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A PRIORI AND A POSTERIORI ERROR ESTIMATES
FOR NAVIER-STOKES EQUATIONS APPLIED

TO INCOMPRESSIBLE FLOWS ∗

Pavel Burda, Jaroslav Novotný, Bedřich Soused́ık, Jakub Š́ıstek

Abstract

We consider the Navier-Stokes equations for the incompressible flow in channels
with forward and backward steps. The paper consists of two main parts. In the first
part we investigate a posteriori error estimates for the Stokes and Navier-Stokes equa-
tions on two-dimensional polygonal domains. We apply the a posteriori estimates to
solve an incompressible flow problem in a domain with corners that cause singularities
in the solution. Second part of the paper stands on the result on the asymptotics of
the solution in the vicinity of nonconvex internal angles. Using now a priori error es-
timates we suggest an alternative approach to the adaptive mesh refinement near the
corners. This approach gives very precise results in a cheap way. We give numerical
results and show the pros and cons of both approaches.

1. Introduction

At present various a posteriori error estimates for the incompressible flow are
available, cf. e.g. references in [2]. We stress the aspect of the constant that appears
in the estimate – it plays significant role in the adaptive mesh refinement, cf. also [4].
That is why we derive our own a posteriori estimate and trace carefully the role of
different constants and their sources, cf. [2] where we derived an a posteriori error
estimate for the Stokes problem in a 2-dimensional polygonal domain. In [3] we
used similar technique to derive a posteriori error estimates also for 3-dimensional
domains. Here we only comment on the accurate determination of these constants.
In Section 2 we apply the estimates with the constants found numerically to the
adaptive mesh refinement - we solve an incompressible flow problem in a domain
with corners that cause singularities in the solution.

In Section 3 we present an alternative approach to the adaptive mesh refinement
which is based on the a priori error estimate and on the knowledge of singularity
near the corner. For stady Navier-Stokes equations in axially symmetric domains,
we proved in [1] that for nonconvex internal angles the velocities near the corners
possess an expansion u(ρ, ϑ) = ργϕ(ϑ) + . . . (+ smoother terms), where ρ, ϑ are
local spherical coordinates. E.g. for the angle α = 3

2
π we have γ = 0.5444837.

∗This research has been supported partly by the grant No. 1960/G1 of the Universities Grant
Agency FRVŠ, partly by the grant No. A 2120201/02 of the ASCR agency, and partly by the
research project of the Ministry of Education No. J04/98/210000003.
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It is well-known that using the standard finite element method on triangles with
polynomials of degree p = 1, 2, 3 we have the a priori error estimate

‖u− uh‖H1(Ω) ≤ C hγ−ε‖u‖Hγ+1−ε(Ω), ε > 0,

which cannot be improved by increasing the degree of polynomials.
In this paper the local behaviour of the solution near the singular point is used

to design a priori a mesh that is adjusted to the shape of the solution.
Subsection 3.1 is devoted to the behaviour of the singularity near the corner. The

parts 3.2, 3.3 deal with the impact of the singularity on the refinement of the mesh.
We show an example of the mesh with quadratic polynomials for velocity. Then we
use this adjusted mesh for the numerical solution of flow in the channel with corners.

2. A posteriori estimates and adaptivity

2.1. A posteriori estimates for the steady Navier-Stokes equations in 2D

Let Ω ⊂ IR2 be a bounded domain with boundary ∂Ω, f = (f1, f2) the volumetric
loads, and ν is kinematic viscosity coefficient. The steady Navier-Stokes problem for
the incompressible fluid consists in finding the velocity v = (v1, v2), and pressure p
defined in Ω and satisfying

(v · ∇)v − ν∆v +∇p = f (1)

div v = 0 (2)

in Ω together with boundary conditions on disjoint parts of the boundary Γin, Γwall

and Γout (meaning, in turn, the inlet, the wall, and the outlet part),

v = g on Γin ∪ Γwall (3)

ν
∂v

∂n
− pn = 0 on Γout (“do nothing” boundary condition). (4)

For the finite element discretization we use Hood-Taylor elements P2/P1 where ve-
locities are approximated by quadratic shape functions and pressure by linear shape
functions. Suppose that exact solution of the problem is denoted by (v1, v2, p) and
the approximate finite element solution by (vh

1 , vh
2 , ph). The exact solution differs

from its approximation in the error

(ev1 , ev2 , ep) = (v1 − vh
2 , v2 − vh

2 , p− ph).

The norm of a vector function u = (u1, u2) in Sobolev space H1(Ωl) is standard,

‖u‖2
1,Ωl

=
2∑

i=1

∫

Ωl


u2

i +
2∑

k=1

(
∂ui

∂xk

)2

 dΩl,

as well as the norm of u = (u1, u2) in the space L2(Ωl),
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‖u‖2
0,Ωl

=
2∑

i=1

∫

Ωl

u2
i dΩl.

For the solution (v1, v2, p) we denote

‖(v1, v2, p)‖2
V = ‖(v1, v2)‖2

1,Ω + ‖p‖2
0,Ω.

The estimate in [2], generalized to the Navier-Stokes equations reads:

‖(ev1 , ev2)‖2
1,Ω + ‖ep‖2

0,Ω ≤ E2(vh
1 , vh

2 , ph, Ω), (5)

where

E2(vh
1 , vh

2 , ph, Ω) = C


∑

l∈K

h2
l

∫

Ωl

(
r2
1 + r2

2

)
+

∑

l∈K

∫

Ωl

r2
3dΩ


 , (6)

where hl denotes the diameter of the element Ωl and ri mean the residuals, cf. [4]. Let
us note that according to our practical experience we use only the element residuals.
It is not possible to determine the constant C by analysis, the contributions to C can
be seen in Theorem 1 of [2]. In [4] we presented a way how to find the constant C
by a numerical experiment.

In our adaptive strategy we use the relative error given by the ratio of absolute
norm of the solution error, related to unit area of the element Ωl,

1
|Ωl| E2(vh

1 , vh
2 , ph, Ωl),

to the solution norm on the whole domain Ω, related to unit area, 1
|Ω| ‖(vh

1 , vh
2 , ph)‖2

V,Ω,
i.e.

R2(vh
1 , vh

2 , ph, Ωl) =
|Ω| E2(vh

1 , vh
2 , ph, Ωl)

|Ωl| ‖(vh
1 , vh

2 , ph)‖2
V,Ω

. (7)

2.2. Model problem

Consider two-dimensional flow of viscous, incompressible fluid described by Navier-
Stokes equations in a domain with corner singularity, cf. Fig. 1. Due to symmetry,
we solve the problem only on the upper half of the channel, cf. Figs. 1, 2. On the
inflow we consider parabolic velocity profile, at the outflow ’do nothing’ boundary
condition. On the upper wall, no-slip condition and on the lower wall, condition of
symmetry. We consider data: ν = 0.0001 m2/s, vin = 1 m/s.

Fig. 1: Geometry of the channel.
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2.3. Application of estimates to adaptive meshing and numerical results

We start with an initial rough mesh and calculate residuals and relative errors on
elements by (7). Elements, where the relative error exceeds 3 % are refined, and new
solution together with new error estimates is computed. In [5] we presented figures
showing how the mesh is gradually refined. Here we show only some results. The
mesh after three successive refinements is shown on Fig. 2.

Fig. 2: Finite element mesh after third refinement.

The results after three refinements are on Figures 3 and 4. Fig. 3 shows pressure,
Fig. 4 velocity component vy. The singularity is well seen on the vy component of
velocity as well as on the pressure.

Fig. 3: Pressure, 3-rd refinement. Fig. 4: Velocity vy, 3-rd refinement.

3. A priori estimates and adjusted meshing

3.1. Steady Navier-Stokes equations near the corner

In this subsection we deal with pipe flow (axially symmetric). To study the as-
ymptotic behaviour of the solution of the Navier-Stokes equations for incompressible
fluids, we utilize the stream function - vorticity formulation, which in cylindrical
geometry reads

27



∂ω

∂t
+ v1

∂ω

∂z
+ v2

∂ω

∂r
+ v2

ω

r
= ν

(∂2ω

∂z2
+

∂2ω

∂r2
+

1

r

∂ω

∂r
− ω

r2

)
, (8)

−rω =
∂2ψ

∂z2
+

∂2ψ

∂r2
− 1

r

∂ψ

∂r
, (9)

v1 =
1

r

∂ψ

∂r
, v2 = −1

r

∂ψ

∂z
, (10)

where r, z are cylindrical coordinates, v1 = vz, v2 = vr are velocity components in
z, r directions, respectively, ω is the vorticity, ψ is the stream function, and ν is the
viscosity. We assume that all derivatives exist here at least in the generalized sense.

In case of steady Stokes flow, substituting ω, v1, v2 from (9)–(10) to (8) we get

0 = ν {1

r
(
∂4ψ

∂z4
+ 2

∂4ψ

∂z2∂r2
+

∂4ψ

∂r4
)−

− 1

r2
(
∂3ψ

∂z3
+

∂3ψ

∂z2∂r
+

∂3ψ

∂z∂r2
+

∂3ψ

∂r3
) +

3

r3

∂2ψ

∂z2
− 3

r4

∂ψ

∂z
}. (11)

One example of our solution domain is shown in Fig. 2. Investigating the equa-
tion (11) and using the technique of Kondratiev [7], we have shown in [1] that near
the corners the solution ψ possesses the expansion

ψ(x, y) =
∑

j

pj−1∑

s=0

ajsρ
−iλj lns ρ · ψsj(ϑ) + w(x, y), (12)

where ρ, ϑ are polar coordinates, w is smooth, and λj are the poles of multiplicity pj

of the corresponding resolvent R(λ), i means the complex unit. More specifically,
for the internal angle α = 3

2
π, we proved that the leading term of the expansion for

the velocity components is as follows

vl(ρ, ϑ) = ρ0.54448374ϕl(ϑ) + . . . , l = 1, 2, (13)

Similar results were proved for the plane flow, cf. [7].

3.2. Finite element solution to steady Navier-Stokes equations

In the finite element solution of the stationary Navier-Stokes equations we intend
to use the information about the asymptotics of the flow near the singular point, in
order to suggest adequate local mesh refinement.

In [1] we have shown that the behaviour near the singular point, of the axisym-
metric flow and of the plane flow, are the same. So in what follows, for simplicity we
deal with the plane flow, in the domain Ω which has the same shape as in Fig. 2. We
return to the Navier-Stokes equations (1), (2). For the finite element approximation
we take Ω a polygon in IR2 and use Hood-Taylor elements, as in Section 2.1.
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3.3. Refinement of FEM mesh adjusted to singularity

Near the corner where the angle is 3
2
π, velocities have the leading term in the

expansion as given in (13). There ρ is the distance from the corner, ϑ the angle.

Note that ∂vi(ρ,ϑ)
∂ρ

→ ∞ for ρ → 0.
Now, in this section we assume the Stokes flow, for simplicity. A priori estimate

of the finite element error is (cf. [6])

‖∇(v − vh)‖0,Ω + ‖p− ph‖0,Ω ≤ C
[(∑

T

h2k
T | v |2Hk+1(T )

)1/2
+

(∑

T

h2k
T | p |2Hk(T )

)1/2]
,

where k = 2. Taking into account the expansion (13), we can derive the rough
estimate (cf. [1])

| v |2Hk+1(T )≈ C

rT∫

rT−hT

ρ2(γ−k−1) ρ dρ ≈ C r
2(γ−k)
T , (14)

where hT is the diameter of the triangle T of a triangulation Th, and rT is the
distance of the element T from the corner. So, in order to get the error estimate of
an auxiliary order O(hk), we should guarantee on each element T ,

h2k
T r

2(γ−k)
T ≈ h2k. (15)

This lead us in [1] to an algorithm for generating the mesh near the corner:

Algorithm. Let r1 be the distance of the large element from the corner. For given
auxiliary stepsize h we compute recursively:
for i = 1, 2, . . . , N : hi = h · (ri)

1− γ
k , ri+1 = ri − hi.

Consider again two-dimensional flow as
specified in Section 2.2.

The algorithm for mesh refinement de-
scribed in previous section is applied to
the corner where the channel or tube sud-
denly decreases the diameter (forward step
in Figs. 1, 2).

We have k = 2, γ = 0, 5444837, and we
start with r1 = 0, 25 mm, h = 0, 1732 mm.
This corresponds to the contribution cca 3%
of individual elements to the global error.
This way we get ten diameters of elements,
cf. Tab. 1.

i ri(mm) hi(mm)
1 0.25000 0.06316
2 0.18685 0.05110
3 0.13575 0.04050
4 0.09526 0.03129
5 0.06396 0.02342
6 0.04054 0.01681
7 0.02374 0.01138
8 0.01235 0.07077
9 0.00528 0.00381
10 0.00147 0.00147

Tab. 1: Resulting refinement.

3.4. Design of the mesh detail near the corner

Using the parameters from Table 1, J. Š́ıstek [8] suggested three variants of the
mesh refinement near the corner (Figures 5-7). Mesh No. 1 was a classic used
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Fig. 5: Mesh No. 1. Fig. 6: Mesh No. 2. Fig. 7: Mesh No. 3.

Fig. 8: The mesh – detail.

Fig. 9: The whole computational mesh.

before. He suggested two other variants on order to fit better to the algorithm of
mesh refinement, esp. to its polar coordinates nature (Figures 6-7). In Figs. 8-9 we
present the whole computational mesh and its detail, using Mesh 3.

3.5. Evaluation of the approximation error

We use a posteriori error estimate (5). To evaluate the error on elements we use
now the modified absolute error, defined as

A2
m(vh

1 , vh
2 , ph, Ωl) =

|Ω|E2(vh
1 , vh

2 , ph, Ωl)

|Ωl|‖(vh
1 , vh

2 , ph)‖2
V,Ω

, (16)
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Fig. 10: Streamlines at corners.
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Fig. 12: Velocity comp. vy.

where |Ω| is the area of the whole domain and |Ωl| is the mean area of elements

obtained as |Ωl| = |Ω|
n

. Here n means the number of all elements in the domain.

3.6. Numerical results of adjusted mesh approach

On Figures 10 - 12 we present the graphical output of entities that characterize
the flow in the channel. On Figs. 11, 12 we observe how strong the singularity both
for velocity and pressure is (note that here the flow is from the right to the left, to
have better view). Figure 14 shows that the location of the peak of the singularity

of velocity is outside the patch where the refinement was done. One can see that,
again it is pressure what decides, cf. Fig. 11. On Fig. 13 we show the errors on
elements of Mesh No. 2. The results on Figures 11, 12 are much more precise than
those on Figures 3 and 4.

4. Conclusions

Pros and cons of a priori approach:

- distribution of the error on elements is quite uniform (esp. for Mesh 2)

- strength of singularity (both for velocity and pressure) is very well captured

- the algorithm of adjusted mesh refinement has been confirmed
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Fig. 13: Errors on elements near the corner (forward
step).

Fig. 14: Isolines of vy.

- the efficiency: desired precision needs only one run (compared with adaptive
approach - the same precision would need approx. 10 refinement runs)

- suitable only for singularities from “geometry”,

Pros and cons of a posteriori estimate approach:

- adaptive approach is much more robust than that with adjusted mesh.

- in case of corner singularities it is more expensive

Nevertheless, efficient refinement near the corners still remains a challenge.
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