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ON THE WORST SCENARIO METHOD:
APPLICATION TO UNCERTAIN NONLINEAR

DIFFERENTIAL EQUATIONS WITH NUMERICAL EXAMPLES∗

Petr Harasim

1 Introduction: The worst scenario method

A great many problems in science can be described and solved by means of
suitable mathematical models. Nevertheless, since the input data of mathematical
models is encumbered with various sorts of uncertainty, the output values are also
uncertain. It is our goal to evaluate the uncertainty of output data if the uncertainty
of input data is somehow specified.

The mentioned models are characterized by a state problem P(a, u), where a rep-
resents input data and u denotes a solution of the state problem, so called state so-
lution. The state problem P(a, u) can be represented by a boundary value problem,
for instance. We consider a state problem whose input data is uncertain. Thus, let
Uad be a given set of admissible input data. Since the state solution u depends on
the input parameter a ∈ Uad, we obtain a set of state solutions. As a rule, we are
concerned with a real-valued quantity of interest related to the state solution and
represented by a criterion functional Φ = Φ(a, u(a)), generally directly dependent
on a. Due to the uncertainty of the state solution, we obtain a set of values of the
criterion functional.

There exists a number of approaches to treatments of uncertainty in mathematical
models. The choice of an acceptable approach depends largely on the amount of
available information about the input data. If only the set of admissible input
data is known, we wish to derive the corresponding set of outputs. In engineering
applications, mainly large values of the quantity of interest (e.g. temperature at
a selected point of a heated body, or local mechanical stress at a point of a loaded
body) are important. Therefore, we search for an input parameter a0 ∈ Uad such
that the quantity of interest is maximal, i.e. we search for the worst scenario.

More precisely, let the state problem P(a, u) be given, a ∈ Uad ⊂ U , u ∈ V , where
U and V are suitable Banach spaces, and let Φ be the criterion functional mentioned
above. The goal is to solve the following worst scenario problem: Find a0 ∈ Uad such
that

a0 = arg max
a∈Uad

Φ(a, u(a)). (1)
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The existence of the solution to problem (1) can be proved via the convergence
of the solutions to approximate worst scenario problems, see [2]. The approximate
worst scenario problem is defined as follows: Find aM0

h ∈ UM
ad such that

aM0
h = arg max

aM∈UM
ad

Φ(aM , uh(a
M)), (2)

where UM
ad ⊂ Uad is a M -dimensional approximation of the admissible set Uad,

uh(a
M) ∈ Vh ⊂ V is the solution of the state problem in a finite-dimensional sub-

space Vh of space V (usually, we use a finite element space). This approach also
provides a way to calculate, at least approximately, the worst scenario a0 and the
corresponding value Φ(a0, u(a0)).

For a more detailed mathematical treatment of the worst scenario method, see,
e.g., [1, 2, 3, 4, 5].

2 Application to a one dimensional nonlinear boundary value problem

2.1 Definition of the problem

We consider the state problem examined in [2] and motivated by a boundary
value problem with an ordinary differential equation: Find u ∈ H1

0 (0, 1) such that

∫ 1

0

a(u′2)u′v′dx =

∫ 1

0

fv dx ∀v ∈ H1
0 (0, 1), (3)

where H1
0 (0, 1) is the usual Sobolev space, the function a ∈ Uad is an admissible

coefficient, f ∈ L2(0, 1). Let the admissible set Uad be a set of Lipschitz continuous
functions a defined on R+

0 (nonnegative real numbers) and such that

0 ≤ da

dx
≤CL a.e. in [0, xC ],

a(x) =a(xC) for x ≥ xC,

0 < amin ≤ a(x) ≤amax ∀x ∈ R+
0 ,

where CL, xC, amin, amax are positive constants such that the admissible set is not
empty.

Further, let Tj, j ∈ {1, . . . ,M}, be equally spaced points in [0, xC ], T1 = 0 and
TM = xC . We define the set UM

ad ⊂ Uad of functions a ∈ Uad such that a|[Tj ,Tj+1] ∈
P1([Tj, Tj+1]), j ∈ {1, . . . ,M−1}, where P1([Tj, Tj+1]) denotes the linear polynomials
on the interval [Tj, Tj+1]. Moreover, we introduce equally spaced points x0 = 0 <
x1 < . . . < xN+1 = 1 into interval [0, 1] and define Vh ⊂ H1

0 (0, 1), the space of
functions continuous on [0, 1], linear on the interval [xi, xi+1], i = 0, . . . , N , and with
vanishing value at 0 and 1.

85



2.2 Algorithm and numerical results

In the following section, we show a procedure to find, at least approximately, a so-
lution of problem (2), and present some numerical results. The computations were
performed in MATLAB.

At first, we set Ψ(a) = Φ(a, u(a)), so that we will examine a-dependent func-
tional Ψ defined on UM

ad . Furthermore, the finite-dimensional admissible set UM
ad can

be identified with a compact subset ÛM
ad ⊂ RM , if we define

ÛM
ad = {α ∈ RM : ∃a ∈ UM

ad α = (α1, . . . , αM)

= (a(x1), . . . , a(xM))},
see also [1]. In this sense, the functional Ψ is, as a matter of fact, a real function

Ψ̂ = Ψ̂(α), where α = (α1, . . . , αM) ∈ ÛM
ad . To obtain the value of function Ψ̂ at

any point α ∈ ÛM
ad , it is necessary to solve the following nonlinear problem (a finite-

dimensional analogy to (3)): Find uh ∈ Vh such that
∫ 1

0

a(u′2
h )u

′
hv

′dx =

∫ 1

0

fv dx ∀v ∈ Vh, (4)

where a ∈ UM
ad , a(xi) = αi, i = 1, . . . ,M . An approximation of the solution

to problem (4) is obtained by using the Kachanov method, that is, by means of
a (finite) sequence of the solutions to linearized problems, more detailed treatment
can be found, e.g., in [3]. Subsequently, the criterion functional Φ is evaluated. The
ultimate goal is to solve the following global optimization problem arising from (2):

Find α0 ∈ ÛM
ad such that

α0 = arg max
α∈ÛM

ad

Ψ̂(α).

To find the element α0 at least approximately, we use the Nelder-Mead simplex
method. This method is implemented by the standard MATLAB function fminsearch
(this algorithm requires to enter an initial point). However, to be able to solve our
global optimization problem by the unconstrained optimization routine fminsearch,
we establish a transformation T : RM → ÛM

ad and search for the maximum of the

composite function Ψ̂ ◦ T : RM → R. In the concrete, for x = (x1, . . . , xM) ∈ RM we

obtain the corresponding value T (x) = α = (α1, . . . , αM) ∈ ÛM
ad as follows: For the

first component of α we define

α1 = amin +
(amax − amin)(

π
2
+ arctan x1)

π
,

for αi, i = 2, . . . ,M , we define

αi = αi−1 +
K(π

2
+ arctan xi)

π
,

where K = min{CLxC

M−1
, amax − αi−1}.
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Fig. 1: The state solution of the problem (4) with the parameter aM0 and the right-hand
side f1 (on the left) and f2 (on the right).
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Fig. 2: The approximation aM0
appr of the searched parameter aM0 for the right-hand side f1

and a given initial point αin ∈ ÛM
ad corresponding to a parameter ain ∈ UM

ad (Ψ̂(αin) =

−1.2828× 106, Ψ̂(αM0
appr) = −0.86× 10−2).

Now, we present concrete numerical examples. Let the parameters of admissible
set Uad be: amin = 1, amax = 6, CL = 0.3, and xC = 10. Let the dimension of UM

ad

be M = 11 and the dimension of the finite element space Vh be N = 50. We solve
the state problem (4) with two different right-hand sides f1 and f2. Concretely,
f1(x) = 300x(1− x), and

f2(x) =

{
100 for 0 ≤ x ≤ 2

3

−100 for 2
3
< x ≤ 1.

The worst scenario problem (2) is solved with the following criterion functional:

Φ(a, u(a)) = −106
∫ 1

0

[u(a)− uh(a
M0)]2 dx,
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Fig. 3: The approximation aM0
appr of the searched parameter aM0 for the right-hand side f2

and a given initial point αin ∈ ÛM
ad corresponding to a parameter ain ∈ UM

ad (Ψ̂(αin) =

−9.7035× 104, Ψ̂(αM0
appr) = −0.126× 10−1).

where uh(a
M0) ∈ Vh is the solution of problem (4) computed for a chosen (and

afterwards searched) parameter aM0, determined by the vector of nodal values α0 =

(3.00, 3.10, 3.30, 3.40, 3.45, 3.50, 3.70, 3.80, 3.95, 4.00, 4.20) ∈ ÛM
ad . In this setting, the

worst scenario problem turns into a parameter identification problem and, naturally,
it holds Ψ̂(α0) = 0. The following figures present some numerical results.
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