
PANM 12

Vladimír Lukeš; Eduard Rohan; Robert Cimrman
Computational algorithm for homogenized coefficients of hyperelastic heterogeneous materials
undergoing large deformations

In: Jan Chleboun and Petr Přikryl and Karel Segeth (eds.): Programs and Algorithms of Numerical Mathematics,
Proceedings of Seminar. Dolní Maxov, June 6-11, 2004. Institute of Mathematics AS CR, Prague, 2004.
pp. 149–154.

Persistent URL: http://dml.cz/dmlcz/702788

Terms of use:
© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702788
http://dml.cz


COMPUTATIONAL ALGORITHM FOR HOMOGENIZED
COEFFICIENTS OF HYPERELASTIC HETEROGENEOUS
MATERIALS UNDERGOING LARGE DEFORMATIONS∗

Vladimı́r Lukeš, Eduard Rohan, Robert Cimrman

Abstract

This article deals with an algorithm for numerical modelling of hyperelastic hetero-
geneous materials undergoing large deformations. The microstructure of these materi-
als is changing (deforming) during a loading process, the changes in the microstructure
depend on macroscopic deformations. To compute macroscopic responses, we must
know material stiffness parameters and stresses in the heterogeneous structure. These
effective parameters are obtained by solving microscopic problems. The number of
microproblems is enormous, because in each iteration step (due to geometrical and
material nonlinearities) it is needed to evaluate the effective material parameters in
each macroscopic quadrature point. To reduce a computational time a parallel algo-
rithm is presented.

1. Introduction

The problem of computing large deformations in heterogeneous media is charac-
terised by non-uniform change in microstructure, the macroscopic properties depend
on the spatial position. Starting with perfect periodic distribution of heterogenities
in the reference state, due to nonuniform deformation the material becomes func-
tionally graded. This results in a sequence of macroscopic and local microscopic
problems. The assumption of periodicity in the microstructure is crucial for the
application of the presented homogenization method.

If we consider large deformations, the mathematical model becomes nonlinear.
For obtaining numerical solutions it is needed to linearize the model and solve it
iteratively. For linearization the incremental updated Lagrangian (UL) formulation
is employed, cf. [4].

2. Homogenized model

Assuming periodic heterogenities and existence of the representative volume ele-
ment at the microscopic level, we apply the two scale method of homogenization
([4], [1], [6]) to derive effective material parameters at the macroscopic level. The
periodic representative cell consists, in our case, of an hyperelastic matrix with an
incompressible or compressible inclusion, see Fig. 1. We consider two scales, the

∗This work was supported by by the research project MSM 235200003.
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Fig. 1: Macro and micro domain.

macroscopic scale (associated with the macroscopic coordinates x) and the micro-
scopic scale (y coordinates). These two scales are related by a non-dimensional
parameter ε

y = x/ε, ε > 0. (1)

In the homogenization process, we assume that the heterogenities are very small
and we take ε −→ 0+. We assume the locally periodic heterogeneous microstructure
formed as copies of the single representative cell Y , which is decomposed into the
hyperelastic matrix Ym and inclusion T (Y = Ym ∪ T ∪ ∂T, Ym ∩ T = ∅).

For the hyperelastic matrix the neo-Hookean constitutive law is assumed ([3]).
The Kirchhoff stress τ , required by the UL formulation, is defined in terms of the
hydrostatic pressure p and the deformation gradient F :

τ = JI p + µJ−2/3 dev b, (2)

where J = det F , b = FF T , dev b denotes the deviator of the tensor b and µ is the
shear stiffness. If the material is compressible, the pressure is given by the following
constitutive law

p = −γ(J − 1), (3)

where γ is the bulk modulus. For incompressible materials p is the Lagrange multi-
plier associated with the constraint J − 1 = 0. The material coefficients are defined
in the microscopic domain Y according to the decomposition:

µ =
{

µ1, x ∈ Ym

0, x ∈ T
, γ =

{
γ, x ∈ Ym

γT , x ∈ T
, (4)

where γT = 0 for the compressible inclusion and γT −→ +∞ for the incompressible
one.

The two scale model (in case of the compressible inclusion) involves the micro-
scopic problems for the characteristic response functions χ and π, which must be
defined for all x in the macroscopic domain Ω by solving the boundary value problems
which are defined below.
Microscopic problem: For fixed x ∈ Ω and local (deformed) reference microscopic
configuration associated with the domain Y (x), find χ ∈ H#(Y ), π ∈ L2(Y ) such
that (r, s = 1, 2, 3):
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aYm (χrs −Πrs, w) − (πrs, divyw)Ym
= 0, ∀w ∈ H#(Ym), (5)

1

γ

(
1

J
πrs, q

)

Ym

+ (q, divy (χrs −Πrs))Ym
= 0, ∀q ∈ L2(Ym), (6)

where Πrs
i ≡ ys δri (δ – Kronecker delta), H#(Y ) ≡ {v ∈ [W 1,2(Y )]3| v is Y periodic,∫

Y
v(y) dy = 0} is the space of admissible displacements (W 1,2(Y ) is the Sobolev

space) and the bilinear form aYm(u, v) is defined as follows:

aYm(u, v) =
∫

Ym

DtTK
ijkl ey

kl(u) ey
ij(v)

1

J
dy +

∫

Ym

τij δkl ∂
y
i uk ∂y

j vl
1

J
dy. (7)

By superscripts x and y we denote the partial derivative w.r.t. xi and yi respec-
tively, eij(u) = 1

2

(
∂y

j ui + ∂y
i ui

)
is the linear strain tensor and DtTK

ijkl is the tangential
stiffness tensor related to the Kirchhoff stress.
Macroscopic problem: For the given homogenized stiffness tensor Q̂ijkl

Q̂ijkl ≡ 1

|Y |

[
aYm

(
Πkl − χkl, Π ij − χij

)
+

1

γ

(
1

J
πij, πkl

)

Ym

]
(8)

and the average Cauchy stress Ŝij

Ŝij ≡ 1

|Y |
∫

Y

τijJ
−1 dy, (9)

evaluated by means of the microproblem solutions, compute the macroscopic dis-
placements (increments) ∆u0 ∈ V (Ω) so that

∫

Ω

Q̂ijkl ∂
x
l ∆u0

k ∂x
j vi dx = L(v)−

∫

Ω

Ŝij ex
ij(v) dx, ∀v = V0(Ω). (10)

The virtual work of all external forces is denoted by L(v) and the spaces of the
admissible displacements V (Ω) a V0(Ω) are defined as

V =
{

v ∈
[
W 1,2(Ω)

]3 | vi = ∆ūi on Γu, i = 1, 2, 3
}

, (11)

V0 =
{

v ∈
[
W 1,2(Ω)

]3 | vi = 0 on Γu, i = 1, 2, 3
}

, (12)

where Γu is the part of the boundary with the prescribed Dirichlet boundary condi-
tions.

The above problem is a single step in an incremental algorithm. The homog-
enized coefficients Q̂ijkl as well as Ŝij must be recovered almost everywhere in Ω,
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which means, in practice, at each Gauss quadrature point of the finite element ap-
proximation of (10). In contrast to linear deformation models, this is the crucial
point of the whole coupled micro-macro computing in our nonlinear case; after com-
puting the macroscopic strain field, using ∆u0, the local microscopic configurations
must be updated and the corrector functions must be recomputed by solving (5), (6),
individually for each Gauss quadrature point in Ω wherein the “macro-strains” vary
nonuniformly. In [4] the method of approximation for Q̂ijkl and Ŝij was suggested
which was aimed at reducing the number of the microscopic problems to be solved. In
this article the parallel algorithm for reducing the computational time is presented.

3. Updating scheme t −→ t + ∆t

The macroscopic configuration Ω is simply updated by the increment of the
macroscopic displacement ∆u0 resulting from (10)

Ω(t+∆t): = Ω(t) + {∆u0}. (13)

At the microscopic level the updating scheme is not so straightforward. We need to
evaluate the increments of the microscopic displacement ∆u∗ and the pressure ∆p0.
These increments depend on the characteristic response functions χ and π and on
the macroscopic deformation ∂x

j ∆u0
i

∆u∗i := (Πrs
i − χrs

i ) ∂x
s ∆u0

r(x), ∆p0 := −πrs ∂x
s ∆u0

r. (14)

After that we are able to update the microscopic configuration Y and the total
deformation gradient F as

Y (t+∆t) := Y (t) + {∆u∗}, fij := δij + ∂y
j ∆u∗i , Fij := fikFkj. (15)

This updating scheme does not lead to the equilibrium state, either the equilibrium
equation or the pressure constitutive relation,

∂σ
(t)
ij

∂(t)yj

= 0 or p(t) = −γ(J (t) − 1), (16)

is not satisfied. As a consequence, we need to perform several iteration steps to
achieve the equilibrium state. The (pseudo)time t is associated with load steps, it is
not the real time.

The problem of computing the deformation in the macroscopic domain is solved
iteratively using three nested loops. In the toplevel loop the load steps are ap-
plied, the medium loop is needed to achieve the macroscopic equilibrium, while the
innermost loop leads to the local microscopic equilibrium for a fixed macroscopic
deformation. The whole algorithm is shown in Fig. 2.
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Fig. 2: ULF macro–micro algorithm.

4. Parallel strategy

It is evident that the complexity of this algorithm is considerable. In order to
reduce a computational time the parallel computation strategy is employed. We take
one computational node (master node) that works on the macroscopic problem while
the other nodes (slaves) solve the microscopic problems demanded by the master.
Master node sends to the slave nodes the deformation gradients in the appropriate
macroscopic quadrature points and receives the homogenized coefficients and the
average stress in these points, see Figures 3, 4.

For the parallel computation we use a Linux cluster communicating via the MPI
message passing library. The computational algorithm is well parallelized and the
speed-up is almost linear.

def. gradient F

MACRO MICRO

Qhomog. coefficients

avg. stress S

Fig. 3: Parallel communication.

Ω

Fig. 4: Parallel distribution.
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5. Numerical example

In Fig. 5 we can see a deformation of the macroscopic structure as well as the
deformed microstructures in two selected macroscopic points. Also the efficiency and
the speed-up of the parallel algorithm is shown.

Fig. 5: Efficiency, speed-up; pressure field and shear deformation.
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