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Abstract

The hot-wire method, based on the recording of the temperature development
in time in a testing sample, supplied by a probe with its own thermal source, is
useful to evaluate the thermal conductivity of materials under extremal loads, in
particular in refractory brickworks. The formulae in the technical standards come from
the analytical solution of the non-stationary equation of heat conduction in cylindric
(finally only polar) coordinates for a simplified formulation of boundary conditions,
neglecting everything except the first terms of the decomposition of related exponential
integrals to infinite series, and least-squares based data fitting; such approach reduces
the validity of results and obstructs the simultaneous evaluation of heat capacity.

This paper demonstrates that substantial improvements can be obtained without
any requirements to additional measurements, both i) under the assumption of a wire
of zero-thickness and an infinite sample (following the valid Czech technical standard)
with proper exponential integrals and ii) for a more realistic geometrical configuration
and physical simplification (taking into account the thermal characteristics of the
wire), based on the properties of Bessel functions. The suggested algorithms have
been implemented in the MATLAB environment.

1. Introduction

Reliable evaluation of thermal characteristics of materials used in mechanical,
civil, etc. engineering, including their dependence on temperature, moisture, strain
and other fields, even for advanced materials, structures and technologies where no
reasonable values from practical experience are available, determines the range of
applications of computational modelling of all multi-physical processes. In particu-
lar, identification of thermal properties of refractory brickworks (discussed later in
more details), of hardening cement pastes and concrete structures [14], as well as of
foods stored in freezing and cooling plants [9], requires some simple methodology,
applicable under hard conditions, with negligible disturbing effect of other physical
processes.

For simplicity, let us restrict to the identification of two basic characteristics of
heat conduction in engineering materials: the thermal conductivity λ [W/(m·K)]
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(as a crucial thermal insulation characteristic) and the volumetric heat capacity κ
[J/(m2·K)] (important for thermal accumulation); the thermal diffusivity α [m2/s]
can be then introduced as α := λ/κ. For the evaluation of λ, European techni-
cal standards offer the i) hot-plate, ii) hot-wire and iii) hot-ball approaches. The
physical background of all these approaches is very similar: temperature (or temper-
ature difference) is recorded in some (sufficiently small) range, whose development is
forced by the carefully controlled generation of heat fluxes, during a (rather short)
time interval. The principal difference consists in the geometrical configuration: in
the case i) we have one or more parallel heating (or also additional non-heating) thin
plates [11], in the case ii) a thin heating wire (see [1] and the following section) and
in the case iii) a small heating ball (see [8]); the heat fluxes generated into the mea-
surement system is controlled by direct voltage in all cases. The arrangement should
be as simple as possible, with the aim to reduce the dimensions of corresponding
heat transfer problems as much as possible; consequently (most frequently) working
i) with Cartesian coordinates, ii) with cylindrical and iii) with spherical ones.

Our more detailed analysis will be devoted to the case ii). The relevant Euro-
pean standard [4] contains a (seemingly strange) explicit logarithmic formula for the
evaluation of λ, supplied (for uncertain measurements) by the least-square (linear
regression) approach to data fitting. However, as shown in [1], this formula can be
identified with the fundamental solution of a heat conduction equation, satisfying
the realistic boundary conditions in certain limit sense, well-known from [2], where
in the additive decomposition of an exponential all terms except the first two are
removed; this can be justified by the location of temperature sensors close to the
heating wire. Such approach enables us to calculate (approximately) λ without the
a priori knowledge of α; unfortunately, no information referring to κ is then available
(because it was hidden in the removed terms containing α). We shall demonstrate
that the proper analysis of the above sketched problems offers a possibility to identify
both λ and κ from the same data set. Moreover, we shall show how some unpleasant
physical and geometrical assumptions can be modified to be more realistic, using the
properties of Bessel functions by [3] instead of the classical analytical results from [2].

2. Improved computations with exponential integrals

Following [4], let us assume that some constant heat Q [W/m], starting from the
zero initial time, is generated per unit length of a very long and thin wire, located
in the axis of the circular cylinder with a very large radius, occupied by the material
specimen. Let T (r, t) be the temperature field defined for any positive radius r
(distance from the axis of rotation) and any positive time t (in practice for some
measurement time interval) and T0 the constant temperature of the surrounding
environment. Then, by [1] (referring to [2]), using the notation β0 := Q/(4πλ),
β := 1/(4α), we have

T = β0 Ei (βr
2/t) + T0 with Ei (.) :=

∫
∞

.

exp(−u)
u

du . (1)
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Indeed, using dot symbols for partial derivatives with respect to t and prime symbols
for those with respect to r, it is easy to verify that T from (1) satisfies the classical
Fourier equation of heat conduction (without internal heat sources) with constant
characteristics λ and κ in polar coordinates

κṪ +
λ

r
(rT ′)′ = 0 (2)

together with the obvious initial condition T (., 0) = T0 and the with the couple of
boundary conditions

lim
r→∞

T (r, .) = 0 , lim
r→0+

−λT ′(r, .)

Q/(2πr)
= 1 (3)

where the first limit guarantees the absence of heat fluxes from external environment
and both the numerator and the denominator in the second limit represent the heat
flux [W/m2] on the surface of cylinder with a fixed small radius (this is just the
announced way how to avoid the realistic finite radius and material characteristics
of a wire). Clearly the data for t = 0 (and also t → 0 in practice), thanks to the
discontinuity of heat generated into the system (forcing the application of Dirac
measures and Heaviside functions in [2]), are then not employable in any credible
identification procedure for λ and κ, in particular for λ and α from (1); for the special
case of the simplified evaluation of λ this observation is reflected by [4], too.

Let us assume that all sensors recording the temperature are located at r = δ
where distance δ must be very small positive number by [4] (the measurement could
be performed as close as possible to the wire surface), but is allowed to be finite
in our considerations. Let m be a number of measurement time steps; the initial
time t = 0 is not included. Using the notation t1, . . . , tm (0 < t1 < . . . < tm) for
discrete measurement times and Ts for corresponding temperature values at r = δ.
All differences Ts − Ts−1 with s ∈ {2, . . . , m} should correspond to the experimental
temperature differences τs; for simplicity, only one recorded temperature value is
considered in every discrete time; the generalization over all available data is obvious.
Thus, using the notation β1 := βδ2, we have to minimize a function

Φ = (1/2)
m∑

s=2

(τs − (Ts − Ts−1))
2 (4)

of two positive variables β0 and β1 (transformed from λ and α easily) where, for
simplicity, only one recorded temperature value is considered in every discrete time;
the generalization over all available data is obvious.

Let Φ,i and Φ,ij denote the derivatives ∂Φ/∂βi and ∂
2Φ/∂βi∂βj with i, j ∈ {0, 1}.

For β1s := Ei (β1/ts), β̃1s = exp(−β1/ts)− exp(−β1/ts−1) and εs := β0β1s − τs with
s ∈ {2, . . . , m} we receive explicit formulae (the MAPLE support is welcome)

Φ = (1/2)
m∑

s=2

ε2s , Φ,0 =
m∑

s=2

εsβ1s , Φ,1 = −(β0/β1)
m∑

s=2

εsβ̃1s ,
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Φ,00 =
m∑

s=2

β2
1s , Φ,01 = −(1/β1)

m∑

s=2

(2β0β1s − τs)β̃1s , Φ,11 = (β0/β1)
2

m∑

s=2

β̃2
1s

+(β0/β1)
m∑

s=2

εs (Ei (β1/ts)/ts − Ei (β1/ts−1)/ts−1) + (β0/β
2
1)

m∑

s=2

εsβ̃1s .

Clearly we need Φ,0 = Φ,1 = 0. Taking (for sufficiently small δ) β1 ≈ 0 together with
Ei (.) ≈ −Ce − ln(.) (the Euler-Mascheroni constant Ce is not needed in numerical
calculations), for γs := ln(ts/ts−1) with s ∈ {2, . . . , m} we receive the very simple
formula

β0 ≈
m∑

s=2

γsτs/
m∑

s=2

γ2s , (5)

which is identical with that for the identification of λ from [4]. More generally, we
are allowed to choose β0 from (5) as the first estimate together with

β1 ≈
m∑

s=2

(1/ts − 1/ts−1)(τs/β0 − γs)/
m∑

s=2

(1/ts − 1/ts−1)
2

and apply the Newton iteration algorithm

[
β0
β1

]
←

[
β0
β1

]
−

[
Φ,00 Φ,01

Φ,01 Φ,11

]
−1 [

Φ,0

Φ,1

]
;

this enables us to determine (more exactly) both β0 and β1, consequently also λ and κ
(even without evaluations of inverse matrices in the computational practice).

3. A generalized approach applying Bessel functions

The generalization of the above sketched approach, removing mathematical and
physical simplifications, can be done in more directions. However, being motivated
from the results of MATLAB supported practical calculations with data coming from
experiments with fire-clay bricks at high temperatures, we shall try to replace rather
artificial boundary conditions (3) by more realistic ones. Let a be the outer radius of
a specimen and δ < a a wire radius. Following [5], let us introduce the brief notation
for scalar products in the special Lebesgue weighted spaces

(φ, φ̃)r =
∫ a

0
φ(.)rφ̃(.) dr for all φ, φ̃ ∈ L2

r(0, a) ,

(φ, φ̃)r0 =
∫ δ

0
φ(.)rφ̃(.) dr for all φ, φ̃ ∈ L2

r(0, δ) ,

(φ, φ̃)r1 =
∫ a

δ
φ(.)rφ̃(.) dr for all φ, φ̃ ∈ L2

r(δ, a) .

Material characteristics λ, κ, α will be taken as simple functions of r, with values
equal to a priori known constants λ0, κ0, α0 for 0 ≤ r ≤ δ and unknown ones λ1, κ1, α1

for δ ≤ r ≤ a (although their rather good estimates may be available by the previous
section); moreover we shall need λ∗ := λ1/λ0, κ∗ := κ1/κ0 and α∗ := α1/α0.
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Let V be the space of admissible test functions, i. e., applying the notation of
special Sobolev weighted spaces from [5] again, the space of all v ∈ W 1,2

r (0, a) such
that v(r) = v0(r) for 0 ≤ r ≤ δ and some v0 ∈ W 1,2

r (0, δ), as well as v(r) = v1(r)
for δ ≤ r ≤ a and some v1 ∈ W 1,2

r (δ, a) satisfying v1(a) = 0. Let H be the space
introduced in the same way as V except L2

r inserted instead of W 1,2
r everywhere.

Using such notation, we are able to convert (2) into the form

(v, κṪ )r = (v, λ(rT ′)′/r)r + (v, g)r (6)

where g := Q/(πδ2) for 0 ≤ r ≤ δ (any better information on the distribution of g
in a wire is usually missing), zero otherwise. For positive times t we have to find
T (., t)− T0 from V with Ṫ (., t) from H.

Let us consider the decomposition T (r, t) = Tσ(r) + θ(r, t) where

T (r, t) = Tσ(r) + θ(r, t) with θ(r, t) =
∞∑

i=1

ϕi(r)ψi(t) ; (7)

the corresponding initial conditions are T (., 0) = T0 and θ(., 0) = T0 − Tσ(.) and the
boundary (including the internal interface) ones are

T ′(0, .) = 0 , λ0T
′(δ−, .) = λ1T

′(δ+, .) , T (a, .) = 0 ,
θ′(0, .) = 0 , λ0θ

′(δ−, 0) = λ1θ
′(δ+, 0) , θ(a, .) = 0 ,

λ0T
′

σ(δ−) = λ1T
′

σ(δ+) , Tσ(a) = T0 .
(8)

(δ+ and δ− refer to left and right limits for r tending to δ). Here Tσ can be derived
as an analytical solution for the stationary case (with zero κ formally)

Tσ(r) =

{
Q/(2πλ1) ln(a/δ) +Q/(4πλ0)(1− (r/δ)2) for 0 ≤ r ≤ δ ,
Q/(2πλ1) ln(a/r) for δ ≤ r ≤ a .

(9)

Utilizing the properties of Bessel functions

Jn(r) =
1

π

∫ π

0
cos(r sin ξ − nξ) dξ with n ∈ {0, 1, 2, . . .} ,

namely J ′

0(r) = −J1(r), J ′

1(r) = J0(r)− J1(r)/r, etc., by [3], we can see that

r−1(rJ ′

0(ωr))
′ + ω2J0(ωr) = 0 (10)

for any real ω, it is natural to find the zero points of Bessel functions, i. e. to solve
J0(ωia/

√
α∗) = 0 for unknown parameters ωi with i ∈ {1, 2, . . .}, and to choose

ϕi(r) =

{
βiJ0(γiωir) for 0 < r < δ ,
J0(ωir/

√
α∗) for δ < r < a ,

(11)

to satisfy boundary conditions ϕ′

i(0) = 0, ϕi(a) = 0 automatically and

ϕi(δ−) = ϕi(δ+) , λ(δ−)ϕ
′

i(δ−) = λ(δ+)ϕ
′

i(δ+) (12)
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for a priori unknown values of βi and γi, coming from the auxiliary systems of two
nonlinear equations

βiJ0(γiωiδ) = J0(ωiδ/
√
α∗) , βiγiJ1(γiωiδ) = (λ∗/

√
α∗)J1(ωiδ/

√
α∗) . (13)

It is easy to see that βi can be evaluated from (13) as a function of γi directly.
Consequently (13) degenerates to just one nonlinear equation for the evaluation
of γi; all technical details for the Newton iterative algorithm can be found in [13].

Inserting (11) and (7) into (6), for any v ∈ V we receive

[(v, ϕi)r0 + κ∗(v, ϕi)r1]ψ̇i − α0[(v, (rϕ
′

i)
′/r)r0 + λ∗(v, (rϕ

′

i)
′/r)r1]ψi = 0 . (14)

Taking (10) into account, (14) gets tho form

[(v, ϕi)r0 + κ∗(v, ϕi)r1]ψ̇i + α0ω
2
i [γ

2
i (v, ϕi)r0 + κ∗(v, ϕi)r1]ψi = 0 . (15)

Simultaneously, applying the Green-Ostrogradskǐı theorem, (14) yields

[(v, ϕi)r0 + κ∗(v, rϕi)r1]ψ̇i + α0[(v
′, ϕ′

i)r0 + λ∗(v
′, ϕ′

i)r1]ψi

= α0[(v(δ−)ϕ
′

i(δ−)− λ∗v(δ+)ϕ′

i(δ+)] .
(16)

In particular for v = ϕj with arbitrary j ∈ {1, 2, . . .}, comparing (15) and (16), we
have

(ϕ′

j , ϕ
′

i)r0 + λ∗(ϕ
′

j, ϕ
′

i)r1 = ω2
i [γ

2
i (ϕj, ϕi)r0 + κ∗(ϕj, ϕi)r1] .

The mutual exchange of indices i and j then results certain quasi-orthogonality
condition

(ω2
i − ω2

j )κ∗(ϕi, ϕj)r0 + (ω2
i γ

2
i − ω2

jγ
2
j )(ϕi, ϕj)r1 = 0 ;

in practice γ2i ≈ γ2j ≈ κ∗ can be considered.

To find all ψi contained in (7), we must solve an eigenproblem Mjiψ̇i+Kjiψi = 0
for Mji := (ϕj, ϕi)r0 + κ(ϕj, ϕi)r1, Kji := α0ω

2
i [(ϕj , ϕi)r0 + κ(ϕj, ϕi)r1)] and for

the decomposition ψi = Vip exp(−Λpt)Cp, using the Einstein summation rule for all
indices i, j, p ∈ {1, 2, . . .}; Λp here are eigenvalues, Vi1, Vi2, . . . eigenvectors (in the
matrix form we could write MV Λ = KV only) and Cp unknown parameters, needed
to be set due to our initial condition. The resulting formulae (assuming i 6= j)
for effective numerical evaluation (obtained with the support of MAPLE) for the
effective evaluation of Dji, Mji and Kji, separately for diagonal and non-diagonal
terms, can be found in [13]. The evaluation of constants Cp then comes from the
equation

(v, T0 − Tσ)r0 + κ∗(v, T0 − Tσ)r1 = [(v, ϕi)r0 + κ∗(v, ϕi)r1]VipCp ,

i. e. F =MV C, consequently C = (MV )−1F , where most parts of integrals Fj with
j ∈ {1, 2, . . .}, coming from (9), as presented in all details in [13], can be evaluated
analytically, thanks to the properties of Bessel functions J0 J1, J2 and J3.
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Our final aim is, exploiting the same data as in the preceding section, to minimize
a function Φ from (4) of two positive variables λ∗ and κ∗ (transformed from λ1
and α1). Clearly a (sufficiently large) finite number of Bessel functions is considered
in (7) in numerical calculations, thus all matrices M and K, vectors F , etc. are
finite. However, it is not so easy to perform the minimization procedure because
no simple explicit formulae employable in the Newton iterations are available, thus
numerical evaluations of approximate first and second derivatives of Φ are necessary.
Fortunately, this can be done e. g. with the support of selected functions from the
MATLAB optimization toolbox.

4. Applications, conclusions and generalizations

In addition to the i) simplified approach recommended by [4], both algorithms
presented in ii) Section 2 and iii) Section 3 of this paper have been implemented
in MATLAB environment as the support of measurement tools in the Laboratory
of Building Physics at Brno University of Technology. The limited extent of this
paper does not allow to present results of practical calculations; the reader can
find corresponding figures and graphs, together with more detailed description (and
photo) of the original hot-wire measurement equipment in [10], devoted to the ma-
terial design for the high-temperature thermal accumulator, as one part of the large
Swedish-Czech research project of the efficient exploitation of solar energy using
optical fibers.

Up to now, the computational results under hard conditions (far from room tem-
peratures) demonstrate that i) gives only the rough estimate of λ, but no reasonable
value of κ at all, whereas ii) is able to improve this estimate substantially. The sys-
tem error of ii), coming from the neglected size and heat capacity of a hot wire, can
be removed by iii) effectively, but making use of much more numerical computations.
Nevertheless, other disturbing effects, coming from thermal convection and radiation,
namely from the heat transfer at the wire / specimen interface, as well as those con-
nected with the more complicated real geometrical conditions, cannot be handled in
this way. More general formulations of heat transfer (together with other physical,
chemical, etc. processes) need extensive applications of finite element, volume or
difference methods, accompanied by the proper uncertainty analysis, as that based
on Sobol sensitivity indices and Monte Carlo stochastic simulations like [7], or that
substituting the Lebesgue measure by some probabilistic one, directed to stochastic
finite element, etc. approaches, like [15]. Consequently Φ the optimization problem
of the type (4) is not a function of two (or finite, for the best low) number of positive
parameters, but a rather general functional in some space of abstract functions; some
results and open questions of such analysis, containing direct, sensitivity and adjoint
problems, have been presented in [12].

Acknowledgements

This work was supported by the grant No. FAST-S-12-25/1660 of the specific
university research at Brno University of Technology.

193



References

[1] Bilek, J., Atkinson, J.K., and Wakeham, W.A.: Repeatability and refinement of
a transient hot wire instrument for measuring the thermal conductivity of high
temperature melts. International J. of Thermophysics27 (2006), 1626–1637.

[2] Carslaw, H.C. and Jaeger, J. C.: Conduction of Heat in Solids. Oxford Univer-
sity Press, 1946.

[3] Culham, J.R.: Bessel functions of the first and second kind. In: Special Func-
tions, Chap. 7-8. University of Waterloo, 2004.

[4] EN ISO 8894-1: Refractory materials – Determination of thermal conductivity
– Part 1: Hot-wire method (cross-array and resistance thermometer). European
Committee for Standardization, 2010.

[5] Gopalakrishnan, J., and Pasciak, J. E.: The convergence of V-cycle multigrid
algorithms for axisymmetric Laplace and Maxwell equations. Math. Comp. 75
(2006), 1697–1719.

[6] Gutierrez-Miravete, E.: Heat conduction in cylindrical and spherical coordi-
nates. In: Conduction Heat Transfer, Chap. 3, Hartford University, 2006.

[7] Kala, Z.: Sensitivity analysis of steel plane frames with initial imperfections.
Engineering Structures 33 (2011), 2342–2349.
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