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Charles University in Prague, Faculty of Mathematics and Physics

Department of Numerical Mathematics
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Abstract

We deal with a nonstationary semilinear singularly perturbed convection–diffusion

problem. We discretize this problem by discontinuous Galerkin method in space and

by midpoint rule in time. We present diffusion–uniform error estimates with sketches

of proofs.

1. Introduction

Our aim is development of sufficiently robust, accurate and efficient numerical
schemes for solving nonlinear singularly perturbed convection–diffusion equations,
which describe many important topics, e.g. fluid dynamics.

Singularly perturbed convection–diffusion equations represent very difficult prob-
lems, since these problems lie on the edge between elliptic and hyperbolic problems.
From numerical point of view these problems are unpleasant, since they have steep
gradients or discontinuities in the solution even for smooth data. To overcome these
difficulties we employ discontinuous Galerkin method, which uses piecewise discon-
tinuous polynomial functions. It seems that such a weaker inter–element connection
partially suppresses spurious oscillations in the discrete solution, which are present
in the standard finite element solution.

Applying standard parabolic techniques to this problem we obtain diffusion de-
pendent error estimates – typically with the constant e1/ε, where ε is the diffusion
parameter, see e.g. [1] or [4]. In practical cases from compressible fluid dynamics,
where ε is about 10−5 to 10−9, these error estimates are useless.

Our aim is to derive a priori error estimates that are uniform with respect to
the diffusion parameter. A majority of analysis of singularly perturbed problems
devoted to the uniform a priori error estimates concerns linear problems only, see
e.g. [5].
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The technique, how to overcome the nonlinearity in the convective part, is pre-
sented in [8], with applications to the explicit time stepping schemes. The technique
is based on the linearization of the problem by Taylor expansion, where the problem
is divided into linear part and higher order nonlinear reminder. How to deal with
the linear part is known from the analysis of purely linear problems. The analysis
of the nonlinear reminder is more tricky and takes advantage of higher order of the
reminder and of higher order of the error at previous time levels. In [6] we can find
the extension of this result to the semidiscrete problem and to the backward Euler
method, where (in contrast to explicit schemes) one needs higher order of the error
at the actual time level and not at the previous one. This problem is solved by
continuous mathematical induction. This paper extends the technique from [6] to
midpoint rule.

2. Continuous problem

Let Ω ⊂ R
d be a bounded polyhedral domain and T > 0. We set QT = Ω×(0, T ).

Let us consider the following problem: Find u : QT → R such that

∂u

∂t
+∇ · f(u)− ε∆u = g in QT , (1)

u
∣

∣

∂Ω×(0,T ) = 0,

u(x, 0) = u0(x), x ∈ Ω.

We assume f = (f1, . . . , fd), fs ∈ C2(R), fs(0) = 0, s = 1, . . . , d represents
convective terms, ε ≥ 0, g ∈ C([0, T ];L2(Ω)) and u0 ∈ L2(Ω) is an initial condition.
We assume that the weak solution of (1) is sufficiently regular, namely,

u ∈ W 1,∞(0, T ;Hp+1(Ω)) ∩W 2,∞(0, T ;H2(Ω)), u(3) ∈ L∞(0, T ;L2(Ω)), (2)

where u(k) = ∂ku/∂tk, an integer p ≥ 1 will denote a given degree of polynomial
approximations in space.

3. Discrete problem

To simplify the expressions we use the notation (·, ·) for L2 scalar product and ‖·‖
for L2 norm. We employ the symmetric interior penalty Galerkin (SIPG) method for
the space semi-discretization of (1), for details see [2]. Let Th (h > 0) be a partition
of Ω into a finite number of closed d-dimensional simplices K with mutually disjoint
interiors. Let Sh = {w;w|K ∈ Pp(K) ∀K ∈ Th} denote the space of discontinuous
piecewise polynomial functions of degree p on each K ∈ Th. Then we say that
the function uh ∈ C1(0, T ;Sh) is the semi-discrete approximate solution of (1) if it
satisfies the conditions
(

∂uh

∂t
(t), w

)

+ εAh(uh(t), w) + bh(uh(t), w) = ℓh(w) (t) ∀w ∈ Sh, ∀ t ∈ [0, T ], (3)
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and (uh(0), w) = (u0, w) ∀w ∈ Sh. The bilinear form Ah represents the diffusion
term with a sufficiently large interior and boundary penalty, bh is a nonlinear form
representing convective term based on the numerical fluxes well known from the
finite volume method and ℓh represents the source term. For the exact definition of
forms Ah, bh and ℓh see e.g. [2]. We assume the numerical fluxes H to be Lipschitz
continuous, conservative and consistent. Moreover, we assume that the numerical
fluxes are E–fluxes:

(H(v, w, n)− f(q) · n)(v − w) ≥ 0, ∀v, w ∈ R, ∀q between v and w, (4)

where n ∈ R
d is an unit vector.

We find that the weak solution of (1) with property (2) satisfies the identity

(

∂u

∂t
(t), w

)

+ εAh(u(t), w) + bh(u(t), w) = ℓh(w) (t) (5)

for all w ∈ Sh and all t ∈ (0, T ).
For simplicity we assume time partition tm = mτ , m = 0, . . . , r with the time

step τ = T/r. To simplify the future expressions we set the notation vm = v(tm).

Definition 1. We say that the set of functions Um ∈ Sh, m = 0, . . . , r is an
approximate solution of problem (1) obtained by midpoint–DGFE scheme if

(Um − Um−1, w) +
τε

2
Ah(U

m + Um−1, w) + τbh

(

Um + Um−1

2
, w

)

(6)

= τℓh(w)(tm−1 + τ/2) ∀w ∈ Sh,

(U0, w) = (u0, w) ∀w ∈ Sh.

4. Error estimates

We denote the energy norm |||w|||2 := Ah(w,w) ∀w ∈ Sh. Note that the inverse
inequality takes the following form |||w||| ≤ Ch−1‖w‖ for w ∈ Sh. Let Π be the L2

orthogonal projection on Sh.
We summarize the properties of the forms Ah and bh.

Lemma 1. Let u satisfy (2). Then

Ah(v, w) ≤ C|||v||| |||w||| ∀v, w ∈ Sh, (7)

Ah(u(tm−1 + s/2), w)− Ah

(

u(s) + um−1

2
, w

)

≤ Cτ 2|||w||| ∀w ∈ Sh, (8)

∀s ∈ [tm−1, tm],

Ah(Πu− u, w) ≤ Chp|||w||| ∀w ∈ Sh. (9)

The proof of (7) and (9) can be done in a similar way as in [3, Lemma 9]. The
proof of (8) can be done similarly as in [7, Lemma 4.3].
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Lemma 2. Let u satisfy (2). Then

bh(v, w)− bh(v̄, w) ≤ C‖v − v̄‖ |||w||| ∀v, v̄, w ∈ Sh (10)

bh(u(tm−1 + s/2), w)− bh

(

u(s) + um−1

2
, w

)

≤ Cτ 2|||w||| ∀w ∈ Sh, (11)

∀s ∈ [tm−1, tm],

bh(v, v − Πu)− bh(u, v − Πu) ≤ C

(

1 +
‖v − u‖2

∞

h2

)

(h2p+1 + ‖v − Πu‖2) (12)

∀v ∈ Sh.

The proof of (10) can be found in [3], the proof of estimate (11) uses the regularity
of arguments with respect to space and standard error estimates and (12) can be
found in [6].

Our goal is to investigate the error estimates of the approximate solution Um,
m = 0, . . . , r obtained by the method (6). To do this we employ the strategy of
continuous extension of the discrete solution mimicking to the strategy in [6].

Definition 2. Let s ∈ (0, τ ]. We say that the function U(tm−1 + s) ∈ Sh is a con-
tinuated approximate solution of problem (1) obtained by midpoint–DGFE scheme if

(U(tm−1 + s)− Um−1, w) +
sε

2
Ah(U(tm−1 + s) + Um−1, w)

+ sbh

(

U(tm−1 + s) + Um−1

2
, w

)

= sℓh(w)(tm−1 + s/2) ∀w ∈ Sh. (13)

It is obvious that U(tm) = Um.
We denote the left–hand side and right–hand side from Definition 2

Bm
s (v, w) = (v − Um−1, w) +

sε

2
Ah(v + Um−1, w) + sbh

(

v + Um−1

2
, w

)

, (14)

Lm
s (w) = sℓh(w)(tm−1 + s/2). (15)

We shall show that Bm
s is strongly monotone on Sh:

Bm
s (v, v − w)− Bm

s (w, v − w) ≥ ‖v − w‖2 +
sε

2
|||v − w|||2 − Cs‖v − w‖ |||v − w|||

≥

(

1 +
sε

h2
−

Cs

h

)

‖v − w‖2 = M‖v − w‖2 (16)

for sufficiently small s respectively τ . We shall show that Bm
s is Lipschitz continuous

on Sh:

Bm
s (v, w)− Bm

s (v̄, w) ≤ ‖v − w‖ ‖w‖+ C
sε

2
|||v − v̄||| |||w|||+ Cs‖v − v̄‖ |||w||| (17)

≤

(

1 +
Csε

h2
+

Cs

h

)

‖v − v̄‖ ‖w‖ = C‖v − v̄‖ ‖w‖.
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Since right–hand side Lm
s is evidently Lipschitz continuous, we can employ nonlinear

Lax–Milgram lemma to prove the existence of the continuated discrete solution and
classical discrete solution, respectively.

Now we should show that the continuated discrete solution is really continuous.
Since the proof is the same at each time interval (tm−1, tm], we show it for the
simplicity only on the first one. Let t, s ∈ (0, τ ]. Then

M‖U(t) − U(s)‖2 ≤ B1
t (U(t), U(t)− U(s))− B1

t (U(s), U(t)− U(s)) (18)

= L1
t (U(t)− U(s))− L1

s(U(t)− U(s))

+B1
s (U(s), U(t)− U(s))−B1

t (U(s), U(t)− U(s)).

Since the terms on the second and third row tend to zero if |t − s| tends zero we
obtain continuity. Analogically we can prove the continuity at 0+. Since the exact
solution u is continuous and since we have continuity on the closed interval [0, T ],
we can see that the error U(t)− u(t) is uniformly continuous.

As the final step we shall derive the error estimate of the continuated solution at
arbitrary time t ∈ [0, T ] which immediately imply the error estimate for the classical
method.

In the sequel we use the notation ξ(t) = U(t) − Πu(t), η(t) = Πu(t) − u(t) and
e(t) = U(t)− u(t) = ξ(t) + η(t).

Lemma 3. Let u satisfy (2). Then

‖η(t)‖ ≤ Chp+1, (19)

(u(tm−1 + s)− um−1 − s
∂u

∂t
(tm−1 + s/2), w) ≤ Cs3‖w‖ ∀w ∈ Sh, ∀s (20)

(η(tm−1 + s)− ηm−1, w) ≤ Cshp+1‖w‖ ∀w ∈ Sh, ∀s (21)

Proof. The estimate (19) is standard estimate for L2 projection approximation. The
estimate (20) can be done similarly as in [4] and the last estimate (21) can be found
in [1].

Lemma 4. Let p > d/2. Let s ∈ (0, τ ]. If ‖e(t)‖ ≤ h1+d/2 for t ≤ tm−1 + s, then

sup
t∈[0,tm−1+s]

‖e(t)‖2 ≤ C2
T (h

2p+1 + εh2p + τ 4), (22)

where the constant CT is independent of h, τ, ε.
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Proof. Multiplying (5) for t = tm−1 + s/2 by s, subtracting from (13) and adding
several terms we get

(

ξ(s)− ξm−1, w) +
sε

2
Ah(ξ(s) + ξm−1), w

)

(23)

≤

(

s
∂u

∂t
(tm−1 + s/2)− u(s) + um−1, w

)

+s

(

bh(u(tm−1 + s/2), w)− bh

(

u(s) + um−1

2
, w

))

+ (η(s)− ηm−1, w)

+s

(

bh

(

u(s) + um−1

2
, w

)

− bh

(

U(s) + Um−1

2
, w

))

−
sε

2
Ah(η(s) + ηm−1), w)

+s

(

Ah(u(tm−1 + s/2), w)− Ah

(

u(s) + um−1

2
, w

))

.

Setting w = ξ(s) + ξm−1 and using Lemmas 1–3 to estimate the right–hand side we
get

‖ξ(s)‖2 − ‖ξm−1‖2

≤ Cs

(

1 +
‖e(s) + em−1‖2

∞

h2

)

(εh2p + h2p+1 + τ 2 + ‖ξ(s)‖2 + ‖ξm−1‖2).

Using the assumptions we can get rid of the unpleasant term ‖e(s)+ em−1‖2
∞
/h2 and

by standard Gronwall lemma we can finish the proof.

We are ready to present the main result.

Theorem 5. Let p > 1 + d/2. Let h1, τ1 > 0 are such that

C2
T (h

2p+1
1 + εh2p

1 + τ 41 ) ≤
1

2
h2+d
1 . (24)

Let τ1 is sufficiently small to guarantee the existence and continuity of the continuated
discrete solution. Then for all h ∈ (0, h1) and τ ∈ (0, τ1) we get

sup
t∈[0,T ]

‖e(t)‖2 ≤ C2
T (h

2p+1 + εh2p + τ 4), (25)

where the constant CT is independent of h, τ, ε.

Proof. We will follow the idea of continuous mathematical induction from [6]. For
time t = 0 it is easy to see that the error estimate holds true, because the error is
in fact the error of L2 projection in initial data, which is sufficiently small under the
assumptions of the theorem. Let as assume that the error estimate holds true on
the interval [0, s]. According to the assumption (24) we can see that the error can
be estimated by ‖e(t)‖ ≤ 1

2
h1+d/2, t ∈ [0, s]. Since the error e(t) is continuous (even
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uniformly continuous) we know that there exists some δ > 0 such that ‖e(t)‖ ≤
h1+d/2, t ∈ [0, s + δ] and we can see that it is possible to use Lemma 4 even on
the interval [0, s + δ], which guarantees the error estimate on [0, s + δ]. Since the
error is uniformly continuous, we have fixed δ > 0 during the process and using the
argument repeatedly we obtain the result.
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