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NUMERICAL SOLUTION OF INVISCID INCOMPRESSIBLE FLOW
IN A CHANNEL WITH DYNAMICAL EFFECTS ∗

Radek Honzátko, Jaromı́r Horáček, Karel Kozel

Abstract

Numerical solution of unsteady 2D inviscid incompressible flows described by Euler
equations over the vibrating profile NACA 0012 in a channel is studied. The finite
volume method (FVM) and a higher order cell-centered scheme with an artificial
dissipation at a qudrilateral C-mesh is used. The method of artificial compressibility
and the time dependent method are used for steady state solutions. Numerical results
are compared with experimental data.

1. Introduction

The work resumes the article presented in [3]. The Lax-Wendroff scheme in
Richtmyer form of second order accuracy with an added artificial viscosity is used
for the numerical solution of flow over the profile NACA 0012 in a channel.

2. Mathematical model

The governing system of equations is the system of Euler equations for 2D inviscid
incompressible flow in conservation form:

R̃Wt + Fx + Gy = 0 , (1)

where W =
(

p
ρ
, u, v

)T
, F =

(
u, u2 + p

ρ
, uv

)T
, G =

(
v, uv, v2 + p

ρ

)T
, R̃ = diag ‖0, 1, 1‖,

ρ is the density (constant), p is the pressure and (u, v) is the velocity vector.

The system (1) is solved with the diagonal matrix R̃ = diag
∥∥∥ 1

a2 , 1, 1
∥∥∥, a ∈ R,

which represents the method of artificial compressibility used for steady state solu-
tions.

Upstream conditions are u = u∞, v = v∞, p is extrapolated. Downstream con-
dition is only given by p = p2. Next values of the vector of conservative variables
are extrapolated at the outlet. Wall condition on fixed walls of the channel is the
impermeability condition, i. e., (u, v)n = 0 (the normal component of the velocity
vector is equal to zero). Two approaches are applied to wall conditions on oscillating
profile sides in the channel. At first, the impermeability condition is applied. At
second, the velocity vector of the flow field close to profile sides is determined by the
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velocity vector normal to the profile boundary and given by the angular velocity of
the profile.

The method of artificial compressibility and the time dependent method are used
for computations of steady state solutions. In the case of unsteady solution it is
necessary to consider a →∞ or a À K, where K is a given (large) positive number.

2.1. Prescribed profile oscillation

The motion of the profile fixed in the point of an elastic axis is given by the
formula

ϕ = ϕ0 sin(2πft) , (2)

where ϕ [rad] is the angle of rotation of the profile from the equilibrium position,
ϕ0 is the amplitude of oscillations, f [s−1] is the frequency and t [s] is time.

3. Numerical solution

3.1. Numerical scheme in FVM

The cell-centered Lax-Wendroff (Richtmyer form) scheme in a form of predictor-
corrector with an added artificial viscosity is used at quadrilateral C-mesh (m = 4):

• LW Richtmyer predictor:

W
n+1/2
i = W n

i −
1

2

∆t

µi

m∑

k=1

(F̄ n
ik∆yk − Ḡn

ik∆xk) +
ε

m

m∑

k=1

(W n
k −W n

i )

• LW Richtmyer corrector:

W̃ n+1
i = W n

i −
∆t

µi

m∑

k=1

(F̄
n+1/2
ik ∆yk − Ḡ

n+1/2
ik ∆xk) ,

W n+1
i = W̃ n+1

i + ADW n
i ,

where ADW n
i is artificial viscosity

and F̄ik = 1
2
(Fi + Fk), Ḡik = 1

2
(Gi + Gk), ε ∈ (0, 1〉.

3.2. Wall conditions

Wall conditions are realized by using the “reflection principle”.
Wall conditions on the oscillating profile are realized by using “small distur-

bance theory” because only small changes of the angle of attack ϕ are considered
(|ϕ| ≤ 60). Another method how to treat the oscillating profile is to employ the
Arbitrary Lagrangian-Eulerian method, see, e. g., [6].

Two different approaches to the numerical realization of the wall conditions on
the oscillating profile are applied: the impermeability condition is used in every time,
or the following condition is used:

(
− df

dx

)
u + v = ϕ̇f(x)

(
− df

dx

)
+ ϕ̇(e− x) , (3)
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Fig. 1: Meaning of symbols in the equation (3).

where (u, v) is the velocity vector, ϕ̇ is the angular velocity for the profile rotation,
f(x) is a function describing the shape of the profile surface and e is the distance of
the elastic axis EO from the origin O of a local coordinate system.

All quantities in the equation (3) are related to the local coordinate system with
the origin O (see Figure 1).

Dimensionless variables are used for the numerical solution. Relations between
dimensional and dimensionless variables are given by the normalization of dimen-
sional variables with reference (dimensional) values, see, e. g., [2].

4. Numerical results

Results of numerical solution of flow over the vibrating profile NACA 0012 in the
channel are presented. Steady state results and their comparison with experimental
data are presented, e. g., in [2].

Figures 2, 3 and 4 present results for the prescribed oscillation of the profile
NACA 0012 given by the formula (2). The elastic axis is situated in 25% of the
profile chord from the local coordinate system origin. The legend phi/10 in Figure 2
and 3 denotes a distribution of the variable ϕ according to the equation (2).

Figure 2 shows the pressure coefficient Cp during three oscillation periods at
points x

c
= 0.2 on the upper (Cpup) and lower (Cpdown

) side of the oscillating profile,
where c is the length of the profile chord. The oscillation frequency is f = 30 Hz
and the amplitude ϕ0 = 3o. Results are compared for two different values of the
parameter a, namely a = 1 and a = 10. The wall conditions are the impermeability
conditions. These conditions don’t reflect the influence of the elastic axis location of
the profile.
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Fig. 2: Cp in points x
c = 0.2 for the oscillating profile with f = 30Hz, comparison of

computed results for a = 1 and a = 10.

Fig. 3: ∆Cp for the oscillating profile with f = 30Hz, a = 10.

Figure 3 shows ∆Cp = Cpdown
− Cpup for points with x

c
= 0.2. These results are

suitable for comparison with available experimental data [1].

Table 1 presents the comparison of computed, experimental and theoretical data
for oscillating components (real and imaginary part) of ∆Cp for points on the profile
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Re ∆Cp Im ∆Cp

experimental data (Triebstein) 0.494 -0.0325
theoretical data (Triebstein) 0.440 -0.114
computed values 0.529 -0.108

Tab. 1: Comparison of computed, experimental and theoretical data for Re ∆Cp and
Im ∆Cp.

Fig. 4: Cp in points x
c = 0.2 for the oscillating profile with f = 30Hz, comparison of

computed results for both applied boundary conditions.

surface with x
c

= 0.2. The oscillation frequency of the profile is f = 30Hz and the
amplitude is ϕ0 = 3o. Experimental and theoretical data are data of Triebstein [7]
converted with respect to the amplitude of 3 degrees.

Figure 4 compares Cp plotted for points on the oscillating profile surface with
x
c

= 0.2 for both boundary conditions applied. Boundary conditions (3) involve the
influence of the elastic axis position instead of the simple impermeability boundary
condition. Only small differences are observed in results obtained for these two
boundary conditions applied.

5. Conclusion

A numerical solver of steady and unsteady inviscid incompressible flow over a pro-
file in a channel was developed. An explicit scheme with an added artificial viscosity
in FVM was used. The attention was particularly paid to the influence of the para-
meter a value and to the comparison of different boundary conditions applied to the
surface of the oscillating profile.
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Table 1 shows that the data computed for the oscillating profile are comparable
with Triebstein’s experimental and theoretical data [7].

The presented results indicate that the developed numerical solver can be used
for engineering numerical simulations.

However, in the case of the unsteady solution, the influence of the parameter a
value (see matrix R̃ in (1)) on the solution becomes a problem. This can be seen
in Figure 2. Therefore, it is intended to avoid this influence by the introduction
of another method treating the unsteady solution. The application of a dual time
stepping method or an implicit scheme is the intended approach.

It is intended to compare the computed data with results obtained through differ-
ent numerical methods. One of them is the finite element method (FEM) applied to
the same problem. For details of an application of FEM on problems of aeroelasticity
see, e. g., [4].
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