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AN IMPROVEMENT OF EUCLID’S ALGORITHM∗

Jan Źıtko, Jan Kuřátko

Abstract

The paper introduces the calculation of a greatest common divisor of two univari-
ate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the
Sylvester matrix to an upper triangular form. This is performed by using c-s trans-
formation and QR-factorization methods. Both procedures are described and numer-
ically compared. Computations are performed in the floating point environment.

1 Introduction

Euclid’s algorithm and the corresponding manipulations with the Sylvester resul-
tant matrix are two well-known methods for computing the greatest common divisor
of two univariate polynomials. See the book [1] or the paper [4].

Theory has been developed in those papers and all practical examples included
only low-degree polynomials in which the effect of computing in floating point arith-
metic has not shown. That is why we have decided to work on computation of the
greatest common divisor of two large-degree polynomials in this article. Many times
the numerical experiments have yielded inaccurate or even wrong results caused for
instance by the big differences in the absolute value of coefficients of polynomials
which are calculated during Euclid’s algorithm. Since the problems in real world
have demanded the best possible precision on the coefficients of the greatest com-
mon divisor some of the ideas on the balancing the coefficients have been introduced
in the article [5] and several others. We have developed an improvement of Euclid’s
algorithm in this paper, called c-s transformation, which is conducted by the trans-
formation of Sylvester matrix. The above mentioned method, described in [2], has
not been published yet and its rigorous analysis has been presented in this article.

Scalars c and s are computed from coefficients of polynomials in every step of
Euclid’s algorithm and are resembled to scalars used in Givens rotation. Detailed
description is given in paragraph 2 where the classic and well known Euclid’s algo-
rithm has been compared with c-s transformation. Let us mention that structure of
the Sylvester matrix is preserved by both methods.

We have decided to mention another interesting approach proposed in [7] which
does not preserve the structure of the Sylvester matrix. This method is based on QR-
factorization of the Sylvester matrix or a part of the Sylvester matrix. Coefficients
of the greatest common divisor can be obtained from the last non-vanishing row of

∗This work is a part of the research project MSM0021620839 financed by MSMT.
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the upper triangular matrix R obtaining by QR-factorization. Complete description
of aforementioned algorithm and numerical experiments are given in paragraph 3.

Reasonable results can be obtained if we know the degree of the greatest common
divisor. In that case we know exactly where coefficients of the greatest common
divisor can be found in the matrix R. Algorithms for determining the degree of the
greatest common divisor have been studied in [3] or [6]. Those methods are not and
cannot be included in this article.

All test polynomials have been computed via convolution that is why the degree
of the greatest common divisor is known and used in our examples.

In this article, all numerical experiments have been carried out in double preci-
sion. We have worked with polynomials having non-trivial greatest common divisor.

2 Euclid’s algorithm and transformations of the Sylvester matrix

Let the symbol GCD (f0, f1) denotes the greatest common divisor of polynomi-
als f0 and f1 and deg(f0) the degree of f0. Let

f0(x) = a0x
m + a1x

m−1 + · · ·+ am−1x+ am, (1)

f1(x) = b0x
n + b1x

n−1 + · · ·+ bn−1x+ bn, (2)

where m ≥ n, a0am 6= 0, b0bn 6= 0, To illustrate the algorithm, let us consider the
polynomials f0 and f1 of degrees 5 and 2 respectively:

f0(x) = a0x
5 + a1x

4 + a2x
3 + a3x

2 + a4x+ a5,

f1(x) = b0x
2 + b1x+ b2.

The Sylvester resultant matrix S(f0, f1) for the polynomials f0 and f1 of degrees
m = 5 and n = 2 is

S(f0, f1) =




a0 a1 a2 a3 a4 a5 0
0 a0 a1 a2 a3 a4 a5
b0 b1 b2 0 0 0 0
0 b0 b1 b2 0 0 0
0 0 b0 b1 b2 0 0
0 0 0 b0 b1 b2 0
0 0 0 0 b0 b1 b2




.

We will now formulate modified Euclid’s algorithm which can scale down the big
differences between the coefficients of f0 and f1. Let us define the division f0/f1 in
the following form:

c0 (a0x
5 + a1x

4 + a2x
3 + a3x

2 + a4x+ a5)︸ ︷︷ ︸
f0(x)

+s0 (b0x
2 + b1x+ b2)︸ ︷︷ ︸

f1(x)

x3

= 0 + (c0a1 + s0b1)︸ ︷︷ ︸
a
(1)
1

x4 + (c0a2 + s0b2)︸ ︷︷ ︸
a
(1)
2

x3 + c0a3︸︷︷︸
a
(1)
3

x2 + c0a4︸︷︷︸
a
(1)
4

x+ c0a5︸︷︷︸
a
(1)
5︸ ︷︷ ︸

h4(x):=a
(1)
1 x4+a

(1)
2 x3+a

(1)
3 x2+a

(1)
4 x+a

(1)
5

.
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The numbers c0 and s0 are chosen to remove the leading coefficient of f0. To define
the corresponding transformation of the Sylvester matrix, let us define the matrix
G

(1)
0 (c0, s0)

G
(1)
0 (c0, s0) =




c0 0 s0 0 0 0 0
0 c0 0 s0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




.

Apparently

S(1)(f0, f1) := G
(1)
0 (c0, s0)S(f0, f1) =




0 a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 a

(1)
5 0

0 0 a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 a

(1)
5

b0 b1 b2 0 0 0 0
0 b0 b1 b2 0 0 0
0 0 b0 b1 b2 0 0
0 0 0 b0 b1 b2 0
0 0 0 0 b0 b1 b2




,

where

a
(1)
i =

{
c0ai + s0bi for i = 1, 2,

c0ai otherwise.

Let a
(1)
1 6= 0. Then deg(h4) = 4. In the opposite case, the process would be

performed with the polynomial of degree less than 4. The Euclid’s algorithm proceeds
according to the following schema:

c1 (a
(1)
1 x4 + a

(1)
2 x3 + a

(1)
3 x2 + a

(1)
4 x+ a

(1)
5 )︸ ︷︷ ︸

h4(x)

+s1 (b0x
2 + b1x+ b2)︸ ︷︷ ︸

f1(x)

x2

= 0 +
(
c1a

(1)
2 + s1b1

)

︸ ︷︷ ︸
a
(2)
2

x3 +
(
c1a

(1)
3 + s1b2

)

︸ ︷︷ ︸
a
(2)
3

x2 + c1a
(1)
4︸ ︷︷ ︸

a
(2)
4

x+ c1a
(1)
5︸ ︷︷ ︸

a
(2)
5

︸ ︷︷ ︸
h3(x):=a

(2)
2 x3+a

(2)
3 x2+a

(2)
4 x+a

(2)
5

.

The numbers c1 and s1 are again chosen to remove the coefficient of x4. The corre-

sponding matrix operation consists of the construction of the matrix G
(1)
1 (c1, s1), by

analogy to the previous case, such that

S(2)(f0, f1) := G
(1)
1 (c1, s1)S

(1)(f0, f1) =




0 0 a
(2)
2 a

(2)
3 a

(2)
4 a

(2)
5 0

0 0 0 a
(2)
2 a

(2)
3 a

(2)
4 a

(2)
5

b0 b1 b2 0 0 0 0
0 b0 b1 b2 0 0 0
0 0 b0 b1 b2 0 0
0 0 0 b0 b1 b2 0
0 0 0 0 b0 b1 b2




,
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where

a2i =

{
c1a

(1)
i + s1bi−1 for i = 2, 3,

c1a
(1)
i otherwise.

If a
(2)
2 = 0 and a

(2)
3 6= 0, then instead of h3 the polynomial h2,

h2(x) = a
(2)
3 x2 + a

(2)
4 x+ a

(2)
5 ,

is considered. Moreover, if a
(2)
3 = 0, then the first stage of Euclid’s algorithm termi-

nates. Let us assume that the degrees of all polynomials after division decrease by 1.
Hence a22 6= 0. Let the numbers c2, s2 and then c3 and s3 are chosen to remove the
coefficient of dominant power. The last two divisions yield the polynomials

h2(x) = a
(3)
3 x2 + a

(3)
4 x+ a

(3)
5 = c2h3(x) + s2f1(x)x,

h1(x) = a
(4)
4 x+ a

(4)
5 = c3h2(x) + s3f1(x),

where a
(3)
3 6= 0 and a

(4)
4 6= 0. The matrices G

(1)
2 (c2, s2), G

(1)
3 (c3, s3) correspond to the

last two divisions. Their construction is omitted because it is the same as in the
previous steps. If we define

G1 = G
(1)
3 (c3, s3)G

(1)
2 (c2, s2)G

(1)
1 (c1, s1)G

(1)
0 (c0, s0)

and
P1 = [e3, e4, e5, e6, e7, e1, e2] ,

then the first stage of Euclid’s algorithm can be written in the matrix form as follows

P1G1S(f0, f1) =




b0 b1 b2 0 | 0 0 0
0 b0 b1 b2 | 0 0 0
0 0 b0 b1 | b2 0 0
0 0 0 b0 | b1 b2 0
− − − − + − − −
0 0 0 0 | b0 b1 b2

0 0 0 0 | a
(4)
4 a

(4)
5 0

0 0 0 0 | 0 a
(4)
4 a

(4)
5




=:

[
F1,1 F1,2

F2,1 F2,2

]
.

Note that we have obtained the coefficients of the polynomial h1 in the last two
rows. The formula

c3c2c1c0f0(x)︸ ︷︷ ︸
f̃0(x)

= −(c3c2c1s0x
3 + c3c2s1x

2 + c3s2x+ s3)︸ ︷︷ ︸
q̃0(x)

f1(x)︸ ︷︷ ︸
f̃1(x)

+h1(x)︸ ︷︷ ︸
f̃2(x)

.

summarises the first stage of Euclid’s algorithm. Hence we have

f̃0(x) = q̃0(x)f̃1(x) + f̃2(x).

The block F2,2 is again the Sylvester matrix S(f̃1, f̃2). We suppose that f̃2(x) 6= 0. If

f̃2(x) = 0, then f̃1(x) = GCD(f0, f1). The transformation of the Sylvester resultant
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matrix to an upper triangular matrix requires that the same procedure is applied to

the matrix S(f̃1, f̃2), and this corresponds to the second stage of Euclid’s algorithm,

that is, the division f̃1/f̃2. Analogously there exist matrices G2 and P2 such that

P2G2P1G1S(f0, f1) =




b0 b1 b2 0 0 0 0
0 b0 b1 b2 0 0 0
0 0 b0 b1 b2 0 0
0 0 0 b0 b1 b2 0

0 0 0 0 a
(4)
4 a

(4)
5 0

0 0 0 0 0 a
(4)
4 a

(4)
5

0 0 0 0 0 0 b
(2)
2




.

It is f̃3(x) = b
(2)
2 . Let us remark that f̃2(x) = GCD(f0, f1) if f̃3(x) = 0. Otherwise

f0 and f1 are coprime.
We will now demonstrate how to pick the numbers c and s. If we take

c0 = 1 and s0 = −a0
b0

,

then the division in Euclid’s algorithm has the following form

(a0x
5 + a1x

4 + a2x
3 + a3x

2 + a4x+ a5)︸ ︷︷ ︸
f0(x)

− (b0x
2 + b1x+ b2)︸ ︷︷ ︸

f1(x)

(
a0
b0
)x3

= 0 +

(
a1 − a0b1

b0

)

︸ ︷︷ ︸
a
(1)
1

x4 +

(
a2 − a0b2

b0

)

︸ ︷︷ ︸
a
(1)
2

x3 + a3︸︷︷︸
a
(1)
3

x2 + a4︸︷︷︸
a
(1)
4

x+ a5︸︷︷︸
a
(1)
5

.

In the next step we have considered c1 and s1 in the form

c1 = 1 and s1 = −a
(1)
1

b0
,

and analogously are defined the numbers ci a si in the following steps. This choice
forms Euclid’s algorithm in the well known form.

The second possible choice of c and s is based on the idea of balance of the
coefficients of f0 and f1. In the first step these numbers are defined as

c0 =
b0√

a20 + b20
and s0 = − a0√

a20 + b20
,

and analogously in the next steps. This form of Euclid’s algorithm will be called
c-s transformation. Let us denote for the polynomials (1) and (2)

d1 = max
i,j∈{1,...,m}

∣∣∣|ai| − |aj|
∣∣∣, d2 = max

i,j∈{1,...,n}

∣∣∣|bi| − |bj|
∣∣∣, diff(f0, f1) = (d1, d2).
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Example 1. Let f0 and f1 be two polynomials such that

f0(x) = (x− 4.1)(x− 3)(x−
√
2)2(x+ 1)(x+

√
2)(x+ 5)2,

f1(x) = (x− 3)(x−
√
3)(x− 1)(x+ 1)(x+

√
3)(x+ 8).

Their greatest common divisor u has the form

u(x) = (x− 3)(x+ 1) = x2 − 2x− 3.

Let uEuc and uc-s denotes the greatest common divisor computed by Euclid’s algo-
rithm and c-s transformation, respectively. We have obtained

uEuc(x) = x2 − 1.99999999999994x− 2.99999999999993,

uc-s(x) = x2 − 1.99999999999998x− 2.99999999999998,

‖uEuc − u‖2 = 9.26402450510883e−14, ‖uc-s − u‖2 = 3.14269606124535e−14 .

Both procedures yielded practically the exact greatest common divisor. Let us
remark, that for the first division f0/f1 in Euclid’s algorithm we have obtained
diff(f0, f1) = (1189.33794283234, 98).

Example 2. Let

f0(x) = (x− 4)2(x−
√
5)2(x−

√
3)2(x−

√
2)2(x+ 0.5)2(x+ 1)2,

f1(x) = (x− 6.51)2(x− 5)2(x− 4)(x+ 0.5)2(x+ 0.9)(x+ 1)2.

Their greatest common divisor u has the form

u(x) = (x− 4)(x+ 0.5)2(x+ 1)2 = x5 − x4 − 8.75x3 − 11.5x2 − 5.75x− 1 .

We have obtained

uEuc(x) = x5 − 0.9999999x4 − 8.75000000x3 − 11.5000000x2 − 5.75000000x− 1.00000000,

uc-s(x) = x5 − 0.9999999x4 − 8.74999999x3 − 11.49999999x2 − 5.74999999x− 0.99999999,

‖uEuc − u‖2 = 1.70205143034978e−11, ‖uc-s − u‖2 = 6.36839947245598e−12 .

We have obtained again a good result. Let us remark, that for the first division f0/f1
in Euclid’s algorithm we have obtained diff(f0, f1) = (1116.93467622, 12607.8786650).

Example 3. Let f0 and f1 be the following polynomials:

f0(x) = (x− 11)2(x− 8)2(x− 6)2(x− 1)2(x+ 2)2(x+ 3)2,

f1(x) = (x− 15)2(x− 8)(x− 6)(x+ 5)2(x+ 11)2.

Their greatest common divisor u has the form u(x) = (x−8)(x−6) = x2−14x+48.
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Let us compare the result which yields the modification of Euclid’s algorithm by
using c-s transformation with the result which yields the standard implementation
represented by the m-file poly gcd.m1 denoted by uEuc. We have obtained

uEuc(x) = x2 − 13.99999999946275x+ 47.99999999538410,

uc-s(x) = x2 − 14.00000000045505x+ 48.00000000093540,

‖uEuc − u‖2 = 4.64705900662480e−09,

‖uc-s − u‖2 = 1.04021318800892e−09,

diff(f0, f1) = (11024639, 32669999)

More examples have been calculated and we have found out that Euclid’s algorithm
in matrix form and c-s transformation yield almost the same results for low-degree
polynomials, in some cases Euclid’s algorithm gives better results. If the degree
of both polynomials gets larger, then the c-s transformation yields more accurate
results.

3 QR factorization method for computing the greatest common divisor

The following idea described in [7] will be illustrated for the polynomials of degree
m = 4 and n = 3. Let

f0(x) = x4 + a1x
3 + a2x

2 + a3x+ a4,

f1(x) = b0x
3 + b1x

2 + b2x+ b3.

A companion matrix C4 associated with the polynomial f has the form

C4 =




0 1 0 0
0 0 1 0
0 0 0 1

−a4 −a3 −a2 −a1


 .

It is assumed that the coefficient a0 = 1. The matrix f1(C4) is very important. The
GCD(f0, f1) can be obtained very easily from the matrix f1(C4). See the book [1].
Let the Sylvester matrix be split into the four blocks

S(f0, f1) =




1 a1 a2 | a3 a4 0 0
0 1 a1 | a2 a3 a4 0
0 0 1 | a1 a2 a3 a4
− − − + − − − −
b0 b1 b2 | b3 0 0 0
0 b0 b1 | b2 b3 0 0
0 0 b0 | b1 b2 b3 0
0 0 0 | b0 b1 b2 b3




=:

[
S1,1 S1,2

S2,1 S2,2

]
.

1http://www.mathworks.com/matlabcentral/fileexchange/20859-gcd-of-polynomials
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It is clear that all blocks are Toeplitz matrices. It is easy to calculate the Schur
complement S

(∗)
2,2 = S2,2−S2,1S

−1
1,1S1,2 and according to the well known theory S

(∗)
2,2 =

J4f1(C4)J4. Moreover, there exists an orthogonal matrix Q such that

QJ4f1(C4)J4 = R,

where J4 is a matrix with ones on the counter diagonal and R is an upper-triangular
matrix, the last nonzero row of which contains the coefficients of the GCD of f0
and f1. Let GCD(f0, f1) = d0x

2 + d1x + d2 in our special case. Then the matrix R
has the form

R =




x x x x
0 d0 d1 d2
0 0 0 0
0 0 0 0


 ,

where the x’s indicates elements whose values are unimportant.
In the following examples let uSchu and uHor denote the greatest common divisor

which was obtained using QR-factorization of S
(∗)
2,2 = S2,2 − S2,1S

−1
1,1S1,2 and from

the QR-factorization of Jmf1(Cm)Jm, where f1(Cm) was constructed by Horner’s
scheme, respectively. Let us remark that m is the degree of the polynomial f0.

Example 4. Let f0, f1 and u be polynomials from Example 1. We have calculated

uSchu(x) = x2 − 2.00000000001121x− 3.00000000001110,

uHor(x) = x2 − 2.00000000000175x− 3.00000000000208,

‖uSchu − u‖2 = 1.57742694329152e−11, ‖uHor − u‖2 = 2.71252314056005e−12 .

Example 5. Let f0, f1 and u be polynomials from Example 2. We have obtained

uSchu(x) = x5 − 0.999999985809256x4 − 8.749999957416437x3

−11.499999953695204x2 − 5.749999978552083x− 0.999999996447228,

uHor(x) = x5 − 1.00000000005345x4 − 8.75000000015926x3

−11.50000000017163x2 − 5.75000000007888x− 1.00000000001314,

‖uSchu − u‖2 = 6.80551732665222e−08, ‖uHor − u‖2 = 2.53131658107744e−10 .

Example 6. Let f0, f1 and u be the same polynomials as in Example 3. Then the
following results have been calculated.

uSchu(x) = x2 − 14.00000000217399x+ 48.00000001232704,

uHor(x) = x2 − 14.00000000138107x+ 48.00000000802783,

‖uSchu − u‖2 = 1.25172701840642e−08, ‖uHor − u‖2 = 8.14575566893229e−09 .

The coefficients of the greatest common divisor are obtained from the 10th row of
matrix R. Let R be a matrix from QR-factorization of the matrix J12f1(C12)J12
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where f1(C12) was constructed by Horner’s scheme. The coefficients of the greatest
common divisor can be obtained from the 10th row. Let us present the elements of
R in 9th–11th row.

row 9: −8.32446551450895e+05, 1.13733574278167e+07, −3.60249143760594e+07,
−1.34829260320804e+07

row 10: −7.99170726641915e+05, 1.11883901740905e+07, −3.83601948852275e+07
(uHor is obtained after transformation to monic form)

row 11: 5.13598466751748e−03, −2.90332235929244e−02.

If the degree of greatest common divisor is not known, the following problem appears:
Are the numbers in the 11th row zero? This difficult question is behind the topic of
this short paper. For more details see [7].

4 Summary

Euclid’s algorithm is composed from sequence of steps and division of two polyno-
mials, whose degree is decreasing to zero, is represented in each particular step. New
modification of Euclid’s algorithm called c-s transformation has been introduced in
this article. This modification produces better numerical results in comparison with
classical Euclid’s algorithm and it is conducted by transformation of the Sylvester
matrix and structure of the Sylvester matrix is preserved. The algorithm based on
QR-decomposition was mentioned and its numerical results were compared with c-s
transformation. The second algorithm does not preserve the structure of Sylvester
matrix.
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