

B

]

, c̃ :=

[

o

c

]

,

Λ := {[τ ,λC ] ∈ R
3mc :

√

τ 22i−1 + τ 22i ≤ ψi, i = 1, . . . , mc,λC ≥ o}.

Now we are going to solve problem (9) using dual formulation, dual function and
KKT conditions (again can be found in [4]).
At first we induce first Karush-Kuhn-Tucker condition (the minimizer ū of func-
tion L(u, .) satisfy state of stationary point - we put part of gradient of L corre-
sponding to derivation with respect to components of u equal to zero)

∇uL(u,λ) = Ku− f + B̃
T
λ = o ⇒ ū = K−1

(

f − B̃
T
λ
)

(11)

and induct this into Lagrange function (10) and make some simplifications. We get

L(ū,λ) = L(K−1
(

f − B̃
T
λ
)

,λ) = −
1

2
λT B̃K−1T Tλ+ λT B̃K−1f −

1

2
fTK−1f .

We get function of only one variable λ. Our task is to find maximizer (see saddle-
point problem (9)), so we can omit the constant term and change signs. Then λ̄ solves
minimization problem

λ̄ = argmin
x∈Λ

Θ(x), Θ(x) :=
1

2
xTAx− xTb, (12)

where we denoted
A := B̃K−1B̃

T
, b := B̃K−1f .

After solving minimizing problem (12), the corresponding solution ū of primary
problem (1) can be evaluated using (11).

Obviously A ∈ R
3mc,3mc is symmetric positive-definite matrix and problem (12)

is the problem of minimizing strictly convex quadratic functions with separable
quadratic constraints (QPQC) combined with bound constraints.

3. MPGP and projected Barzilai-Borwein algorithm

Now we are ready to introduce Modified proportioning with gradient projections
algorithm (MPGP) (also included in [4, 3]), which convergence for QPQC was anal-
ysed in [5]. This active-set based algorithm solves problem on a free set using Con-
jugate gradient (CG) method (eventually do only halfstep) and finalize optimizing
process on active set using gradient projection method with constant step-size.

Our modification lies in replacement of constant step-size in projection step by
step-size used in recently developed Spectral Projected Gradient Method (SPG,
see [2]). This method is based on projected version of Barzilai-Borwein algorithm
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(see [1]) combined with additional modified GLL line-search (see [6]). This addi-
tional line-search does not affect our algorithm, because it usually evokes leaving the
border of feasible set, i.e. in our case it evokes extension of free set and restart CG
method. So we use only first spectral projected step.

1: Choose x0 ∈ Ω, α ∈ (0, 2‖A‖−1), δ ∈ (0, 1/2〉
2: αbb := α
3: k := 0
4: while ‖xk − P (xk − gk)‖ ≥ ǫ‖b‖ do

5: if 2δgTk g
P
k ≤ ‖ϕ(xk)‖

2 then

6: CG step or CG halfstep.
7: make CG step to solve problem on free set.
8: if this step means leaving Ω, do only a half-step and restart CG.
9: k := k + 1
10: else

11: Barzilai-Borwein gradient projection step.
12: xk+1 := P (xk − αbbgk)
13: s := xk+1 − xk
14: αbb := sTs/sTAs

15: restart CG
16: k := k + 1
17: end if

18: end while

In our algorithm we use these notations

gk := Axk − b, g̃k :=
1

α
(xk − P (xk − αgk)) , gPk := ϕ(xk) + β(xk),

ϕ and β are free gradient and chopped gradient defined in [4].

4. Numerical experiments

In our numerical experiment, we choose steel brick (E = 2.105, µ = 0.35,
ρ = 7.85.10−2) and force F = 5.103.
For generating discretized problem we used MatSol library (see [8]).
We require accuracy ǫ = 10−4. We make two tests – in first we choose ψ = 900, in
second ψ = 15.103.

For MPGP we used parameters δ := 1/2, α := 1.95/‖A‖. For SPG were used
parameters M :=1, αmin :=10−6, αmax :=106, γ :=10−4, σ1 :=0.1, σ2 :=0.9, α0 :=1.

In Tables 1 and 2, N is discretization parameter. Every edge of brick was divided
into N intervals, so the number of all FEM nodes in model is given by (N + 1)3.
Because the problem is computed in 3D, the number of primal variables is 3(N+1)3.
The number of FEM nodes in ΓC is given by the number of nodes on bottom side
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ψ = 900

N primal dual SPG MPGP MPGP-BB

it GLL f(x) it cg half proj it cg half proj

4 375 75 36 9 44 5176 0 1 5175 41 0 1 40
6 1029 147 45 20 64 2746 0 1 2745 57 0 1 56
8 2187 243 27 12 38 1236 0 1 1235 51 0 1 50
10 3993 363 33 15 47 661 0 1 660 40 0 1 39

Table 1: Test with small radius.

ψ = 15000

N primal dual SPG MPGP MPGP-BB

it GLL f(x) it cg half proj it cg half proj

4 375 75 1566 977 2542 43 33 9 1 43 33 9 1
6 1029 147 923 553 1475 48 29 18 1 48 29 18 1
8 2187 243 588 366 953 53 24 28 1 53 24 28 1
10 3993 363 1020 547 1566 101 40 46 15 73 27 40 6

Table 2: Test with larger radius.

of brick, i.e. mc = (N + 1)2. So the number of all Lagrange multipliers is given by
3mc = 3(N + 1)2. This number is a dimension of dual problem.

For SPG algorithm we counted outer iterations and denoted this number by
it. In the tables, one can find also number of all additional GLL-search iterations
and a number of evaluations of cost function denoted by f(x). For MPGP and
MPGP-BB we denoted the number of all iterations by it and we counted also each
type of iterations.

These tables show typical performance properties of algorithms.
If the radius of quadratic constraints is small (see Table 1), the type of the most
of the iterations of MPGP and MPGP-BB is projection. Because MPGP-BB in
projection uses similar rule for choosing step-size as SPG, the number of iterations
of these two algorithms is similar. Choosing the constant step-size in MPGP is not
so efficient.

If the radius of quadratic constraints is larger (see Table 2),MPGP andMPGP-BB
are able to use more CG-iterations. That is the reason, why it is faster than non-
monotone gradient descend method SPG.

5. Conclusions

Our numerical experiments predicate better performace of modified MPGP with
BB step-size then original constant step-size for solving QPQC problems. But proof
of convergence need be established, because the proof of convergence of original
SPG in [2] is based on Armijo condition in GLL in additional line-search, but in our
modification we did not use it.
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